- 1. Radon (Rmd): Read in the data from the file mn.radon.data using the dget command. These data consist of radon measurements in Minnesota counties.
 - (a) Make a dotplot of the data. Construct the ANOVA table and test for overall differences between counties. Using terms from the ANOVA table, obtain estimates of μ , σ^2 and τ^2 , and an estimate of the intraclass correlation coefficient. Describe in words your results.
 - (b) Rank order the counties in terms of their sample means, and identify the top 5 and bottom 5 counties. How do the sample sizes of the top and bottom counties compare to the average sample size across groups? Plot county sample means versus county sample sizes, and comment.
 - (c) Obtain shrinkage estimates $\hat{\mu}_j$ for each county j using the formula

$$\hat{\mu}_j = \frac{n_j/\hat{\sigma}^2}{n_j/\hat{\sigma}^2 + 1/\hat{\tau}^2} \bar{y}_j + \frac{1/\hat{\tau}^2}{n_j/\hat{\sigma}^2 + 1/\hat{\tau}^2} \bar{y}_{...}$$

Rank order the counties in terms of the $\hat{\mu}_j$'s, and identify the top and bottom 5 counties. Describe any differences between this ranking and the one in (b).

- (d) Using lme4, obtain MLEs for μ , σ^2 and τ^2 . Compare them to the estimates obtained above.
- (e) Using the command mll.oneway from the course slides, plot the profile log-likelihood for each of (μ, τ^2, σ^2) as follows: Fix σ^2 and τ^2 at their MLE values. With these fixed, plot the log-likelihood of μ in a range near the MLE value. Confirm that the peak occurs at the MLE. Make analogous plots for σ^2 and τ^2 .
- 2. Mean squared error (written): In this exercise, we will compute how well \bar{y}_j does at estimating μ_j as compared to the shrinkage estimator $w\bar{y}_j + (1-w)\mu$ in the hierarchical normal model. Here, $w = \frac{n_j/\sigma^2}{n_j/\sigma^2 + 1/\tau^2}$. To make the calculations simpler, we will assume $\mu = 0$ and $\sigma^2 = 1$, and the value of τ^2 is known, so $w = \frac{n_j}{n_j + 1/\tau^2}$ and the shrinkage estimator is just $w\bar{y}_j$.

- (a) Compute first the mean squared error (MSE) of \bar{y}_j , MSE(\bar{y}_j) = E[($\bar{y}_j \mu_j$)²]. Do this by first taking the conditional expectation given μ_j , then the unconditional expectation of the result. The answer should be simple and intuitive.
- (b) Now we will compute the MSE of $w\bar{y}_j$, $\text{MSE}(w\bar{y}_j) = \text{E}[(w\bar{y}_j \mu_j)^2]$. Do this by first computing the conditional expectation $\text{E}[(w\bar{y}_j \mu_j)^2 | \mu_j]$. One way to do this is by writing $(w\bar{y}_j \mu_j)^2$ as

$$(w\bar{y}_j - \mu_j)^2 = (w(\bar{y}_j - \mu_j) - (1 - w)\mu_j)^2$$

= $w^2(\bar{y}_j - \mu_j)^2 - 2w(1 - w)(\bar{y}_j - \mu_j)\mu_j + (1 - w)^2\mu_j^2$.

Take the expectation of this quantity, conditional on μ_j (that is, treating μ_j as a constant).

- (c) Now take the expectation of the result in (b), assuming $\mu_j \sim N(0, \tau^2)$. This is the MSE of $w\bar{y}_j$. Simplify the result as much as possible.
- (d) For what values of n_j and τ^2 is the MSE of $w\bar{y}_j$ lower than that of \bar{y}_j ? For what values is it much lower?