- 1. Let $Y_i = e^{X_i}$ where $X_1, \ldots, X_n \sim \text{i.i.d. } N(\mu, \sigma^2)$. Let $\phi = \mathbb{E}[Y_i]$.
 - (a) Find the expectation and variance of Y_i , and the expectation and variance of \bar{Y} , in terms of μ and σ^2 .
 - (b) Find the MLE $\hat{\phi}$ of ϕ based on Y_1, \ldots, Y_n , and find an approximation to the variance of $\hat{\phi}$. Discuss the magnitude of $\operatorname{Var}[\hat{\phi}]$ relative to $\operatorname{Var}[\bar{Y}]$.
 - (*) Perform a simulation study where you compare $\hat{\phi}$ and \bar{Y} in terms of bias, variance and MSE.
- 2. Let $Y_1, \ldots, Y_n \sim \text{i.i.d. gamma}(a, b)$, parameterized so that $E[Y_i] = a/b$.
 - (a) Write down the log-likelihood and obtain the likelihood equations, that is, the equations that the MLE is the solution to.
 - (b) Compute the Fisher information and use this to obtain a joint asymptotic distribution for $(\hat{a}_{MLE}, \hat{b}_{MLE})$.
 - (c) Let $\mu = a/b$. Obtain the asymptotic distribution of $\hat{\mu}_{MLE} = \hat{a}_{MLE}/\hat{b}_{MLE}$. Compare the approximate variance of $\hat{\mu}_{MLE}$ to that of \bar{Y} .
- 3. Suppose $Y_1, \ldots, Y_n \sim \text{i.i.d. gamma}(a, b)$, but the statistician thinks that $Y_1, \ldots, Y_n \sim \text{i.i.d. } N(\mu, \sigma^2)$ for some unknown values of μ, σ^2 .
 - (a) What values of (μ, σ^2) will maximize the expected log likelihood, E[log $p(Y|\mu, \sigma^2)$]? Here, the expectation is with respect to the true gamma distribution for Y, and your answer should depend on (a, b).
 - (b) Make an argument that $(\hat{\mu}_{MLE}, \hat{\sigma}_{MLE}^2)$ converges in probability to something, say what that something is and explain your reasoning.
 - (c) What is the standard error of $\hat{\mu}_{MLE}$ for the statistician who assumes normality? In other words, what does this statistician use as an estimate of the standard deviation of $\hat{\mu}_{MLE}$? How does

this compare to the standard error of $\hat{\mu}_{MLE}$ for a statistician who correctly assumes the gamma model (as in the previous problem)?

- (d) Discuss the consequences of model misspecification in this case.
- 4. Suppose researcher A obtains an i.i.d. sample X_1, \ldots, X_n from some population that has density known to be in the set $\{f(x|\theta) : \theta \in \Theta\}$. Also suppose researcher B wants to analyze the experiment, but prefers working with Y_1, \ldots, Y_n where $Y_i = g(X_i)$ for some monotonic function g.
 - (a) Write out the likelihood for researcher A in terms of f and the X_i's, and write out the likelihood for researcher B in terms of f, g and the Y_i's.
 - (b) Relate the MLE of θ and its asymptotic variance obtained by researcher A from the X-likelihood to that obtained by researcher B from the Y-likelihood.
- 5. Let $Y_1, \ldots, Y_n \sim \text{i.i.d. Uniform}(0, \theta)$ for some $\theta > 0$.
 - (a) Find an estimator of θ based on \overline{Y} , and compute its variance.
 - (b) Write out the likelihood function, and find the MLE of θ .
 - (c) Using CDFs or otherwise, find the distribution of the MLE.
 - (d) Find the expectation, variance and MSE of the MLE and compare to the estimator from (a).
 - (*) Can you get an approximate variance for the MLE via the Fisher information?
 - (*) Try to find an unbiased estimator of θ based on the MLE. Can you improve upon the MSE?