- 1. Let Y be a positive random variable. Use Jensen's inequality to relate
 - (a) $E[Y^p]^{1/p}$ to $E[Y^q]^{1/q}$ for $p > q \ge 1$;
 - (b) E[1/Y] to 1/E[Y];
 - (c) $\log E[Y]$ to $E[\log Y]$.
- 2. Let $(w_1, w_2, w_3) \sim \text{Dirichlet}(\alpha_1, \alpha_2, \alpha_3)$.
 - (a) Derive the expected value and variance of w_j for $j \in \{1, 2, 3\}$.
 - (b) Derive the covariance of w_1 and w_2 , and explain intuitively the sign of the result.
 - (c) Derive the variance of w_1 and of $w_1 + w_2$.
 - (d) Derive the distribution of w_1 and of $w_1 + w_2$.
- 3. Covariance:
 - (a) Show that if X and Y are independent then Cov[X, Y] = 0.
 - (b) Show that if X = a + bY then Cor[X, Y] = 1 or -1.
 - (c) Let X_1, X_2, X_3 be three potentially correlated random variables.
 - i. Compute $Cov[a_1 + b_1X_1, a_2 + b_2X_2]$.
 - ii. Compute $E[X_1 + X_2 + X_3]$ and $Var[X_1 + X_2 + X_3]$ using the definition of expectation and variance, and check that your answer matches the formula from class.
- 4. For this exercise it is useful to know that if $Z \sim N(0, 1)$, then $E[Z^3] = 0$ and $E[Z^4] = 3$. Let $Y_1 = Z + X_1$, $Y_2 = Z + X_2$ and $Y_3 = Z^2 + X_3$, where Z, X_1, X_2 and X_3 are independent standard normal random variables.
 - (a) Compute the expectation and variance of Y_1 , Y_2 and Y_3 .
 - (b) Compute the variance-covariance matrix of Y_1 , Y_2 and Y_3 .
 - (c) Are Y_1 and Y_3 independent?

- 5. For two jointly distributed random variables X and Y and functions f and g, show that
 - (a) E[E[f(Y)|X]] = E[f(Y)];
 - (b) E[f(X)g(X,Y)|X] = f(X)E[g(X,Y)|X].