1. Suppose Y_{1}, \ldots, Y_{n} are i.i.d. P where $\mathrm{E}\left[Y_{i}\right]=\mu$, $\operatorname{Var}\left[Y_{i}\right]=\sigma^{2}$ and $\mathrm{E}\left[Y_{i}^{4}\right]=\gamma<\infty$. Show that the usual sample variance $S_{n}^{2}=\sum_{i=1}^{n}\left(Y_{i}-\right.$ $\bar{Y})^{2} /(n-1)$ is a CAN estimator of σ^{2}, and obtain the asymptotic variance (Hint: There are several approaches to this problem. One way it to first consider $S_{0}^{2}=\sum\left(Y_{i}-\mu\right)^{2} / n$, then $S_{1}^{2}=\sum\left(Y_{i}-\bar{Y}\right)^{2} / n$, then S^{2}).
2. Let Y_{1}, \ldots, Y_{n} be independent random variables with $Y_{i} \sim N\left(\theta x_{i}, \sigma^{2}\right)$, where x_{i} are known positive numbers for each i.
(a) Let $\hat{\theta}=\bar{W}$ where $W_{i}=Y_{i} / x_{i}$. Find the bias and variance of $\hat{\theta}$.
(b) Find the MLE $\hat{\theta}_{M L E}$ of θ and compute its bias and variance.
(c) Compare the two estimators in terms of MSE. Under what conditions is one of them better than the other?
(d) Now suppose the x_{i} 's will be simulated by the experimenters from a distribution with mean μ_{X} and variance σ_{X}^{2}. What sort of values of μ_{X} and σ_{X}^{2} would you recommend, and why?
3. Consider a p-parameter exponential family model, $\mathcal{P}=\left\{P_{\theta}: \theta \in \Theta\right\}$, with $\Theta \subset \mathbb{R}^{p}$ and densities $p_{\theta}(y)=c(y) \exp \left(\theta^{\top} t(y)-A(\theta)\right)$. Here, $t(y)$ is a vector-valued function of the data value y.
(a) Show that the following models are exponential families, and identify $c(y), \theta, t(y)$ and $A(\theta)$ in each:
i. The binomial (n, p) distributions, with $p \in[0,1]$.
ii. The Poisson (μ) distributions, with $\mu \in \mathbb{R}^{+}$.
iii. The $N\left(\mu, \sigma^{2}\right)$ distributions, with $\mu \in \mathbb{R}$ and $\sigma^{2} \in \mathbb{R}^{+}$.
iv. The beta (a, b) distributions, with $a>0$ and $b>0$.
(b) For a sample of size n, write out the log-likelihood function of an exponential family model and simplify as much as possible.
(c) Find the likelihood equation, that is, the equation that sets the derivative of the log-likelihood function equal to zero, with the
data on one side of the equation and items involving the MLE on the other.
(d) Now take the derivative of $p(y \mid \theta)$ with respect to θ and integrate to obtain a formula for the expectation of $t(y)$. Compare this equation to the one obtained on (b), and comment.
4. Let $Y_{1}, \ldots, Y_{n} \sim$ i.i.d. $\operatorname{binary}(\theta)$.
(a) Find the MLE of θ.
(b) Rewrite the model in terms of $Y_{1}, \ldots, Y_{n} \sim$ i.i.d. $\operatorname{binary}\left(e^{\psi} /(1+\right.$ $\left.e^{\psi}\right)$). Find the MLE of ψ, and relate it to the MLE of θ from (a).
5. Let $\mathcal{P}_{1}=\left\{f_{\theta}(y): \theta \in \Theta\right\}$ denote the densities of a model. Let \mathcal{P}_{2} be a reparameterization of this model, that is, $\mathcal{P}_{2}=\left\{g_{\psi}(y): \psi \in \Psi\right\}$, where for every $\theta \in \Theta$ there is a unique $\psi \in \Psi$ such that $f_{\theta}(y)=g_{\psi}(y)$ for all y. Note that this means there is a 1-1 function $h: \Theta \rightarrow \Psi$ such that $f_{\theta}(y)=g_{h(\theta)}(y)$ for all y. Find the relationship between the MLE based on \mathcal{P}_{1} and the MLE based on \mathcal{P}_{2}.
