- 1. The usual arithmetic mean \bar{y} of a sample (y_1, \ldots, y_n) is highly sensitive to outliers, so sometimes we analyze $(x_1, \ldots, x_n) = (\ln y_1, \ldots, \ln y_n)$, or compute the sample mean on this scale.
 - (a) Show that $e^{\bar{x}} \leq \bar{y}$.
 - (b) Compare magnitudes of three different types of means given by $m(y_1, \ldots, y_n) = f^{-1}(\sum f(y_i)/n)$ for f(y) = 1/y, $f(y) = \ln y$ and f(y) = y.
 - (c) For each type of mean in (b), compute its sensitivity to outliers by approximating $m(y_1 + \delta, ..., y_n)$ with $m(y_1, ..., y_n) + \delta \times \frac{\partial}{\partial y_1} m(y_1, ..., y_n)$. Interpret your results.
- 2. Let Y_1, \ldots, Y_n be real-valued random variables with $\mathbb{E}[Y_i] = \mu$ and $\operatorname{Var}[Y_i] = \sigma^2$ for all $i = 1, \ldots, n$. Compute the variance of $\overline{Y} = \sum Y_i/n$ when
 - (a) $\operatorname{Cor}[Y_i, Y_j] = 0$ for all i.j;
 - (b) $\operatorname{Cor}[Y_i, Y_j] = \rho$ for all i, j;
 - (c) $Cor[Y_i, Y_j] = \rho$ if |i j| = 1 and is zero if |i j| > 1.

For each of the three cases, describe what happens to $\Pr(|\bar{Y} - \mu| > \epsilon)$ as $n \to \infty$, that is, evaluate the consistency of \bar{Y} for μ . Discuss your results.

- 3. Suppose $E[Y] = \mu$ and $Var[Y] = \sigma^2$. Consider the estimator $\hat{\mu} = (1 w)\mu_0 + wY$, where $\mu_0 \neq 0$ and $w \in (0, 1)$ are numbers.
 - (a) Find the expectation, variance, bias and MSE of $\hat{\mu}$ as functions of μ .
 - (b) For what values of μ does $\hat{\mu}$ have lower MSE than Y? Interpret your results.
- 4. Let $\hat{\theta}$ be an estimator for some unknown quantity θ . Derive a Chebyshevlike bound on $\Pr(|\hat{\theta} - \theta| > \epsilon)$ in terms of the MSE of $\hat{\theta}$.

- 5. Let $\bar{Y}_n \sim N(\mu, \sigma^2/n)$ and consider estimating μ with $\hat{\mu}_n = (1 w_n)\mu_0 + w_n \bar{Y}_n$, where μ_0 and w_n are constants, with w_n potentially depending on n.
 - (a) Find minimal conditions on w_n that make $\hat{\mu}_n$ a consistent estimator of μ . In other words, find conditions on w_n so that $\Pr(|\hat{\mu}_n \mu| > \epsilon) \to 0$ as $n \to \infty$ no matter what μ is.
 - (b) Now consider a Bayes estimator of μ based on the prior distribution $\mu \sim N(\mu_0, \tau^2)$, and the model that conditional on μ , $\bar{Y}_n \sim N(\mu, \sigma^2/n)$ (so $p(\bar{y}_n|\mu)$ is a $N(\mu, \sigma^2/n)$ density and $p(\mu)$ is a $N(\mu_0, \tau^2)$ density).
 - i. Write out the joint density of μ and \bar{Y}_n , and by re-arranging terms show that the conditional distribution of μ given \bar{Y}_n is a normal distribution. Specify the expectation and variance of this normal distribution.
 - ii. If σ^2, μ, τ^2 are known then the conditional expectation of μ given \bar{Y}_n is some function of \bar{Y}_n . Suppose we use this function as an estimator of μ . Using your results from item 2 above, decide if this is a consistent estimator of μ , and explain your answer.