- 1. Suppose Y_1, \ldots, Y_n are i.i.d. P where $E[Y_i] = \mu$, $Var[Y_i] = \sigma^2$ and $E[Y_i^4] = \gamma < \infty$. Show that the usual sample variance $S_n^2 = \sum_{i=1}^n (Y_i \bar{Y})^2/(n-1)$ is a CAN estimator of σ^2 , and obtain the asymptotic variance (Hint: There are several approaches to this problem. One way it to first consider $S_0^2 = \sum (Y_i \mu)^2/n$, then $S_1^2 = \sum (Y_i \bar{Y})^2/n$, then S^2).
- 2. Let Y_1, \ldots, Y_n be independent random variables with $Y_i \sim N(\theta x_i, \sigma^2)$, where x_i are known positive numbers for each *i*.
 - (a) Let $\hat{\theta} = \bar{W}$ where $W_i = Y_i/x_i$. Find the bias and variance of $\hat{\theta}$.
 - (b) Find the MLE $\hat{\theta}_{MLE}$ of θ and compute its bias and variance.
 - (c) Compare the two estimators in terms of MSE. Under what conditions is one of them better than the other?
 - (d) Now suppose the x_i 's will be simulated by the experimenters from a distribution with mean μ_X and variance σ_X^2 . What sort of values of μ_X and σ_X^2 would you recommend, and why?
- 3. Consider a *p*-parameter exponential family model, $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$, with $\Theta \subset \mathbb{R}^p$ and densities $p_{\theta}(y) = c(y) \exp(\theta^{\top} t(y) - A(\theta))$. Here, t(y)is a vector-valued function of the data value y.
 - (a) Show that the following models are exponential families, and identify c(y), θ, t(y) and A(θ) in each:
 - i. The binomial(n, p) distributions, with $p \in [0, 1]$.
 - ii. The Poisson(μ) distributions, with $\mu \in \mathbb{R}^+$.
 - iii. The $N(\mu, \sigma^2)$ distributions, with $\mu \in \mathbb{R}$ and $\sigma^2 \in \mathbb{R}^+$.
 - iv. The beta(a, b) distributions, with a > 0 and b > 0.
 - (b) For a sample of size n, write out the log-likelihood function of an exponential family model and simplify as much as possible.
 - (c) Find the likelihood equation, that is, the equation that sets the derivative of the log-likelihood function equal to zero, with the

data on one side of the equation and items involving the MLE on the other.

- (d) Now take the derivative of $p(y|\theta)$ with respect to θ and integrate to obtain a formula for the expectation of t(y). Compare this equation to the one obtained on (b), and comment.
- 4. Let $Y_1, \ldots, Y_n \sim \text{i.i.d. binary}(\theta)$.
 - (a) Find the MLE of θ .
 - (b) Rewrite the model in terms of $Y_1, \ldots, Y_n \sim \text{i.i.d. binary}(e^{\psi}/(1 + e^{\psi}))$. Find the MLE of ψ , and relate it to the MLE of θ from (a).
- 5. Let $\mathcal{P}_1 = \{f_{\theta}(y) : \theta \in \Theta\}$ denote the densities of a model. Let \mathcal{P}_2 be a reparameterization of this model, that is, $\mathcal{P}_2 = \{g_{\psi}(y) : \psi \in \Psi\}$, where for every $\theta \in \Theta$ there is a unique $\psi \in \Psi$ such that $f_{\theta}(y) = g_{\psi}(y)$ for all y. Note that this means there is a 1-1 function $h : \Theta \to \Psi$ such that $f_{\theta}(y) = g_{h(\theta)}(y)$ for all y. Find the relationship between the MLE based on \mathcal{P}_1 and the MLE based on \mathcal{P}_2 .