- 1. Moment generating functions:
 - (a) Obtain the MGFs for the χ^2 , exponential, and Gamma distributions.
 - (b) Find the distributions of $\sum_{i=1}^{n} Y_i$, where Y_1, \ldots, Y_n are i.i.d. χ^2 and i.i.d. exponential.
 - (c) Based on the MGFs, how are the χ^2 and Gamma distributions related?
- 2. Let $C_k(Y_1, \ldots, Y_n) = (\bar{Y} a_k \sigma / \sqrt{n}, \bar{Y} + a_k \sigma / \sqrt{n})$ for $k \in \{1, 2\}$, where $a_1 = z_{1-\alpha/2}$ (the approximate normal interval) and $a_2 = 1/\sqrt{\alpha}$ (the Chebyshev interval). Make a plot of the relative interval width of C_1 to C_2 as a function of α . Then, via simulation, find the coverage rates of C_1 and C_2 for $\alpha = 0.80$ and $n \in \{1, 10\}$ when
 - (a) $Y_1, ..., Y_n \sim \text{i.i.d. } N(\mu, \sigma^2);$
 - (b) $Y_1, \ldots, Y_n \sim \text{i.i.d.}$ double exponential with variance 2.
 - (c) $Y_1, \ldots, Y_n \sim \text{i.i.d. beta}(.1, .5).$

Include your code as an appendix to your homework. Discuss your results, and your thoughts on the robustness of the z-interval when the data are not normal (importantly, in this exercise, we are using the true variance of the population instead of an estimate).

- 3. CLT:
 - (a) Let $Y_1, \ldots, Y_n \sim \text{i.i.d. } N(0, \sigma^2)$. Compute the mean and variance of $\overline{Y^2} = \sum Y_i^2/n$.
 - (b) Prove that $\overline{Y^2}$ converges in probability to something (and say what that something is).
 - (c) If you were to simulate many datasets of size n, compute $\overline{Y^2}$ for each of them, and then make a histogram of the $\overline{Y^2}$ values, what

distribution would the histogram resemble and why? Be specific, and identify the mean and variance of this distribution.

- 4. Weighted estimates: Sometimes our measurements of a quantity of interest have differing levels of precision. Let $\{Y_i : i \in \mathbb{N}\}$ be a vector of independent real-valued random variables with $\mathbb{E}[Y_i] = \mu$ and $\operatorname{Var}[Y_i] = a_i \sigma^2$ where the a_i 's are known values.
 - (a) Find the mean and variance of $\bar{Y}_w = \sum_{i=1}^n w_i Y_i$, where the w_i 's are constants that sum to one.
 - (b) Find the values of the w_i 's that minimize the variance of \bar{Y}_w .
 - (c) Obtain a WLLN for \overline{Y}_w , where the w_i 's are the optimal values.
- 5. CDF: Let Y_1, \ldots, Y_n be an i.i.d. sample from a distribution P with CDF F.
 - (a) For a point $y \in \mathbb{R}$, find an unbiased and consistent estimate F(y) of F(y). Show that it is unbiased, explain why it is consistent, and calculate its variance.
 - (b) Find an approximation to the large-sample distribution of $\hat{F}(y)$, and use this to obtain an approximate 95% CI for F(y).