Generalized linear mixed models 560 Hierarchical modeling

Peter Hoff

Statistics, University of Washington

Non-normal data

Assumption so far:

Within-group heterogeneity is well-represented by a normal distribution.

Reality:

Not a good assumption in many applications.

Examples of data that are generally not normally distributed include

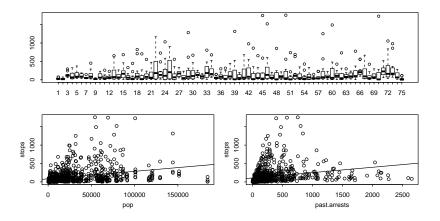
- income, hospital costs or other monetary data (often highly skewed);
- time to an event;
- number of children or other count data;
- binary indicator variables.

A 1999 study of the NYC police department gathered data on police searches in 75 city precincts, including

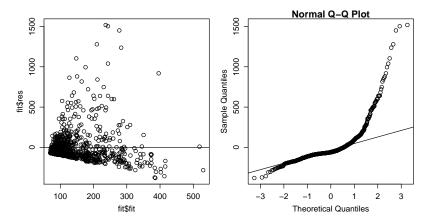
- stops: number of stops in a given precinct;
- pop: the population of the precinct;
- past.arrests: number of arrests in the precinct in a previous year.
- eth, crime: stops broken down by ethnicity and crime type.

pstop[1:15,]

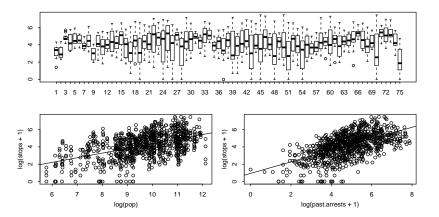
##		stops	pop	past.arrests	precinct	eth	crime
##	1	75	1720	191	1	1	1
##	2	36	1720	57	1	1	2
##	3	74	1720	599	1	1	3
##	4	17	1720	133	1	1	4
##	5	37	1368	62	1	2	1
##	6	39	1368	27	1	2	2
##	7	23	1368	149	1	2	3
##	8	3	1368	57	1	2	4
##	9	26	23854	135	1	3	1
##	10	32	23854	16	1	3	2
##	11	10	23854	107	1	3	3
##	12	13	23854	123	1	3	4
##	13	73	2596	227	2	1	1
##	14	37	2596	56	2	1	2
##	15	9	2596	246	2	1	3



```
fit<-lm(stops~pop+past.arrests,data=pstop)
mpar(mfrow=c(1,2))
plot(fit$res~fit$fit) ; abline(h=0)
qqnorm(fit$res) ; qqline(fit$res)</pre>
```

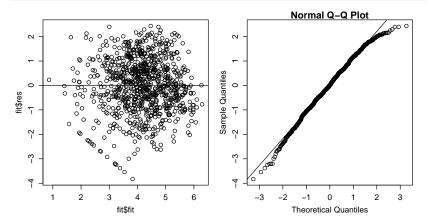


```
mpar()
layout(matrix(c(1,2,1,3),2,2) )
boxplot(log(pstop$stop$t)^pstop$precinct)
plot(log(stops+1)^log(pop),data=pstop) ; abline(lm(log(stops+1)^log(pop),data=pstop))
plot(log(stops+1)^log(past.arrests+1),data=pstop) ; abline(lm(log(stops+1)^log(past.arrest
```



```
fit<-lm(log(stops+1)~log(pop)+log(past.arrests+1),data=pstop)</pre>
```

```
mpar(mfrow=c(1,2))
plot(fit$res~fit$fit) ; abline(h=0)
qqnorm(fit$res) ; qqline(fit$res)
```



Example: Grouseticks

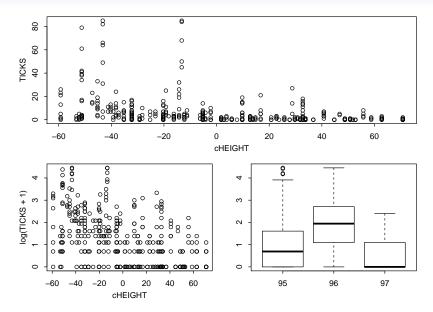
Some variables:

- TICKS: number of ticks on a chicks head
- BROOD: brood number
- cHEIGHT: height above sea level (centered)
- YEAR: year of study

grouseticks[1:15,] ## INDEX TICKS BROOD HEIGHT YEAR LOCATION CHEIGHT ## 1 2.759305 ## 2 2.759305 ## 3 9.759305 ## 4 37 12.759305 ## 5 37 12.759305 ## 6 37 12.759305 ## 7 37 12.759305 ## 8 44 25.759305 ## 9 44 25.759305 ## 10 44 25.759305 ## 11 47 29.759305 ## 12 47 29.759305 ## 13 47 29.759305 ## 14 45 27.759305 ## 15 45 27 759305

Almost 20% of broods have a zero count for all chicks.

Example: Grouseticks



Example: Grouseticks

fit<-lm(log(TICKS+1)~ cHEIGHT + as.factor(YEAR) ,data=grouseticks)</pre>

summary(fit)\$coef

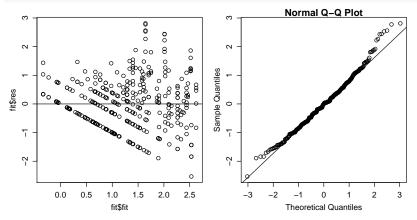
 ##
 Estimate
 Std.
 Error
 t
 value
 Pr(>|t|)

 ##
 (Intercept)
 1.06715919
 0.07961023
 13.404799
 4.356064e-34

 ##
 cHEIGHT
 -0.01331815
 0.00120441
 -11.057815
 5.664538e-25

 ##
 as.factor(YEAR)96
 0.76833413
 0.10607991
 7.242975
 2.280915e-12

 #
 as.factor(YEAR)97
 -0.46374571
 0.10926018
 -4.244417
 2.728417e-05



10/50

Transformably normal

Many outcomes can be transformed so that distributional assumptions are almost met:

- mean-variance relationships can be stabilized;
- residuals have a distribution close to normal.

However, sometimes such transformations are not feasible or desirable:

- For some discrete data it is difficult or impossible to find an appropriate transformation (eg., binary data).
- Even if a transformation could be found, there are advantages to analyzing the data on its original scale.

In such cases we will modify our regression models to account for non-normality.

Logistic regression

Logistic regression:

$$\mathsf{Pr}(y_i = 1) = heta_i = rac{e^{eta^ au x_i}}{1 + e^{eta^ au x_i}} \ \log rac{ heta_i}{1 - heta_i} = eta^ au x_i$$

Data types for logistic regression

Binary data

y x1 x2 0 2.3 3.2 0 2.3 2.1 1 2.3 5.4 0 4.1 1.6 1 4.1 3.2 1 4.1 1.2

fit <- glm(y ~ x1 + x2 , family=binomial)</pre>

Data types for logistic regression

Binomial data

y n x1 x2 4 10 2.3 3.2 2 12 2.3 2.1 5 8 2.3 5.4 3 10 4.1 1.6 6 16 4.1 3.2 8 9 4.1 1.2

Here, the model is

 $y_i \sim \text{binomial}(\theta_i, n_i)$

fit <- glm(cbind(y,n-y) ~ x1 + x2 , family=binomial)</pre>

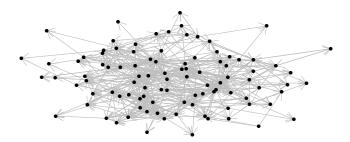
Network and relational data: Data measured on pairs (dyads) of units.

Friendship study: What characteristics of people lead to friendship ties?

Data:

friendship: binary indicator of (directed) friendship gpa: GPA smoke: smoking score grade: year in school

Example: Social network analysis



Example: Social network analysis

X[1:15,]

##	[4]]	01		<u> </u>	csmoke	0	01	ismoke
##	[1,]	0.71	0.62	0.41	-0.07	1	0.29	-0.04
##	[2,]	0.85	0.98	0.41	-0.07	1	0.35	-0.07
##	[3,]	0.86	-0.12	0.41	-0.07	0	0.35	0.01
##	[4,]	0.41	0.64	0.41	-0.07	0	0.17	-0.05
##	[5,]	0.66	0.63	0.41	-0.07	0	0.27	-0.04
##	[6,]	-0.54	0.87	0.41	-0.07	0	-0.22	-0.06
##	[7,]	0.69	0.66	0.41	-0.07	0	0.28	-0.05
##	[8,]	-0.29	-0.64	0.41	-0.07	0	-0.12	0.05
##	[9,]	-0.51	-0.68	0.41	-0.07	1	-0.21	0.05
##	[10,]	0.41	0.64	0.41	-0.07	0	0.17	-0.05
##	[11,]	2.17	-1.04	0.41	-0.07	0	0.89	0.07
##	[12,]	-0.28	0.00	0.41	-0.07	0	-0.11	0.00
##	[13,]	0.69	-0.61	0.41	-0.07	1	0.28	0.04
##	[14,]	1.52	-0.60	0.41	-0.07	0	0.62	0.04
##	[15,]	-0.30	1.51	0.41	-0.07	0	-0.12	-0.11

y[1:15]

[1] 0 0 0 0 0 0 0 0 1 0 0 0 0 0

Logistic regression

fit0<-glm(y ~ X, family=binomial)</pre>

```
summary(fit0)$coef
```

##	Estimate	Std. Error	z value	Pr(> z)
## (Intercept)	-4.12113655	0.09146103	-45.0589348	0.000000e+00
## Xrgpa	0.36857711	0.06091581	6.0505990	1.443082e-09
## Xrsmoke	0.44406283	0.06842175	6.4900832	8.578901e-11
## Xcgpa	0.37325974	0.05980462	6.2413199	4.338938e-10
## Xcsmoke	0.33401415	0.06961131	4.7982741	1.600387e-06
## Xigrade	2.06330014	0.09901610	20.8380263	1.957441e-96
## Xigpa	0.04612661	0.05488132	0.8404793	4.006397e-01
## Xismoke	0.02072443	0.08501630	0.2437701	8.074089e-01

Poisson model

A natural model for count data is the Poisson model: $Y \sim \mathsf{Pois}(heta)$ if

$$\Pr(Y = y|\theta) = \operatorname{dpois}(y,\theta) = \theta^y e^{-\theta}/y!.$$

For example, if $\theta = 2.1$ (the 2006 U.S. fertility rate),

$$\begin{aligned} &\mathsf{Pr}(Y=0|\theta=2.1)=(2.1)^{0}e^{-2.1}/(0!)=.12\\ &\mathsf{Pr}(Y=1|\theta=2.1)=(2.1)^{1}e^{-2.1}/(1!)=.26\\ &\mathsf{Pr}(Y=2|\theta=2.1)=(2.1)^{2}e^{-2.1}/(2!)=.27\\ &\mathsf{Pr}(Y=3|\theta=2.1)=(2.1)^{3}e^{-2.1}/(3!)=.19\\ &\vdots &\vdots &\vdots \end{aligned}$$

Poisson regression

In Poisson regression, we relate the mean θ to explanatory variables x One possibility would be to just write $\theta(x)$ as a linear regression:

$$\theta(x)=\beta_0+\beta_1x.$$

However, this allows for negative values of $\theta(x)$, which doesn't make sense:

$$Y \in \{0, 1, 2, \ldots\} \Rightarrow \mathsf{E}[Y|x] = \theta(x) \ge 0$$
 for all x

Multiplicative mean model

One way to impose this constraint is to write $\theta(x)$ in terms of multiplicative effects, via the exponential function:

$$\mathsf{E}[Y|x] = \theta(x) = \exp(\beta_0 + \beta_1 x) = e^{\beta_0 + \beta_1 x}$$

Here, β_1 represents the *multiplicative effect* of x on Y:

$$\mathsf{E}[Y|x+1]/\mathsf{E}[Y|x] = \frac{e^{\beta_0+\beta_1(x+1)}}{e^{\beta_0+\beta_1x}}$$
$$= e^{\beta_1}$$

So an increase of x by one results in the mean being e^{β_1} times as large.

Eg., $\beta_1 = \log 2 = 0.693 \implies$ a unit increase in x leads to a doubling of E[Y].

Poisson regression with a log-link

Suppose $\{Y_i, \mathbf{x}_i\}$ are independently sampled from a population. The *Poisson regression model with a log-link* is

 $Y_i | \mathbf{x}_i \sim \text{Poisson}(\exp[\boldsymbol{\beta}^T \mathbf{x}_i]).$

Log-link: the function linking the regression to the expectation of Y is log:

$$\mathsf{E}[Y|\mathbf{x}] = \exp(\beta^T \mathbf{x}) \Leftrightarrow \log \mathsf{E}[Y|\mathbf{x}] = \beta^T \mathbf{x}$$

MLE: The log-likelihood, as a function of β , is given by

$$\begin{split} l(\boldsymbol{\beta}: \mathbf{y}, \mathbf{X}) &= \log \Pr(\mathbf{y} | \mathbf{X}, \boldsymbol{\beta}) \\ &= \log \prod_{i=1}^{n} p(y_i | \mathbf{x}_i, \boldsymbol{\beta}) \\ &= \sum_{i=1}^{n} \log \operatorname{dpois}(y_i, \exp(\boldsymbol{\beta}^T \mathbf{x}_i)) \\ &= \operatorname{sum}(\log(\operatorname{dpois}(y, \exp(X \times \operatorname{beta})))) \end{split}$$

```
summary(fit.pstop)$coef
```

##	Estimate	Std. Error	z value	Pr(> z)
## (Intercept)	1.26242170	0.051554721	24.48702	2.030854e-132
<pre>## log(pop)</pre>	0.07275764	0.009306141	7.81824	5.356706e-15
<pre>## log(past.arrests + 1)</pre>	0.59150963	0.012420654	47.62307	0.000000e+00
## as.factor(eth)2	-0.32832680	0.014383023	-22.82739	2.451891e-115
## as.factor(eth)3	-1.00964834	0.027073122	-37.29338	2.100727e-304

```
summary(fit.tpstop)$coef
```

 ##
 Estimate
 Std. Error
 t value
 Pr(>|t|)

 ## (Intercept)
 -0.7092861
 0.32676005
 -2.170664
 3.102700e-02

 ## log(pop)
 0.1881834
 0.05655829
 3.327248
 1.027900e-03

 ## log(past.arrests + 1)
 0.7346374
 0.07750595
 9.478465
 4.320869e-18

 ## as.factor(eth)2
 -0.4813409
 0.12046354
 -3.995739
 8.798892e-05

 ## as.factor(eth)3
 -1.3316453
 0.15791405
 -8.432723
 4.472171e-15

Example: Grouse tick data

fit.gtick<-glm(TICKS ~ cHEIGHT + as.factor(YEAR) , family=poisson, data=grouseticks)</pre>

summary(fit.gtick)\$coef

##		Estimate	Std. Error	z value	Pr(> z)
##	(Intercept)	1.61599798	0.0401455805	40.253447	0.000000e+00
##	CHEIGHT	-0.02145184	0.0007103969	-30.196982	2.594875e-200
##	as.factor(YEAR)96	0.40964577	0.0453477934	9.033422	1.663851e-19
##	as.factor(YEAR)97	-1.68514105	0.0898007151	-18.765341	1.450635e-78

fit.tgtick<-lm(log(TICKS+1) ~ cHEIGHT + as.factor(YEAR) , data=grouseticks)</pre>

summary(fit.tgtick)\$coef

##		Estimate	Std. Error	t value	Pr(> t)
##	(Intercept)	1.06715919	0.07961023	13.404799	4.356064e-34
##	cHEIGHT	-0.01331815	0.00120441	-11.057815	5.646538e-25
##	as.factor(YEAR)96	0.76833413	0.10607991	7.242975	2.280915e-12
##	as.factor(YEAR)97	-0.46374571	0.10926018	-4.244417	2.728417e-05

Generalized linear models

Generalized linear model (glm): A model in which the mean E[Y] of an outcome is related to some specified function of a linear predictor $\beta^T \mathbf{x}$ via a link function g:

$$g(\mathsf{E}[Y|\mathbf{x}]) = \boldsymbol{\beta}^{\mathsf{T}}\mathbf{x}$$

$$\theta = \mathsf{E}[Y|\mathbf{x}] = g^{-1}(\boldsymbol{\beta}^{\mathsf{T}}\mathbf{x})$$

$$Y \sim f(y|\theta, \gamma)$$

Generalized linear models

Normal, Poisson and logistic regression are all GLMs:

The normal regression model: $Y \sim \text{normal}(\beta^T \mathbf{x}, \sigma^2)$

- θ = β^Tx, so g is the identity link
 γ = σ²
- $f(y|\theta,\gamma) = \operatorname{dnorm}(y,\theta,\gamma)$

The Poisson regression model: $Y \sim \text{Poisson}(\exp[\beta^T \mathbf{x}])$

- $\log \theta = \beta^T \mathbf{x}$, so g is the log link
- γ is not present
- $f(y|\theta) = dpois(y, \theta)$

The logistic regression model: $Y \sim \text{binomial}(n, \frac{\exp[\beta^T \mathbf{x}]}{1+\exp[\beta^T \mathbf{x}]})$

- when n = 1, $E[Y|x] = Pr(Y = 1|x) = \frac{\exp[\beta^T x]}{1 + \exp[\beta^T x]}$
- $\log(\theta/[1-\theta]) = \beta^T \mathbf{x}$, so g is the logit link
- γ is not present
- $f(y|\theta) = dbinom(y, n, \theta)$

GLMMs

Recall the general form of a LME:

$$y_{i,j} \sim \mathcal{N}(\theta_{i,j}, \sigma^2)$$
$$\theta_{i,j} = \boldsymbol{\beta}^T \mathbf{x}_{i,j} + \mathbf{b}_j^T \mathbf{z}_j$$
$$\mathbf{b}_1, \dots, \mathbf{b}_m \sim \text{i.i.d. } mvn(\mathbf{0}, \Psi)$$

A *generalized linear mixed model* is the same model, but with the normal distribution replaced with a glm:

$$y_{i,j} \sim f(y|\theta_{i,j}, \gamma)$$
$$\theta_{i,j} = \beta^{\mathsf{T}} \mathbf{x}_{i,j} + \mathbf{b}_{j}^{\mathsf{T}} \mathbf{z}_{j}$$
$$\mathbf{b}_{1}, \dots, \mathbf{b}_{m} \sim \text{i.i.d. } \mathsf{mvn}(\mathbf{0}, \Psi)$$

In this model,

- the mvn($\mathbf{0}, \Psi$) distribution represents across-group heterogeneity
- $f(y|\theta, \gamma)$ represents within-group heterogeneity.

The fixed (non-group specific) parameters to estimate in include $\{\beta, \Psi, \gamma\}$.

Estimation

LMMs: Estimation for LMMs is faciliated by the following fact:

$$\begin{array}{ll} \mathbf{y}_{j} &= \mathbf{X}_{j}\boldsymbol{\beta} + \mathbf{Z}_{j}\mathbf{b}_{j} + \boldsymbol{\epsilon}_{j} \\ \mathbf{b}_{j} &\sim \mathcal{N}(\mathbf{0}, \Psi) \end{array} \right\} \Rightarrow p(\mathbf{y}|\boldsymbol{\beta}, \mathbf{X}_{j}, \mathbf{Z}_{j}) = \int p(\mathbf{y}|\boldsymbol{\beta}, \mathbf{X}_{j}, \mathbf{Z}_{j}, \mathbf{b}_{j}) \times p(\mathbf{b}_{j}|\Psi) \ d\mathbf{b}_{j} \\ &= \operatorname{dnorm}(\mathbf{X}_{j}\boldsymbol{\beta}, \Sigma), \end{array}$$

where Σ depends on Ψ , \mathbf{Z}_j and σ^2 .

The likelihood based on this normal density can be written down and optimized.

Estimation

GLMMs: Estimation for GLMMs is more difficult:

$$\begin{array}{ll} \mathbf{y}_{j} &= \mathbf{X}_{j}\boldsymbol{\beta} + \mathbf{Z}_{j}\mathbf{b}_{j} + \boldsymbol{\epsilon}_{j} \\ \mathbf{b}_{j} &\sim \mathcal{N}(\mathbf{0}, \Psi) \end{array} \right\} \Rightarrow p(\mathbf{y}|\boldsymbol{\beta}, \mathbf{X}_{j}, \mathbf{Z}_{j}) = \int p(\mathbf{y}|\boldsymbol{\beta}, \mathbf{X}_{j}, \mathbf{Z}_{j}, \mathbf{b}_{j}) \times p(\mathbf{b}_{j}|\Psi) \ d\mathbf{b}_{j} \end{array}$$

is not a normal density

The likelihood can't be written down in a closed form.

Obtaining MLEs requires iteration of the following:

- approximating (derivatives of) the above integral;
- optimization steps to find the MLE.

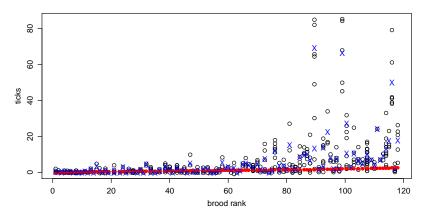
Non-convergence of optimization procedures for parameter estimation in such models is common.

Grousetick example

fit0<-glm(TICKS~ cHEIGHT+as.factor(YEAR),family=poisson,data=grouseticks)</pre>

summary(fit)\$coef

##		Estimate	Std. Error	t value	Pr(> t)
##	(Intercept)	1.06715919	0.07961023	13.404799	4.356064e-34
##	CHEIGHT	-0.01331815	0.00120441	-11.057815	5.646538e-25
##	as.factor(YEAR)96	0.76833413	0.10607991	7.242975	2.280915e-12
##	as.factor(YEAR)97	-0.46374571	0.10926018	-4.244417	2.728417e-05



GLMMs with glmer

fit1<-glmer(TICKS ~ cHEIGHT + as.factor(YEAR) + (1|BROOD) ,family=poisson,data=grousetick</pre>

BIC(fit1)

[1] 2008.07

BIC(fit0)

[1] 4398.807

summary(fit1)\$coef

 ##
 Estimate
 Std. Error
 z value
 Pr(>|z|)

 ## (Intercept)
 0.50917345
 0.186618205
 2.728423
 6.363790e=03

 ## cHEIGHT
 -0.02386609
 0.003010673
 -7.927161
 2.2242130e=15

 ## as.factor(YEAR)96
 1.13590090
 0.242388921
 4.686274
 2.78237e=06

 ## as.factor(YEAR)97
 -1.00112997
 0.269687357
 -3.712187
 2.054759e=04

Nested nests

Another variable is LOCATION, specifying spatial location of each brood.

Question: What are the grouping factors, and how are they related?

Answer: BROOD is nested within LOCATION (but note, each brood already has a unique identifier)

fit2<-glmer(TICKS ~ cHEIGHT + as.factor(YEAR) + (1|BROOD) + (1|LOCATION) ,family=poisson, o
BIC(fit2)
[1] 2011.87
BIC(fit1)
[1] 2008.07</pre>

We'll continue with fit1.

The fitted mean for each brood is given by

$$\hat{ heta}_j = \hat{eta}_1 + \hat{eta}_2 imes \mathsf{cHEIGHT}_j + \widehat{\mathsf{YEAR}}_j + \hat{b}_j$$

The fitted model for data within brood j is

$$egin{aligned} \hat{
ho}(y_{i,j}) &= ext{dpois}(\hat{ heta}_j) \ \hat{E}[y_{i,j}] &= \hat{ heta}_j \ \hat{V}[y_{i,j}] &= \hat{ heta}_j \end{aligned}$$

Question: How can we check (one aspect of) this assumption?

Answer: Check to see if sample variance correponds to fitted variance:

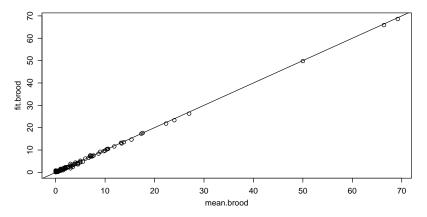
- If some Poisson model is correct, sample mean pprox sample variance.
- If the Poisson regression is correct, fitted mean pprox sample variance.

Checking assumptions

var.brood<-tapply(grouseticks\$TICKS,grouseticks\$BROOD,var)</pre>

mean.brood<-tapply(grouseticks\$TICKS,grouseticks\$BROOD,mean)</pre>

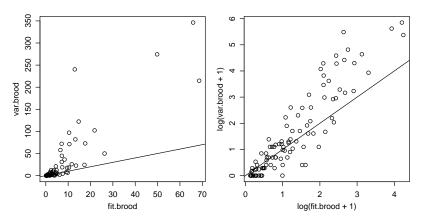
fit.brood<-tapply(fitted(fit1),grouseticks\$BROOD,mean)</pre>



Does this plot surpise you? Why or why not?

34/50

Checking assumptions



These data are generally *overdispersed* relative to a Poisson model. There is more *within-brood* variance than can be ascribed to Poisson variation. Consider the following model:

$$\mu_{j} = \boldsymbol{\beta}^{T} \mathbf{x}_{j} + \mathbf{b}_{j}^{T} \mathbf{z}_{j}$$

$$y_{i,j} \sim \text{Poisson}(e^{\mu_{j} + \epsilon_{i,j}})$$

$$\epsilon_{i,j} \sim i.i.d. \text{ from some distribution}$$

- If Var[\(\ear\)_i,j\)] = 0 then the model is the Poisson GLMM;
- If $Var[\epsilon_{i,j}] > 0$ then the model allows for overdispersion.

Common overdispersion models:

$$\epsilon_{i,j} \sim i.i.d. \ N(0, \sigma^2)$$

 $\epsilon_{i,j} \sim i.i.d. \log gamma distribution$

The latter corresponds to *negative binomial regression*. Both can be fit in with glmer.

Overdispersed Poisson via random effects

grouseticks[1:5,]

##		INDEX	TICKS	BROOD	HEIGHT	YEAR	LOCATION	CHEIGHT
##	1	1	0	501	465	95	32	2.759305
##	2	2	0	501	465	95	32	2.759305
##	3	3	0	502	472	95	36	9.759305
##	4	4	0	503	475	95	37	12.759305
##	5	5	0	503	475	95	37	12.759305

fit.o1<-glmer(TICKS ~ cHEIGHT + as.factor(YEAR) + (1|BROOD) + (1|INDEX),family=poisson,da

fit.o1

```
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: poisson ( log )
## Formula: TICKS ~ cHEIGHT + as.factor(YEAR) + (1 | BRODD) + (1 | INDEX)
     Data: grouseticks
##
       ATC
                BIC logLik deviance df.resid
##
## 1794.040 1818.034 -891.020 1782.040
                                         397
## Bandom effects:
## Groups Name
                   Std.Dev.
## INDEX (Intercept) 0.5435
## BROOD (Intercept) 0.9085
## Number of obs: 403, groups: INDEX, 403; BROOD, 118
## Fixed Effects:
                      cHEIGHT as.factor(YEAR)96
##
        (Intercept)
##
            0.40999
                             -0.02405
                                              1.14892
## as.factor(YEAR)97
##
     -0.99061
```

Overdispersed Poisson via random effects

Comparison to Poisson regression

BIC(fit1)

[1] 2008.07

BIC(fit.o1)

[1] 1818.034

summary(fit1)\$coef

##		Estimate	Std. Error	z value	Pr(> z)
##	(Intercept)	0.50917345	0.186618205	2.728423	6.363790e-03
##	CHEIGHT	-0.02386609	0.003010673	-7.927161	2.242130e-15
##	as.factor(YEAR)96	1.13590090	0.242388921	4.686274	2.782237e-06
##	as.factor(YEAR)97	-1.00112997	0.269687357	-3.712187	2.054759e-04

summary(fit.o1)\$coef

##		Estimate	Std. Error	z value	Pr(> z)
##	(Intercept)	0.40998716	0.190355432	2.153798	3.125601e-02
##	CHEIGHT	-0.02404906	0.003044808	-7.898382	2.825470e-15
##	as.factor(YEAR)96	1.14891703	0.246303176	4.664646	3.091494e-06
##	as.factor(YEAR)97	-0.99061439	0.273458801	-3.622536	2.917287e-04

Overdispersed Poisson via the negative binomial distribution

fit.o2<-glmer.nb(TICKS ~ cHEIGHT + as.factor(YEAR) + (1|BROOD),data=grouseticks)</pre>

BIC(fit.o2)

[1] 1815.938

summary(fit.o2)\$coef

 ##
 Estimate
 Std. Error
 z value
 Pr(>|z|)

 ## (Intercept)
 0.52854237
 0.188249519
 2.807669
 4.990146e-03

 ## cHEIGHT
 -0.02390358
 0.003014457
 -7.929647
 2.197688e-15

 ## as.factor(YEAR)96
 1.13183765
 0.243942814
 4.639766
 3.488034e-06

 ## as.factor(YEAR)97
 -0.99381870
 0.270615475
 -3.672439
 2.402469e-04

Random effects logistic regression

Logistic regression:

$$\mathsf{Pr}(y_i = 1) = heta_i = rac{e^{eta^T x_i}}{1 + e^{eta^T x_i}} \ \log rac{ heta_i}{1 - heta_i} = eta^T \mathbf{x}_i$$

Mixed effects logistic regression:

$$\Pr(y_{i,j} = 1) = \theta_{i,j} = \frac{e^{\beta^T \mathbf{x}_{i,j} + \mathbf{b}_j^T \mathbf{z}_{i,j}}}{1 + e^{\beta^T \mathbf{x}_i \mathbf{b}_j^T \mathbf{z}_{i,j}}}$$
$$\log \frac{\theta_{i,j}}{1 - \theta_i} = \beta^T \mathbf{x}_{i,j} + \mathbf{b}_j^T \mathbf{z}_{i,j}$$

Data types for logistic regression

Binary data

fit <- glmer(y ~ x1 + x2 + (x2|g) , family=binomial)</pre>

Data types for logistic regression

Binomial data

y n g x1 x2 4 10 1 2.3 3.2 2 12 1 2.3 2.1 5 8 1 2.3 5.4 3 10 2 4.1 1.6 6 16 2 4.1 3.2 8 9 2 4.1 1.2

Here, the model is

 $y_{i,j} \sim \text{binomial}(\theta_{i,j}, n_{i,j})$

fit <- glmer(cbind(y,n-y) ~ x1 + x2 + (x2|g) , family=binomial)</pre>

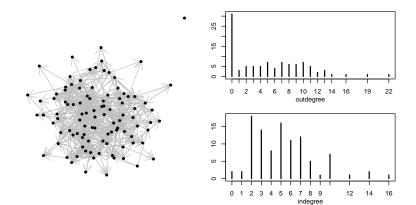
Network and relational data: Data measured on pairs (dyads) of units.

Friendship study: What characteristics of people lead to friendship ties?

Data:

friendship: binary indicator of (directed) friendship gpa: GPA smoke: smoking score grade: year in school

Example: Social network analysis



Example: Social network analysis

X[1:15,]

## ##	[1,]	rgpa 0.71	rsmoke 0.62	<u> </u>	csmoke -0.07	igrade 1	igpa 0.29	ismoke -0.04
##	[2,]	0.85	0.98		-0.07	1	0.35	-0.07
##	[3,]	0.86	-0.12	0.41	-0.07	0	0.35	0.01
##	[4,]	0.41	0.64	0.41	-0.07	0	0.17	-0.05
##	[5,]	0.66	0.63	0.41	-0.07	0	0.27	-0.04
##	[6,]	-0.54	0.87	0.41	-0.07	0	-0.22	-0.06
##	[7,]	0.69	0.66	0.41	-0.07	0	0.28	-0.05
##	[8,]	-0.29	-0.64	0.41	-0.07	0	-0.12	0.05
##	[9,]	-0.51	-0.68	0.41	-0.07	1	-0.21	0.05
##	[10,]	0.41	0.64	0.41	-0.07	0	0.17	-0.05
##	[11,]	2.17	-1.04	0.41	-0.07	0	0.89	0.07
##	[12,]	-0.28	0.00	0.41	-0.07	0	-0.11	0.00
##	[13,]	0.69	-0.61	0.41	-0.07	1	0.28	0.04
##	[14,]	1.52	-0.60	0.41	-0.07	0	0.62	0.04
##	[15,]	-0.30	1.51	0.41	-0.07	0	-0.12	-0.11

y[1:15]

[1] 0 0 0 0 0 0 0 0 1 0 0 0 0 0

Logistic regression

fit0<-glm(y ~ X, family=binomial)</pre>

```
summary(fit0)$coef
```

##	Estimate	Std. Error	z value	Pr(> z)
## (Intercept)	-4.12113655	0.09146103	-45.0589348	0.000000e+00
## Xrgpa	0.36857711	0.06091581	6.0505990	1.443082e-09
## Xrsmoke	0.44406283	0.06842175	6.4900832	8.578901e-11
## Xcgpa	0.37325974	0.05980462	6.2413199	4.338938e-10
## Xcsmoke	0.33401415	0.06961131	4.7982741	1.600387e-06
## Xigrade	2.06330014	0.09901610	20.8380263	1.957441e-96
## Xigpa	0.04612661	0.05488132	0.8404793	4.006397e-01
## Xismoke	0.02072443	0.08501630	0.2437701	8.074089e-01

Network dependence

Do you think the 100×99 network ties are independent? What sort of dependence might you expect?

Social relations model: The SRM allows for

- across-sender heterogeneity in outdegrees
- across-receiver heterogeneity in indegrees
- within dyad reciprocity

Fitting the SRM-lite with glmer

$$\log \frac{\theta_{i,j}}{1-\theta_{i,j}} = \boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}_{i,j} + \mathbf{a}_i + \mathbf{b}_j + \epsilon_{\{i,j\}}$$

- $\{a_i\}$ represent heterogeneity across senders of ties (sociability)
- {b_j} represent heterogeneity across recievers of ties (popularity)
- $\{\epsilon_{\{i,j\}}\}$ represents similarity within a dyad (reciprocity)

Fitting the SRM-lite with glmer

```
G[1:10,]
    rlab clab dlab
##
## 1
      2 1 1.2
## 2
     3 1 1.3
## 3 4 1 1.4
## 4 5 1 1.5
## 5 6 1 1.6
## 6 7 1 1.7
## 7 8 1 1.8
## 8 9 1 1.9
## 9 10 1 1.10
## 10
     11 1 1.11
```

Question: How can we fit the logistic SRM?

```
fit.srm<-glmer( y ~ X + (1|G$rlab) + (1|G$clab) + (1|G$dlab) , family=binomial)</pre>
```

Unfortunately, this stumps glmer. The package amen can fit it using MCMC.

fit.ab<-glmer(y ~ X + (1|G\$rlab) + (1|G\$clab) , family=binomial)</pre>

Fitting the SRM-lite with glmer

BIC(fit.ab)

[1] 3316.515

BIC(fit0)

[1] 3541.197

VarCorr(fit.ab)

```
## Groups Name Std.Dev.
## G$rlab (Intercept) 1.34299
## G$clab (Intercept) 0.29877
```

summary(fit.ab)\$coef

##		Estimate	Std. Error	z value	Pr(> z)
##	(Intercept)	-4.840796412	0.19065173	-25.3907815	3.188238e-142
##	Xrgpa	0.392489177	0.16953292	2.3151207	2.060633e-02
##	Xrsmoke	0.584473776	0.21667891	2.6974188	6.987933e-03
##	Xcgpa	0.401574544	0.07007841	5.7303607	1.002173e-08
##	Xcsmoke	0.336422908	0.08437207	3.9873730	6.680894e-05
##	Xigrade	2.225383589	0.10231915	21.7494346	6.993629e-105
##	Xigpa	0.082526478	0.05778840	1.4280803	1.532687e-01
##	Xismoke	0.007935361	0.08559484	0.0927084	9.261352e-01