Introduction 560 Hierarchical modeling

Peter Hoff

Statistics, University of Washington

Multilevel data: Data for which there are

- multiple nested levels of sampling, and/or
- multiple nested sources of variability.

Such data are also often called hierarchical data.

Examples

Educational testing: students are nested within classes, classes within schools.

Agricultural experiments: subplots nested within whole plots

Multilevel data: Data for which there are

- multiple nested levels of sampling, and/or
- multiple nested sources of variability.

Such data are also often called hierarchical data.

Examples

Educational testing: students are nested within classes, classes within schools.

Agricultural experiments: subplots nested within whole plots

Multilevel data: Data for which there are

- multiple nested levels of sampling, and/or
- multiple nested sources of variability.

Such data are also often called hierarchical data.

Examples

Educational testing: students are nested within classes, classes within schools.

Agricultural experiments: subplots nested within whole plots

Multilevel data: Data for which there are

- multiple nested levels of sampling, and/or
- multiple nested sources of variability.

Such data are also often called hierarchical data.

Examples:

Educational testing: students are nested within classes, classes within schools.

Agricultural experiments: subplots nested within whole plots.

observational unit: an object for which data maybe observed.

macro-level unit: a unit within which other units are nested.

micro-level unit: a unit nested within another unit.

Note that unless there are only two levels, macro versus micro is relative.

Synonyms:

macro units	micro units
top-level units	bottom-level units
primary units	secondary units
clusters	units
groups	units

Notation

observational unit: an object for which data maybe observed.

macro-level unit: a unit within which other units are nested.

macro units	micro units
top-level units	bottom-level units
primary units	secondary units
clusters	units
groups	units

observational unit: an object for which data maybe observed.

macro-level unit: a unit within which other units are nested.

micro-level unit: a unit nested within another unit.

Note that unless there are only two levels, macro versus micro is relative.

Synonyms:

macro units	micro units
top-level units	bottom-level units
primary units	secondary units
clusters	units
groups	units

Notation

observational unit: an object for which data maybe observed.

macro-level unit: a unit within which other units are nested.

micro-level unit: a unit nested within another unit.

Note that unless there are only two levels, macro versus micro is relative.

Synonyms:

macro units	micro units
top-level units	bottom-level units
primary units	secondary units
clusters	units
groups	units

Notation

observational unit: an object for which data maybe observed.

macro-level unit: a unit within which other units are nested.

micro-level unit: a unit nested within another unit.

Note that unless there are only two levels, macro versus micro is relative.

Synonyms:

macro units	micro units
top-level units	bottom-level units
primary units	secondary units
clusters	units
groups	units

Notation

observational unit: an object for which data maybe observed.

macro-level unit: a unit within which other units are nested.

micro-level unit: a unit nested within another unit.

Note that unless there are only two levels, macro versus micro is relative.

Synonyms:

macro units	micro units
top-level units	bottom-level units
primary units	secondary units
clusters	units
groups	units

Notation:

Consider the costs of administering an in-person survey to:

- 100 randomly sampled public high-school students in Washington state;
- 10 students sampled from 10 randomly sampled high schools.

Cluster sampling

The second sampling scheme is called cluster sampling or two-stage sampling

- is often cheaper per sampled unit
- often gives less reliable estimates of population means

Consider the costs of administering an in-person survey to:

- 100 randomly sampled public high-school students in Washington state;
- 10 students sampled from 10 randomly sampled high schools.

Cluster sampling

The second sampling scheme is called cluster sampling or two-stage sampling

- is often cheaper per sampled unit
- often gives less reliable estimates of population means

Consider the costs of administering an in-person survey to:

- 100 randomly sampled public high-school students in Washington state;
- 10 students sampled from 10 randomly sampled high schools.

Cluster sampling

The second sampling scheme is called cluster sampling or two-stage sampling

- is often cheaper per sampled unit
- often gives less reliable estimates of population means

Consider the costs of administering an in-person survey to:

- 100 randomly sampled public high-school students in Washington state;
- 10 students sampled from 10 randomly sampled high schools.

Cluster sampling

The second sampling scheme is called *cluster sampling* or *two-stage sampling*.

- is often cheaper per sampled unit
- often gives less reliable estimates of population means

Consider the costs of administering an in-person survey to:

- 100 randomly sampled public high-school students in Washington state;
- 10 students sampled from 10 randomly sampled high schools.

Cluster sampling

The second sampling scheme is called *cluster sampling* or *two-stage sampling*.

- is often cheaper per sampled unit;
- often gives less reliable estimates of population means.

Consider the costs of administering an in-person survey to:

- 100 randomly sampled public high-school students in Washington state;
- 10 students sampled from 10 randomly sampled high schools.

Cluster sampling

The second sampling scheme is called *cluster sampling* or *two-stage sampling*.

- is often cheaper per sampled unit;
- often gives less reliable estimates of population means.

Task: Estimation of a population mean

Task: Estimate the population mean μ from sample data.

Questions

- How do cluster sampling and SRS compare?
- How do you infer μ from cluster sample data?

Task: Estimation of a population mean

Task: Estimate the population mean μ from sample data.

Questions:

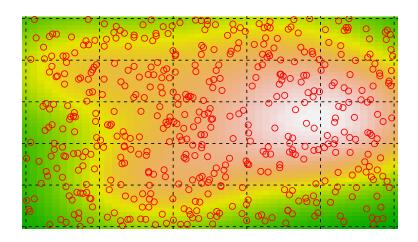
- How do cluster sampling and SRS compare?
- How do you infer μ from cluster sample data?

Task: Estimation of a population mean

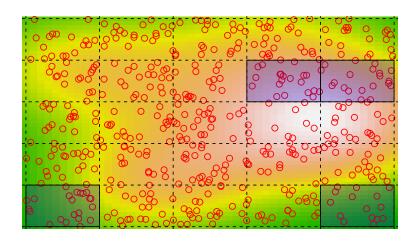
Task: Estimate the population mean μ from sample data.

Questions:

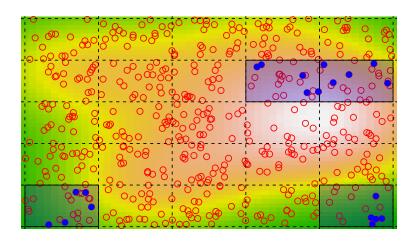
- How do cluster sampling and SRS compare?
- How do you infer μ from cluster sample data?



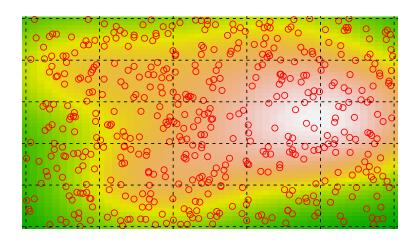
 μ =2.1124814



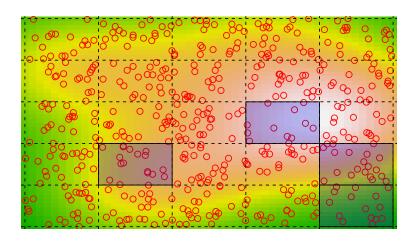
 μ =2.1124814



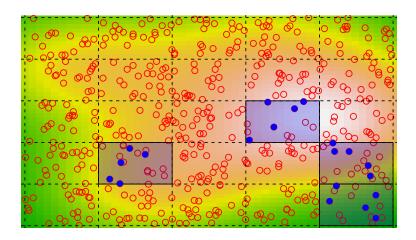
 $\mu{=}2.1124814$, $\bar{y}{=}1.8687553$



 μ =2.1124814

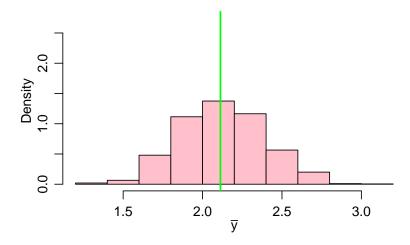


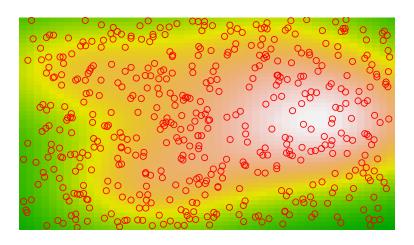
 μ =2.1124814



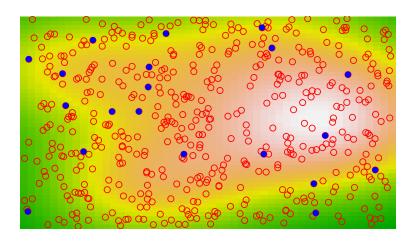
 $\mu{=}2.1124814$, $\bar{y}{=}2.2758576$

Variability of sample mean

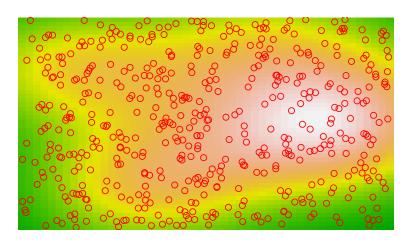




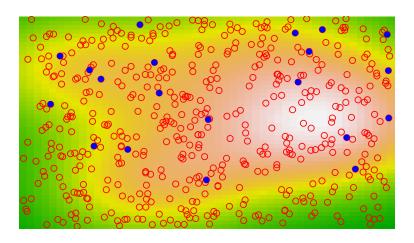
 μ =2.1124814



 $\mu{=}2.1124814$, $\bar{y}{=}2.0593259$

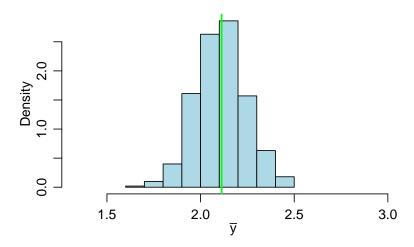


 μ =2.1124814

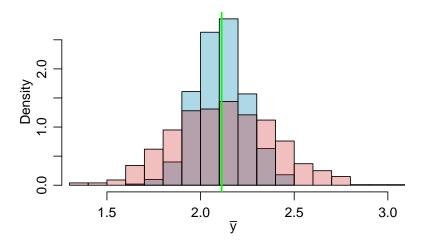


 $\mu{=}2.1124814$, $\bar{y}{=}2.20719$

Variability of sample mean



Comparison of sampling variability



Heterogeneity, homogeneity and dependence

As we will show mathematically,

across-group heterogeneity \Leftrightarrow within-group homogeneity \Leftrightarrow within-group correlation or dependence

Equivalently, across-group heterogeneity generally

- increases the variance of the sample;
- reduces the precision of estimates

$$Var[\bar{y}_{tss}] \geq Var[\bar{y}_{srs}]$$

Heterogeneity, homogeneity and dependence

As we will show mathematically,

across-group heterogeneity \Leftrightarrow within-group homogeneity \Leftrightarrow within-group correlation or dependence

Equivalently, across-group heterogeneity generally

- increases the variance of the sample;
- reduces the precision of estimates.

 $Var[\bar{y}_{tss}] \geq Var[\bar{y}_{srs}]$

Heterogeneity, homogeneity and dependence

As we will show mathematically,

across-group heterogeneity \Leftrightarrow within-group homogeneity \Leftrightarrow within-group correlation or dependence

Equivalently, across-group heterogeneity generally

- increases the variance of the sample;
- reduces the precision of estimates.

$$Var[\bar{y}_{tss}] \geq Var[\bar{y}_{srs}]$$

Heterogeneity, homogeneity and dependence

As we will show mathematically,

across-group heterogeneity \Leftrightarrow within-group homogeneity \Leftrightarrow within-group correlation or dependence

Equivalently, across-group heterogeneity generally

- increases the variance of the sample;
- reduces the precision of estimates.

$$Var[\bar{y}_{tss}] \geq Var[\bar{y}_{srs}]$$

Heterogeneity, homogeneity and dependence

As we will show mathematically,

across-group heterogeneity \Leftrightarrow within-group homogeneity \Leftrightarrow within-group correlation or dependence

Equivalently, across-group heterogeneity generally

- increases the variance of the sample;
- reduces the precision of estimates.

$$Var[\bar{y}_{tss}] \geq Var[\bar{y}_{srs}]$$

Task: Construct a 95% CI for the population mean.

t-interval for SRS

If y_1, \ldots, y_n is an iid sample with $E[y_i] = \mu$ and $Var[y_i] = \sigma^2$,

$$\mathsf{E}[\bar{y}] = \mu \; , \; \mathsf{Var}[\bar{y}] = \sigma^2/n.$$

By the central limit theorem,

$$\bar{y} \stackrel{.}{\sim} N(\mu, \sigma^2/n) \; , \; \frac{\bar{y} - \mu}{\sigma/\sqrt{n}} \stackrel{.}{\sim} N(0, 1).$$

As σ^2 is generally unknown, we use

$$rac{ar{y}-\mu}{s/\sqrt{n}} \stackrel{.}{\sim} t_{n-1}, \text{ , where} s^2 = rac{1}{n-1} \sum (y_i - ar{y})^2$$

$$\bar{y} \pm t_{n-1,.975} \times s/\sqrt{n}$$
 is a 95% CI for μ

Task: Construct a 95% CI for the population mean.

t-interval for SRS:

If y_1, \ldots, y_n is an iid sample with $\mathsf{E}[y_i] = \mu$ and $\mathsf{Var}[y_i] = \sigma^2$,

$$\mathsf{E}[\bar{y}] = \mu \; , \; \mathsf{Var}[\bar{y}] = \sigma^2/n.$$

By the central limit theorem,

$$\bar{y} \stackrel{.}{\sim} N(\mu, \sigma^2/n) , \frac{\bar{y} - \mu}{\sigma/\sqrt{n}} \stackrel{.}{\sim} N(0, 1).$$

As σ^2 is generally unknown, we use

$$rac{ar{y}-\mu}{s/\sqrt{n}} \stackrel{.}{\sim} t_{n-1}, \text{ ,wheres}^2 = rac{1}{n-1} \sum (y_i - ar{y})^2$$

$$\bar{y} \pm t_{n-1,.975} \times s/\sqrt{n}$$
 is a 95% CI for μ

Task: Construct a 95% CI for the population mean.

t-interval for SRS:

If y_1, \ldots, y_n is an iid sample with $\mathsf{E}[y_i] = \mu$ and $\mathsf{Var}[y_i] = \sigma^2$,

$$\mathsf{E}[\bar{y}] = \mu \; , \; \mathsf{Var}[\bar{y}] = \sigma^2/n.$$

By the central limit theorem,

$$ar{y} \sim \mathcal{N}(\mu, \sigma^2/n) \; , \; rac{ar{y} - \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1).$$

As σ^2 is generally unknown, we use

$$rac{ar{y}-\mu}{s/\sqrt{n}} \stackrel{.}{\sim} t_{n-1}, \text{ , where} s^2 = rac{1}{n-1} \sum (y_i - ar{y})^2$$

$$\bar{y} \pm t_{n-1..975} \times s/\sqrt{n}$$
 is a 95% CI for μ

Task: Construct a 95% CI for the population mean.

t-interval for SRS:

If y_1, \ldots, y_n is an iid sample with $\mathsf{E}[y_i] = \mu$ and $\mathsf{Var}[y_i] = \sigma^2$,

$$\mathsf{E}[\bar{y}] = \mu \; , \; \mathsf{Var}[\bar{y}] = \sigma^2/n.$$

By the central limit theorem,

$$\bar{y} \sim N(\mu, \sigma^2/n) , \frac{\bar{y} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1).$$

As σ^2 is generally unknown, we use

$$\frac{\bar{y}-\mu}{s/\sqrt{n}} \stackrel{.}{\sim} t_{n-1}, \text{ ,wheres}^2 = \frac{1}{n-1} \sum (y_i - \bar{y})^2.$$

$$\bar{y} \pm t_{n-1..975} \times s/\sqrt{n}$$
 is a 95% CI for μ

Task: Construct a 95% CI for the population mean.

t-interval for SRS:

If y_1, \ldots, y_n is an iid sample with $E[y_i] = \mu$ and $Var[y_i] = \sigma^2$,

$$\mathsf{E}[\bar{y}] = \mu \; , \; \mathsf{Var}[\bar{y}] = \sigma^2/n.$$

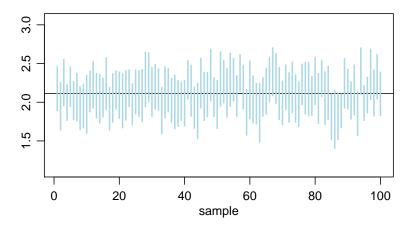
By the central limit theorem,

$$ar{y} \sim \mathcal{N}(\mu, \sigma^2/n) \; , \; rac{ar{y} - \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1).$$

As σ^2 is generally unknown, we use

$$rac{ar{y}-\mu}{s/\sqrt{n}} \stackrel{.}{\sim} t_{n-1}, \text{ ,where} s^2 = rac{1}{n-1} \sum (y_i - ar{y})^2.$$

$$\bar{y} \pm t_{n-1,.975} imes s/\sqrt{n}$$
 is a 95% CI for μ .



$$\bar{y} \pm t_{n-1,.975} \times s/\sqrt{n}$$

What if we apply the formula to data from a cluster sample?

If y_1, \ldots, y_n are from a SRS, then

$$Var[\bar{y}] = \sigma^2/n = E[s^2/n].$$

 s/\sqrt{n} provides a good estimate of the sd of \bar{y} .

If y_1, \ldots, y_n are from a cluster sample, then generally

$$Var[\bar{y}] > \sigma^2/n \approx E[s^2/n]$$

 s/\sqrt{n} is generally an underestimate of the sd of $ar{y}$

How will the resulting confidence interval behave if $sd(\bar{y}) > s/\sqrt{n}$

$$\bar{y} \pm t_{n-1,.975} \times s/\sqrt{n}$$

What if we apply the formula to data from a cluster sample? If y_1, \ldots, y_n are from a SRS, then

$$Var[\bar{y}] = \sigma^2/n = E[s^2/n].$$

 s/\sqrt{n} provides a good estimate of the sd of \bar{y} .

If y_1, \ldots, y_n are from a cluster sample, then generally

$$Var[\bar{y}] > \sigma^2/n \approx E[s^2/n]$$

 s/\sqrt{n} is generally an underestimate of the sd of $ar{y}$

How will the resulting confidence interval behave if $\operatorname{sd}(\bar{y}) > s/\sqrt{n}$?

$$\bar{y} \pm t_{n-1,.975} \times s/\sqrt{n}$$

What if we apply the formula to data from a cluster sample? If y_1, \ldots, y_n are from a SRS, then

$$Var[\bar{y}] = \sigma^2/n = E[s^2/n].$$

 s/\sqrt{n} provides a good estimate of the sd of \bar{y} .

If y_1, \ldots, y_n are from a cluster sample, then generally

$$Var[\bar{y}] > \sigma^2/n \approx E[s^2/n]$$

 s/\sqrt{n} is generally an underestimate of the sd of $ar{y}$

How will the resulting confidence interval behave if $\operatorname{sd}(\bar{y}) > s/\sqrt{n}$?

$$\bar{y} \pm t_{n-1,.975} \times s/\sqrt{n}$$

What if we apply the formula to data from a cluster sample? If y_1, \ldots, y_n are from a SRS, then

$$Var[\bar{y}] = \sigma^2/n = E[s^2/n].$$

 s/\sqrt{n} provides a good estimate of the sd of \bar{y} .

If y_1, \ldots, y_n are from a cluster sample, then generally

$$Var[\bar{y}] > \sigma^2/n \approx E[s^2/n].$$

 s/\sqrt{n} is generally an underestimate of the sd of $ar{y}$

How will the resulting confidence interval behave if $\operatorname{\sf sd}(ar y) > s/\sqrt{n}$?

$$\bar{y} \pm t_{n-1,.975} \times s/\sqrt{n}$$

What if we apply the formula to data from a cluster sample? If y_1, \ldots, y_n are from a SRS, then

$$Var[\bar{y}] = \sigma^2/n = E[s^2/n].$$

 s/\sqrt{n} provides a good estimate of the sd of \bar{y} .

If y_1, \ldots, y_n are from a cluster sample, then generally

$$Var[\bar{y}] > \sigma^2/n \approx E[s^2/n].$$

 s/\sqrt{n} is generally an underestimate of the sd of \bar{y} .

How will the resulting confidence interval behave if $\mathrm{sd}(ar{y}) > s/\sqrt{n}\hat{z}$

$$\bar{y} \pm t_{n-1,.975} \times s/\sqrt{n}$$

What if we apply the formula to data from a cluster sample?

If y_1, \ldots, y_n are from a SRS, then

$$Var[\bar{y}] = \sigma^2/n = E[s^2/n].$$

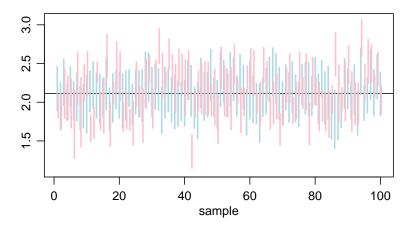
 s/\sqrt{n} provides a good estimate of the sd of \bar{y} .

If y_1, \ldots, y_n are from a cluster sample, then generally

$$Var[\bar{y}] > \sigma^2/n \approx E[s^2/n].$$

 s/\sqrt{n} is generally an underestimate of the sd of \bar{y} .

How will the resulting confidence interval behave if $sd(\bar{y}) > s/\sqrt{n}$?



Summary:

- Across group heterogeneity = within group similarity.
- Within group similarity leads to positively correlated cluster sample data.
- The variance of the sample mean from (positively) correlated data is higher than that of the mean of uncorrelated data.
- Statistical inference ignoring such correlation will be inaccurate.

- evaluate within and across-group heterogeneity
- provide accurate statistical inference based on cluster samples

Summary:

- Across group heterogeneity = within group similarity.
- Within group similarity leads to positively correlated cluster sample data.
- The variance of the sample mean from (positively) correlated data is higher than that of the mean of uncorrelated data.
- Statistical inference ignoring such correlation will be inaccurate.

- evaluate within and across-group heterogeneity
 - provide accurate statistical inference based on cluster samples

Summary:

- Across group heterogeneity = within group similarity.
- Within group similarity leads to positively correlated cluster sample data.
- The variance of the sample mean from (positively) correlated data is higher than that of the mean of uncorrelated data.
- Statistical inference ignoring such correlation will be inaccurate.

- evaluate within and across-group heterogeneity
- provide accurate statistical inference based on cluster samples

Summary:

- Across group heterogeneity = within group similarity.
- Within group similarity leads to positively correlated cluster sample data.
- The variance of the sample mean from (positively) correlated data is higher than that of the mean of uncorrelated data.
- Statistical inference ignoring such correlation will be inaccurate.

- evaluate within and across-group heterogeneity
- provide accurate statistical inference based on cluster samples

Summary:

- Across group heterogeneity = within group similarity.
- Within group similarity leads to positively correlated cluster sample data.
- The variance of the sample mean from (positively) correlated data is higher than that of the mean of uncorrelated data.
- Statistical inference ignoring such correlation will be inaccurate.

- evaluate within and across-group heterogeneity
 - provide accurate statistical inference based on cluster samples

Summary:

- Across group heterogeneity = within group similarity.
- Within group similarity leads to positively correlated cluster sample data.
- The variance of the sample mean from (positively) correlated data is higher than that of the mean of uncorrelated data.
- Statistical inference ignoring such correlation will be inaccurate.

- evaluate within and across-group heterogeneity;
- provide accurate statistical inference based on cluster samples

Summary:

- Across group heterogeneity = within group similarity.
- Within group similarity leads to positively correlated cluster sample data.
- The variance of the sample mean from (positively) correlated data is higher than that of the mean of uncorrelated data.
- Statistical inference ignoring such correlation will be inaccurate.

- evaluate within and across-group heterogeneity;
- provide accurate statistical inference based on cluster samples.

Suppose

- $x \in \{0, 1\}$
- $\mu_1 = \mathsf{E}[y|x=1]$
- $\mu_0 = E[y|x=0]$

Task: Estimate the difference $\delta = \mu_1 - \mu_0$ based on cluster sample data.

Data: For each group j, we have $(y_{1,j}, x_{1,j}), \ldots, (y_{n,j}, x_{n,j})$.

Suppose

- $x \in \{0, 1\}$
- $\mu_1 = \mathsf{E}[y|x=1]$
- $\mu_0 = E[y|x=0]$

Task: Estimate the difference $\delta = \mu_1 - \mu_0$ based on cluster sample data.

Data: For each group j, we have $(y_{1,j}, x_{1,j}), \ldots, (y_{n,j}, x_{n,j})$.

Suppose

- $x \in \{0, 1\}$
- $\mu_1 = \mathsf{E}[y|x=1]$
- $\mu_0 = E[y|x=0]$

Task: Estimate the difference $\delta = \mu_1 - \mu_0$ based on cluster sample data.

Data: For each group j, we have $(y_{1,j}, x_{1,j}), \ldots, (y_{n,j}, x_{n,j})$.

Suppose

- $x \in \{0, 1\}$
- $\mu_1 = \mathsf{E}[y|x=1]$
- $\mu_0 = E[y|x=0]$

Task: Estimate the difference $\delta = \mu_1 - \mu_0$ based on cluster sample data.

Data: For each group j, we have $(y_{1,j}, x_{1,j}), \ldots, (y_{n,j}, x_{n,j})$.

Suppose

- $x \in \{0, 1\}$
- $\mu_1 = \mathsf{E}[y|x=1]$
- $\mu_0 = \mathsf{E}[y|x=0]$

Task: Estimate the difference $\delta = \mu_1 - \mu_0$ based on cluster sample data.

Data: For each group j, we have $(y_{1,j}, x_{1,j}), \ldots, (y_{n,j}, x_{n,j})$.

Suppose

- $x \in \{0, 1\}$
- $\mu_1 = \mathsf{E}[y|x=1]$
- $\mu_0 = \mathsf{E}[y|x=0]$

Task: Estimate the difference $\delta = \mu_1 - \mu_0$ based on cluster sample data.

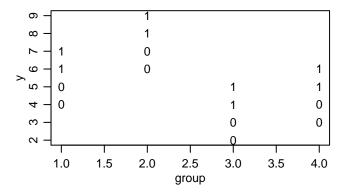
Data: For each group j, we have $(y_{1,j}, x_{1,j}), \dots, (y_{n,j}, x_{n,j})$.

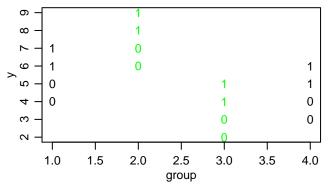
Suppose

- $x \in \{0, 1\}$
- $\mu_1 = \mathsf{E}[y|x=1]$
- $\mu_0 = E[y|x=0]$

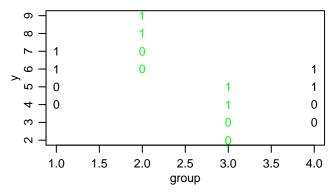
Task: Estimate the difference $\delta = \mu_1 - \mu_0$ based on cluster sample data.

Data: For each group j, we have $(y_{1,j}, x_{1,j}), \dots, (y_{n,j}, x_{n,j})$.

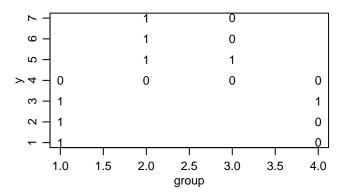




Ignoring group differences can lead to overconservative inference

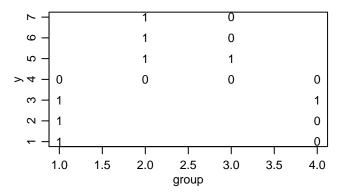


Ignoring group differences can lead to overconservative inference.



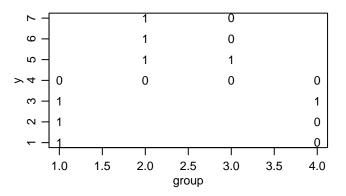
- The population mean difference is zero;
- The sample mean difference based on any two groups is not zero.

Ignoring group differences can lead to underconservative inference.

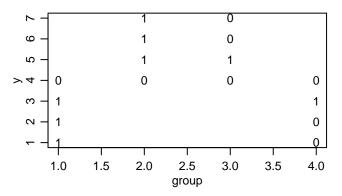


- The population mean difference is zero;
- The sample mean difference based on any two groups is not zero.

Ignoring group differences can lead to underconservative inference.

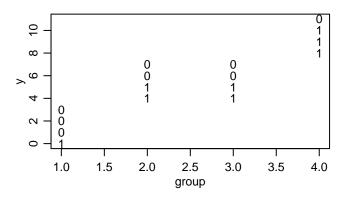


- The population mean difference is zero;
- The sample mean difference based on any two groups is not zero.



- The population mean difference is zero;
- The sample mean difference based on any two groups is not zero.

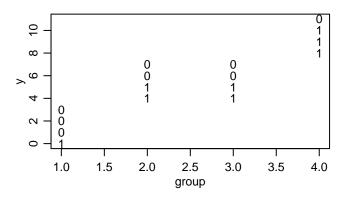
Ignoring group differences can lead to underconservative inference.



- $\mu_1 \mu_0 > 0$ in the overall population;
- $\mu_{1,j} \mu_{0,j} < 0$ in every group.

Micro/group effects may be different from macro/population effects.

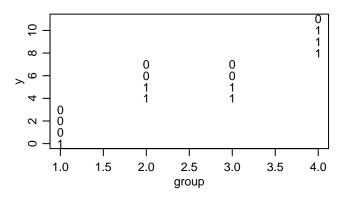
This is sometimes called Simpson's paradox.



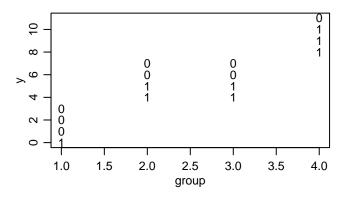
- $\mu_1 \mu_0 > 0$ in the overall population;
- $\mu_{1,j} \mu_{0,j} < 0$ in every group.

Micro/group effects may be different from macro/population effects.

This is sometimes called Simpson's paradox.



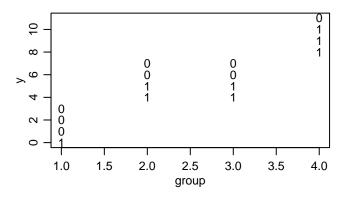
- $\mu_1 \mu_0 > 0$ in the overall population;
- $\mu_{1,j} \mu_{0,j} < 0$ in every group.



- $\mu_1 \mu_0 > 0$ in the overall population;
- $\mu_{1,j} \mu_{0,j} < 0$ in every group.

Micro/group effects may be different from macro/population effects.

This is sometimes called Simpson's paradox.



- $\mu_1 \mu_0 > 0$ in the overall population;
- $\mu_{1,j} \mu_{0,j} < 0$ in every group.

Micro/group effects may be different from macro/population effects.

This is sometimes called Simpson's paradox.

Summary:

- Across group heterogeneity can lead to over or under conservative inference.
- Aggregated macro effects may be different from micro effects.
- Statistical inference ignoring groups can be inaccurate in unpredictable ways.

- differentiate between macro and micro level effects
- appropriately control for within and between-group heterogeneity

Summary:

- Across group heterogeneity can lead to over or under conservative inference.
- Aggregated macro effects may be different from micro effects.
- Statistical inference ignoring groups can be inaccurate in unpredictable ways.

- differentiate between macro and micro level effects
- appropriately control for within and between-group heterogeneity

Summary:

- Across group heterogeneity can lead to over or under conservative inference.
- Aggregated macro effects may be different from micro effects.
- Statistical inference ignoring groups can be inaccurate in unpredictable ways.

- differentiate between macro and micro level effects
- appropriately control for within and between-group heterogeneity

Summary:

- Across group heterogeneity can lead to over or under conservative inference.
- Aggregated macro effects may be different from micro effects.
- Statistical inference ignoring groups can be inaccurate in unpredictable ways.

- differentiate between macro and micro level effects
- appropriately control for within and between-group heterogeneity

Summary:

- Across group heterogeneity can lead to over or under conservative inference
- Aggregated macro effects may be different from micro effects.
- Statistical inference ignoring groups can be inaccurate in unpredictable ways.

- differentiate between macro and micro level effects:
- appropriately control for within and between-group heterogeneity.

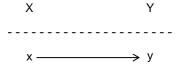
Summary:

- Across group heterogeneity can lead to over or under conservative inference
- Aggregated macro effects may be different from micro effects.
- Statistical inference ignoring groups can be inaccurate in unpredictable ways.

- differentiate between macro and micro level effects:
- · appropriately control for within and between-group heterogeneity.

X, x are macro and micro level explanatory variables

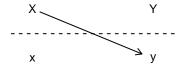
Y, y are macro and micro level outcome variables



What are the effects of SES (x) on political opinion (y)? (a *micro effect*)

X, x are macro and micro level explanatory variables

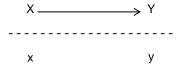
Y, y are macro and micro level outcome variables



What are the effects of State GDP (X) on political opinion (y) ? (a macro-micro effect)

X, x are macro and micro level explanatory variables

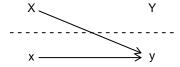
Y, y are macro and micro level outcome variables



What are the effects of State GDP (X) on statewide political opinion (Y)? (a a macro effect)

X, x are macro and micro level explanatory variables

Y, y are macro and micro level outcome variables



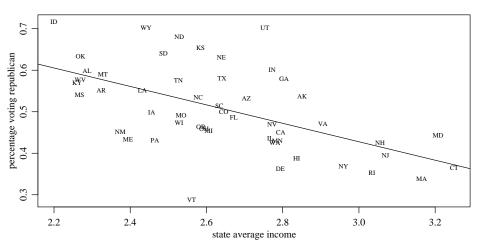
What are the effects of State GDP (X) and SES (x) on political opinion (y)? (a multilevel effects)

Example: Income and voting patterns

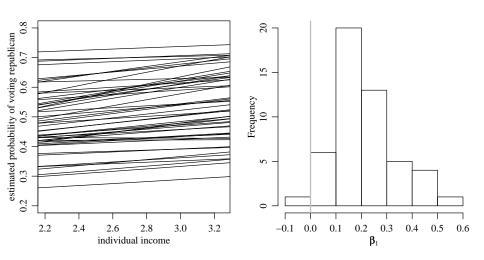
Exit poll data from 2004 presidential election

- $j \in \{1, \dots, 50\}$ indexes the states,
- $y_{i,j}$ is the voting variable for person i in state j,
- $x_{i,j}$ is the measure of income for person (i,j).

Macro-level income-voting relationships



Micro-level income-voting relationships



Joint estimation of effects

In general we may be interested in understanding all of the following:

- macro level effects,
- micro level effects,
- heterogeneity of micro effects across groups.

Joint estimation of effects

In general we may be interested in understanding all of the following:

- · macro level effects,
- · micro level effects,
- heterogeneity of micro effects across groups.

Joint estimation of effects

In general we may be interested in understanding all of the following:

- macro level effects,
- micro level effects,
- heterogeneity of micro effects across groups.