
Stat 542
Homework 2
Assigned 01/20/10
Due 01/29/10

1. Covariance and independence 1. Let X = (X1,X2)T be a multivariate normal random
vector and let Σ1,2 be the upper-right corner of Cov[X] as in the notes. Using characteristic
functions, show that Σ1,2 = 0 implies that X1 and X2 are independent.

Write out the characteristic function of X from Theorem 2.6.1 from the book, partition the
terms, and show the joint characteristic function of {X1,X2} factors into the the (marginal)
characteristic functions of X1 and X2. From the notes, this implies the joint density
f(X1,X2) can be factored into f(X1)f(X2).

2. Covariance and independence 2. Let (X,Y ) be two random variables with joint density

f(x, y) = (2π3)−1/2(x2 + y2)−1/2e−(x2+y2)/2.

(a) Make a sketch of the contours of this density.
(b) Are X and Y independent? Prove why or why not.
(c) Compute Cov[X,Y ].

(a) The density depends on x an y only through r2 = x2 +y2, and so the density is spherically
symmetric and has spherical (circular) contours

(b) X and Y are not independent. Most people just said the density could not be factored
as f(x)f(y), but did not prove this. One way to prove they are not independent is to show
f(x|y) depends on y. A simple way to do this is to plot f(x|y1) and f(x|y2 and show that
they have different shapes. Basically, the bigger y is, the less concentrated f(x|y) is around
zero.

(c) The covariance is zero. One way to show this is to break up R2 into the four quadrants
Q1 = (x > 0, y > 0), Q2(x > 0, y < 0), Q3 = (x < 0, y > 0) and Q4 = (x < 0, y < 0), and
show that∫

Q1

xyf(x, y)dxdy = −
∫

Q2

xyf(x, y)dxdy = −
∫

Q3

xyf(x, y)dxdy =
∫

Q4

xyf(x, y)dxdy.

This shows that E(XY ) = 0. A similar argument shows that E(X) = E(Y ) = 0, and so the
covariance is zero, even though X and Y are not independent.

3. Graphical models 1. The following correlation matrix comes from a copula model:

Σ =



age edu bmi vocab income
1.00 −0.03 0.70 0.00 0.57
−0.03 1.00 0.00 0.73 0.56

0.70 0.00 1.00 0.03 0.43
0.00 0.73 0.03 1.00 0.43
0.57 0.56 0.43 0.43 1.00


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“edu” is educational level, “bmi” is body mass index, “vocab” is a score on a vocabulary test.

(a) Draw a graph in which the nodes are the five variable names. Draw a line between each
pair (j, k) of nodes for which |σj,k| > 0.25.

(b) Assuming that the marginal means are zero and normality on some scale, E[Xj |X−j ] =
βT

j X−j . Based on the above numerical correlation matrix, compute βj for each j ∈
{1, . . . , 5}.

(c) Draw a graph in which the nodes are the five variable names. Draw a line between each
pair (j, k) of nodes for which |βj,k| > 0.25. Compare to your graph in (a).

You can use the following R-code to compute the regression coefficients:

B[j, -j] <- C[j, -j] %*% solve(C[-j, -j])

Let me provide some interpretation of the graph in (c). First of all, it is not a correlation
graph - it is a conditional dependence graph, that is, a graph representing how the conditional
distribution of a given variable depends on the other variables. Two variables can have
a positive correlation but be conditionally independent. For example, arm length and leg
length may be correlated, but conditionally independent given height.

Conditional dependence graphs like the one in (c) are often used when people want to do
“causal modeling.” Suppose education has a causal effect on vocabulary and on income,
but income and vocabulary do not affect one another. Then we expect to see a correlation
between vocab and income, even though they are conditionally independent given education.

4. Graphical models 2. Let X ∈ Rp be a random vector with density f(x) = f(x1, . . . , xp). We
say that X1 and X2 are conditionally independent given X3, . . . , Xp if

f(x1, x2|x3, . . . , xp) = f(x1|x3, . . . , xp)f(x2|x3, . . . , xp).

(a) Show that f(x1|x2, x3, . . . , xp) not being a function of x2 is a necessary and sufficient
condition for X1 and X2 being conditionally independent.

First suppose f(x1|x−1) doesn’t depend on x2. In this case, f(x1|x2, . . . , xp) = f(x1|x3, . . . , xp).
Therefore

f(x1, x2|x3, . . . , xp) = f(x1|x2, . . . , xp)f(x2|x3, . . . , xp) (always)
= f(x1|x3, . . . , xp)f(x2|x3, . . . , xp) (from the assumption)

which shows conditional independence. Going the other way, assume conditional indepen-
dence. Then

f(x1|x2, . . . , xp) =
f(x1, x2|x3, . . . , xp)
f(x2|x3, . . . , xp)

(always)

=
f(x1|x3, . . . , xp)f(x2|x3, . . . , xp)

f(x2|x3, . . . , xp)
(by conditional independence)

= f(x1|x3, . . . , xp).

which gives the result.

Now suppose X is multivariate normal with mean zero and covariance matrix Σ = Λ−1.

2



(b) Express E[Xj |X−j ] and Var[Xj |X−j ] in terms of the elements of Λ and X−j .

(c) Letting βj,k be the regression coefficient forXk in the conditional expectation E[Xj |X−j ],
find the relationship between βj,k and βk,j in terms of the elements of Λ. Must these
coefficients always have the same sign? Why or why not?

(c) Find conditions on Λ such thatX1 andX2 are conditionally independent, givenX3, . . . , Xp.

For part (b), use the identity on p.638 in the appendix to relate Λ = Σ−1 to various quantities
that make up the conditional mean and variance formulas. From this, you should get that
“regression coefficient” can be written −λ−1

j,j Λj,−j and the conditional variance is λ−1
j,j . The

coefficient for variable k in the conditional expectation of j is then −λj,k/λj,j . and the
coefficient for j in that of k is −λj,k/λk,k. Since Σ is positive definite, so is Λ, and so λj,j

and λk,k are both positive. Thus the coefficients must have the same sign. Finally, from this
we also see that Xj and Xk are conditionally independent if λj,k = 0.

Some interpretation: Λ is called the precision matrix. Our results say that, even if we
knew all variables except j, our variance (uncertainty) about j is λ−1

j,j , or that the “maximal
precision” for Xj is λj,j . Our last result says that zeros in the precision matrix directly
indicate conditional independencies in the data.
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