- 1. Let $Y \sim N(\mu, 1)$ and consider testing the hypothesis $H : \mu = 0$. Consider an acceptance region of the form $A(0) = (Y : z_{\alpha(1-w)} < Y < z_{1-\alpha w})$.
 - (a) Show that the type I error rate of such a test is α for $w \in [0, 1]$.
 - (b) Obtain the power of the test, that is, $\Pr(Y \notin A_0 | \mu)$ as a function of μ . Make a plot of this power function for w = 1/2 and w = 1/4. When would you use w = 1/2? When would you use w = 1/4?
- 2. Let $Y \sim P_{\theta}$ for some P_{θ} with density $p(y|\theta) = e^{-y/\theta}/\theta$ for $y \in R^+$ and $\theta \in R^+$.
 - (a) Find the CDF of P_{θ} .
 - (b) Suppose we want to test the *composite* hypothesis H : θ < θ₀, where θ₀ is some known number. Suppose we will reject H if Y > b for some value b. Find the value of b that makes this a level-α test, that is, find the value of b as a function of θ₀ and α so that the probability of rejection is less than or equal to α for each θ less than θ₀. Plot the power (probability of rejection) as a function of θ.
 - (c) Construct a confidence region for θ of the form $(c(y), \infty)$ such that $\Pr(\theta \in (c(Y), \infty) | \theta) = 1 \alpha$. Prove directly that your region has 1α coverage.
- 3. Suppose treatment A is assigned to a random selection of 4 of 8 experimental units, and treatment B is assigned to the 4 remaining experimental units.
 - (a) Assuming the A and B outcomes are random samples from $N(\mu_A, \sigma^2)$ and $N(\mu_B, \sigma^2)$ populations, what is the smallest *p*-value that one could obtain when using the usual two-sample *t*-statistic (assuming equal variances) to test $H: \mu_A = \mu_B$?

- (b) Suppose you will do a randomization test of H: "No treatment effect", using the same test statistic as in (a) for your test statistic. What is the smallest *p*-value you could obtain?
- (c) The observed treatment assignments and measured responses are

$$(X_1, \dots, X_8) = (B, A, B, B, A, A, B, A)$$

 $(Y_1, \dots, Y_8) = (7.5, 1.2, 7.5, 8.7, 3.2, 5.1, 6.2, 1.7).$

Graphically compare the null distribution for the normal-theory test in (a) to the null distribution for the randomization test in (b). Compute the *p*-value for each and discuss similarities and differences. Describe the differences in assumptions that the two testing procedures make.

- 4. Let $Y_1, \ldots, Y_n \sim \text{i.i.d. } N(\mu, \sigma^2)$ and let $S^2 = \sum (Y_i \bar{Y})^2 / (n-1)$ be the sample variance. Recall that $S^2 \stackrel{d}{=} \sigma^2 X^2 / (n-1)$ where X^2 has a χ^2_{n-1} distribution.
 - (a) Construct a level- α hypothesis test for evaluating $H : \sigma^2 = \sigma_0^2$.
 - (b) Construct a 1α confidence interval for σ^2 .