1. Expectations (written): Suppose data are sampled from a population that can be described with the following model:

$$y_{i,j} = \mu + a_j + \epsilon_{i,j}$$

 $\{\epsilon_{i,j}\} \sim \text{ iid } N(0, \sigma^2), \quad i = 1, \dots, n, \ j = 1, \dots, m,$

where $\sum_{j} a_{j} = 0$. Compute the following quantities, showing your steps:

- (a) $\mathbf{E}[y_{i,j}]$, $\mathbf{E}[\bar{y}_j]$, $\mathbf{E}[\bar{y}_{..}]$
- (b) $\operatorname{Var}[y_{i,j}], \operatorname{Var}[\bar{y}_j], \operatorname{Var}[\bar{y}_{\cdot\cdot}].$

Describe in words the effect of n and m on the variances, and how they relate to how precisely you can estimate μ and the a_j 's. (For this problem, you can use the facts that for two independent random variables x and y, E[ax + by] = aE[x] + bE[y] and $Var[ax + by] = a^2Var[x] + b^2Var[y]$).

- 2. ANOVA (Rmd): Read in the nels_math_ses datafile from the course data directory using the dget command. For this exercise you will analyze $y_{i,j}$ = mathscore of student *i* in school *j*.
 - (a) Compute the grand mean and the group means. Report the grand mean and the variance and standard deviation of the group means around the grand mean. Make a histogram of the group means, and re-create the dotplot from the slides 12.pdf.
 - (b) Construct an ANOVA table for these data. Compare MSG to MSE and explain in words what the F-statistic is telling you about acrossgroup heterogeneity. Obtain the p-value from the F-test for across group heterogeneity. What are your conclusions?
 - (c) For each school, compute the mean of mathdeg and ses. Plot the school-specific mathscore means versus these two variables (use boxplots for mathdeg). Describe what you see and conjecture about sources of hetero-geneity for the school-specific means.

- 3. Covariance (written): Reconsider the model above where $y_{i,j} = \mu + a_j + \epsilon_{i,j}$, but now assume that the groups are sampled, and that $a_1, \ldots, a_m \sim \text{iid } N(0, \tau^2)$. In this model, the a_j 's are mean zero, uncorrelated and have variance τ^2 . Compute the following:
 - (a) $E[y_{i,j}], Var[y_{i,j}].$
 - (b) $\operatorname{Cov}[y_{i_1,j_1}, y_{i_2,j_2}]$ and $\operatorname{Cov}[y_{i_1,j_1}, y_{i_2,j_1}]$. Note that in the groups are different in the first covariance but different in the second.
 - (c) $\operatorname{Cor}[y_{i_1,j_1}, y_{i_2,j_1}]$. Explain in words how τ^2 relates to within-group correlation.

Hint: Recall the covariance of two random variables x and z is given by $\operatorname{Cov}[x, z] = \operatorname{E}[(x - \mu_x) \times (z - \mu_z)]$ or equivalently, $\operatorname{Cov}[x, z] = \operatorname{E}[x \times z] - \mu_x \times \mu_z$. To compute the covariance in the problem, plug in $\mu + a_{j_1} + \epsilon_{i_1,j_1}$ for y_{i_1,j_1} and similarly for the other y's, and start computing expectations. Also recall that if a random variable x is mean-zero, then its variance is given by $\operatorname{E}[x^2]$, and that if two random variables x and z are mean zero and uncorrelated, then $\operatorname{E}[xz] = 0$.