- 1. Show how you can use the CDF F of a random variable Y to compute
 - (a) $\Pr(Y \in (a, b]);$
 - (b) $\Pr(Y \in (a, b));$
 - (c) $\Pr(Y \in [a, b]).$
- 2. Derive the density of W for the following cases:
 - (a) $W = -\log Y$ where $p_Y(y) = 1$ for $y \in (0, 1)$.
 - (b) W = 1/Y where $p_Y(y) = \frac{1}{\pi(1+y^2)}$ for $y \in \mathbb{R}$.
 - (c) $W = e^Y$ where $Y \sim N(0, 1)$.
 - (d) $W = Y^2$ where Y has a t_{ν} distribution.
- 3. Let Y be a random variable with a continuous strictly increasing CDF, so in particular F^{-1} exists and $F^{-1}(F(y)) = y$.
 - (a) Find the CDF of U where U = F(Y);
 - (b) Find the CDF of X, where $X = F^{-1}(U)$;
 - (c) Explain how these results can be used to simulate a normal distribution in R using only the runif command and the qnorm command. Write out your computer code.
- 4. Let X and Y be real-valued continuous random variables defined on the same probability space. Define $\Pr(X \in A | Y = y)$ using $p_{X|Y}(x|y)$ as we did in class. Show that $\int \Pr(X \in A | Y = y) p_y(y) dy = \Pr(X \in A)$. Describe in words why this result makes intuitive sense, possibly by making an analogy to the discrete case.
- 5. Let X and Y be real-valued continuous random variables defined on the same probability space. Show that $\lim_{\epsilon \to 0} \Pr(X \in A | Y \in B_{\epsilon}) = \int_{A} p_{x|y}(x|y) dx$, where $B_{\epsilon} = (y - \epsilon, y]$.

6. Let X have a Gamma(a, b) distribution, with density $p(x) = b^a x^{a-1} e^{-bx} / \Gamma(a)$ for x > 0. Let Let $Y|X \sim \text{Gamma}(c, X)$. Derive the marginal density of Y and the conditional density of X given Y.