- 1. Let $(X_1, Y_1), \ldots, (X_n, Y_n)$ be i.i.d. random variables with $\Pr(Y_i = 1 | X_i = x_i, \alpha, \beta) = e^{\alpha + \beta x_i} / (1 + e^{\alpha + \beta x_i}).$
 - (a) Find a formula for the log-likelihood and the score function, and obtain equations that determine the MLE (i.e., the "likelihood equations"). Try to write things in terms of $p_i = e^{\alpha + \beta x_i}/(1 + e^{\alpha + \beta x_i})$ as much as possible.
 - (b) Write out an expression for the expected information and find the asymptotic distribution of $\hat{\theta}_{MLE}$. Describe how the asymptotic variance of the MLE depends on the distribution of the X_i 's.
 - (c) Write out the observed information, and write out a step of a Newton-Raphson algorithm for finding the zeros of the likelihood equations (and maximizing the log likelihood).
 - (*) Implement your optimization in algorithm in R and compare to what you get using the glm command. Try to reproduce the standard errors from the summary table using your formula for the observed information (Hint: The standard errors in the table should be the square roots of n^{-1} times the diagonal of the estimated asymptotic variance).
- 2. Let $Y_1, \ldots, Y_n \sim \text{i.i.d.} P_{\theta_0}$ where $P_{\theta_0} \in \mathcal{P} = \{P_\theta : \theta \in \Theta\}$ and P_θ has density $p(y|\theta) = \theta y^{\theta-1}$ for $y \in (0, 1)$.
 - (a) Find the expectation of Y in terms of θ , then rewrite the density in terms of $\mu = E[Y]$ (solve for θ as a function of μ , then plug-in to the density).
 - (b) Find the variance of the sample mean \overline{Y} in terms of μ .
 - (c) Compare the Crame´r-Rao lower bound for unbiased estimators of E[Y] to the to the variance of \overline{Y} .
 - (d) Find the MLE of μ . Via simulation or otherwise, compare the variance of the MLE of E[Y] to the variance of \bar{Y} and comment.

- 3. Information inequalities for biased estimators:
 - (a) For a parametric family $\mathcal{P} = \{P_{\theta} : \theta \in \Theta \subset \mathbb{R}\}$ where the densities of P_{θ} are differentiable, derive a more general information inequality that provides a lower bound on the variance of any function $t(Y_1, \ldots, Y_n)$, where $Y_1, \ldots, Y_n \sim \text{i.i.d. } P_{\theta}$.
 - (b) For the model Y₁,..., Y_n ~ i.i.d. N(μ, 1), the Bayesian posterior mean estimator μ̂ of μ under the prior μ ~ N(0, τ²) is ȳ × n/(n + 1/τ²). Use (a) to obtain a lower bound on the variance of μ̂ and compare to the actual (frequentist) variance, Var[μ̂|μ].
- 4. For this problem, you may use the following facts: (a) if Z_1, \ldots, Z_n are i.i.d. N(0,1) then $\sum (Z_i - \bar{Z})^2$ has a χ^2_{n-1} distribution and is independent of \bar{Z} , and (b) if $Z \sim N(0,1)$ and $X^2 \sim \chi^2_{\nu}$ are independent then $Z/\sqrt{X^2/\nu}$ has a *t*-distribution with ν degrees of freedom. Now suppose $Y_1, \ldots, Y_n \sim \text{i.i.d. } N(\mu, \sigma^2)$. Let \bar{Y} be the sample mean and let $S^2 = \sum (Y_i - \bar{Y})^2/(n-1)$ be the sample variance.
 - (a) What is the distribution of $\sqrt{n}(\bar{Y} \mu)/\sigma$, and why?
 - (b) What is the distribution of $(n-1)S^2/\sigma^2$, and why?
 - (c) What is the distribution of $\sqrt{n}(\bar{Y} \mu)/S$, and why?
 - (d) Construct a level- α test of $H : \mu = \mu_0$, where μ_0 is some number. In other words, find a test statistic (that can depend on the data and μ_0) and an acceptance region so that the probability that the test statistic is inside the acceptance region is $1 - \alpha$ if $\mu = \mu_0$.