ANOVA

560 Hierarchical modeling

Peter Hoff

Statistics, University of Washington

Two group comparison

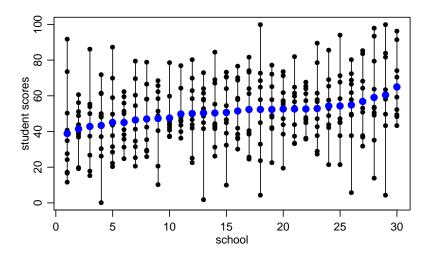
Two group comparison

```
t.test(yA,yB)
##
## Welch Two Sample t-test
##
## data: yA and yB
## t = -2.5922, df = 16.037, p-value = 0.01962
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -47.543740 -4.770049
## sample estimates:
## mean of x mean of y
## 38.8928 65.04617
```

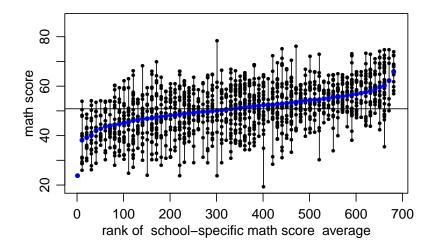
Two group comparison

```
t.test(yA,yB,var.equal=TRUE)
##
## Two Sample t-test
##
## data: yA and yB
## t = -2.5922, df = 18, p-value = 0.0184
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -47.356240 -4.957549
## sample estimates:
## mean of x mean of y
## 38.8928 65.04617
```

Multi group comparisons



NELS data



Data analysis goals

Descriptions of center:

- overall mean
- within group means

Descriptions of variability:

- across group variability
- within group variability

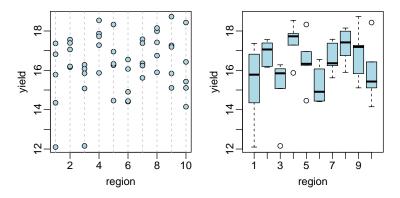
Tests and comparisons:

- Overall evaluation: Is there evidence of differences between groups?
- Specific comparisons:

Which group has the largest mean? Which has the smallest? How confident are we in these evaluations?

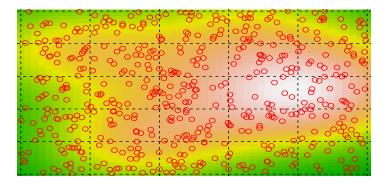
Example (wheat yield):

- m = 10 regions of land were randomly selected,
- n = 5 plots of land were seeded within each region.
- $y_{i,j}$ =the yield of plot *i* in region *j*.



Example (wheat yield):

- m = 10 regions of land were randomly selected,
- n = 5 plots of land were seeded within each region.
- $y_{i,j}$ =the yield of plot *i* in region *j*.



One-way ANOVA model

 $y_{i,j} = \mu + a_j + \epsilon_{i,j}$ (treatment effects model), or $y_{i,j} = \mu_j + \epsilon_{i,j}$ (treatment means model),

where $\mu_j = \mu + a_j$.

- µ is expected yield across all regions;
- μ_j is expected yield from region *j*;
- a_j is the deviation of region-specific expected yield from μ ;

$$\mu_j = \mu + a_j \iff a_j = \mu_j - \mu$$

• $\epsilon_{i,j}$ deviation of an observed plot yield from its region-specific expectation.

Identifiability

The standard ANOVA model parameterizes things so that

- $\sum_{j} a_{j} = 0$ (sum-to-zero side conditions),
- $\{\epsilon_{i,j}\} \sim \text{i.i.d. } p(\epsilon)$, with $\mathsf{E}[\epsilon_{i,j}] = 0$ within all groups.

In this case,

$$E[y_{i,j}|\mu, a_1, \dots, a_m] = E[\mu + a_j + \epsilon_{i,j}|\mu, a_1, \dots, a_m]$$

= $E[\mu|\mu, a_1, \dots, a_m] + E[a_j|\mu, a_1, \dots, a_m] + E[\epsilon_{i,j}|\mu, a_1, \dots, a_m]$
= $\mu + a_j$
= μ_j

If we assume $p(\epsilon)$ is the normal $(0, \sigma^2)$ distribution, then the model is

$$y_{i,j} \sim \operatorname{normal}(\mu + a_j, \sigma^2)$$
 or equivalently,
 $y_{i,j} \sim \operatorname{normal}(\mu_j, \sigma^2).$

Parameter estimates

Parameters to estimate include

- $\{\mu_1, \ldots, \mu_m, \sigma^2\}$, or equivalently
- $\{\mu, a_1, \ldots, a_m, \sigma^2\}$

If $\hat{\mu}_j$ is an estimate of μ_j , we say that

- $\hat{y}_{i,j} = \hat{\mu}_j$ is the *fitted value* of $y_{i,j}$;
- $\hat{\epsilon}_{i,j} = y_{i,j} \hat{y}_{i,j} = y_{i,j} \hat{\mu}_j$ is the *residual* for $y_{i,j}$.

OLS estimation: The OLS estimates are the values that minimize

$$SSE(\hat{\mu}_1, \dots, \hat{\mu}_m) = (y_{1,1} - \hat{\mu}_1)^2 + (y_{2,1} - \hat{\mu}_1)^2 + \dots + (y_{n-1,m} - \hat{\mu}_m)^2 + (y_{n,m} - \hat{\mu}_m)^2$$
$$= \sum_{j=1}^m \sum_{i=1}^n (y_{i,j} - \hat{\mu}_j)^2$$

Minimizing sums of squares

Task: Find the value $\hat{\mu}$ that minimizes

$$\sum_{i=1}^n (y_i - \hat{\mu})^2$$

Solution:

$$\begin{split} \sum_{i=1}^{n} (y_i - \hat{\mu})^2 &= \sum_{i=1}^{n} (y_i - \bar{y} + \bar{y} - \hat{\mu})^2 \\ &= \sum_{i=1}^{n} [(y_i - \bar{y})^2 + 2(y_i - \bar{y})(\bar{y} - \hat{\mu}) + (\bar{y} - \hat{\mu})^2] \\ &= \sum (y_i - \bar{y})^2 + n(\bar{y} - \hat{\mu})^2, \end{split}$$

- The sum of squares is minimized by $\hat{\mu} = \bar{y}$;
- The minimim value is $SSE = \sum (y_i \bar{y})^2$;
- Recall that the sample variance is given by $\frac{1}{n-1}SSE$.

OLS estimates

Not surprisingly,

$$(\hat{\mu}_1,\ldots,\hat{\mu}_m)=(\bar{y}_1,\ldots,\bar{y}_m).$$

For the "treatment effects" parametrization,

$$\hat{\mu} = ar{y}_{\cdot\cdot}$$

 $\hat{a}_j = (\hat{\mu}_j - \hat{\mu}) = (ar{y}_j - ar{y}_{\cdot\cdot})$

Exercises: Show that (in this case of equal group sample sizes),

- $\hat{\mu} = \sum \hat{\mu}_j / m;$
- $\sum \hat{a}_j = 0.$

ANOVA decomposition

The OLS estimates provide a "decomposition" of the data:

ANOVA decomposition

Total		Group	Error					
$y_{11} - \bar{y}_{}$	=	$(\bar{y}_{.1} - \bar{y}_{})$	+	$(y_{11} - \bar{y}_{.1})$				
$y_{21} - \bar{y}_{}$	=	$(ar{y}_{.1}-ar{y}_{})$	+	$(y_{21} - \bar{y}_{.1})$				
	=		+					
•	=	•	+	•				
	=		+					
$y_{n1} - \bar{y}_{}$	=	$rac{(ar{y}_{.1}-ar{y}_{})}{(ar{y}_{.2}-ar{y}_{})}$	+	$(y_{n1} - \bar{y}_{.1})$				
$y_{12} - \bar{y}_{}$	=	$(\bar{y}_{.2} - \bar{y}_{})$	+	$(y_{12} - \bar{y}_{.2})$				
	=		+					
	=		+					
	=		+					
$y_{n2} - \bar{y}_{}$	=	$(\bar{y}_{.2} - \bar{y}_{})$	+	$(y_{n2} - \bar{y}_{.2})$				
:		:		:				
· _ ·				·				
$y_{1m} - \bar{y}_{}$	=	$(\bar{y}_{.m} - \bar{y}_{})$	+	$(y_{1m}-\bar{y}_{.m})$				
•	=	•	+	•				
	=		+					
	=		+					
$y_{nm} - \overline{y}_{}$	=	$(\bar{y}_{.m} - \bar{y}_{})$	+	$(y_{nm} - \overline{y}_{.m})$				
SST	=	SSG	+	SSE				
mn-1	=	m-1	+	m(n-1)				

ANOVA decomposition

- **SST:** Total sum of squares variation = variation around \bar{y} ...
- **SSG:** Total group variation = variation of group means around grand mean.
- **SSE:** Error or residual variation = variation of data around group means.

Sum of squares decomposition: You can show that

 $\begin{array}{rcl} \mathsf{SST} & = & \mathsf{SSG} & + & \mathsf{SSE} \\ \mathsf{total variation} & = & \mathsf{between \ group \ variation} & + & \mathsf{within \ group \ variation} \end{array}$

ANOVA for wheat yield

У																								
##	[1]																							
	[12]																							
##	[23]																							
##	[34]													18.	15	17	.27	15.	.84	17.	19	15.	11	
##	[45]	18.	.73	18	.43	15.	11	14.1	15	16	. 43	15.	43											
g																								
##	[1]	1	1	1	1	1	2	2	2	2	2	3	3	3	3	3	4	4	4	4	4	5	5	5
	[24]																				-	9	-	-
	[47]																							
mu.	grand	l<-r	near	1(y))																			
mu.	grou	p<−t	capp	oly	(y,g	g,me	an))																
mu.	grand	ł																						
##	[1] :	16.3	3064	ł																				
mu.	grou	D																						
##		1		2		3		4	1		Б		6			7		0		9		1	0	
	15.28	-		_																		-	-	
##	10.20	94 1	10.0	14	10	.030	11	.400		10.1	±00	10.	210	, 10		. 00	L / • 4	242	10.	.020	10		0	
mea	n (mu	ore	מווו)																				
	(mu		-~p)																					
##	[1] :	16.3	3064	1																				

18/1

ANOVA for wheat yield

SST<-sum((y-mu.grand)²)
SST

[1] 104.8566

mu.group[g]

1 1 1 1 1 2 2 2 2 2 2 ## 15.284 15.284 15.284 15.284 15.284 16.874 16.874 16.874 16.874 16.874 ## 3 3 3 3 3 4 4 4 4 4 ## 15.090 15.090 15.090 15.090 15.090 17.458 17.458 17.458 17.458 17.458 ## 5 5 5 5 5 6 6 6 6 6 ## 16,466 16,466 16,466 16,466 16,466 15,276 15,276 15,276 15,276 15,276 ## 7 7 7 7 7 8 8 8 8 8 ## 16,636 16,636 16,636 16,636 16,636 17,242 17,242 17,242 17,242 17,242 17,242 ## 9 9 9 9 9 10 10 10 10 10 10 ## 16.828 16.828 16.828 16.828 16.828 15.910 15.910 15.910 15.910 15.910 SSG<-sum((mu.group[g]-mu.grand)²) SSG ## [1] 33.36831 n*sum((mu.group-mu.grand)^2) ## [1] 33.36831

ANOVA for wheat yield

SSE<-sum((y-mu.group[g])^2)
SSE
[1] 71.48824
SSE+SSG
[1] 104.8566
SST
[1] 104.8566</pre>

ANOVA table

The ANOVA decomposition is usually summarized with an ANOVA table:

source	deg of freedom	<u>SS</u>	<u>MS</u>	<u>F-ratio</u>
groups	$\overline{m-1}$	SSG	MSG = SSG/(m-1)	MSG/MSE
residuals	m(n-1)	SSE	MSE = SSE/m(n-1)	
total	mn-1	SST		

```
anova( lm(y<sup>-</sup>as.factor(g)) )
## Analysis of Variance Table
##
## Response: y
## Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(g) 9 33.368 3.7076 2.0745 0.0555 .
## Residuals 40 71.488 1.7872
## ----
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

ANOVA table

```
anova( lm(y<sup>as.factor(g))</sup> )
```

```
## Analysis of Variance Table
##
## Response: y
               Df Sum Sq Mean Sq F value Pr(>F)
##
## as.factor(g) 9 33.368 3.7076 2.0745 0.0555 .
## Residuals 40 71.488 1.7872
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
SSG
## [1] 33.36831
SSG/(m-1)
## [1] 3.70759
SSE
## [1] 71.48824
SSE/(m*(n-1))
## [1] 1.787206
(SSG/(m-1)) / (SSE/(m*(n-1)))
```

22/1 ## [1] 2.074518

ANOVA decomposition as a description

The ANOVA decomposition and sums of squares provide

Descriptions of center:

- overall mean: $\bar{y}_{..}$
- group means: $\bar{y}_1, \ldots, \bar{y}_m$
- group effects: $\bar{y}_1 \bar{y}_{\cdots}, \dots, \bar{y}_1 \bar{y}_{\cdots}$

Descriptions of variability:

· across group variability

$$SSG = \sum_{j} \sum_{i} (\bar{y}_{j} - \bar{y}_{..})^{2}$$

= $n \sum_{j} (\bar{y}_{j} - \bar{y}_{..})^{2} = n \times (m - 1) \times \text{sample variance}(\bar{y}_{1}, ..., \bar{y}_{m})$

• within group variability

$$\mathsf{SSE} = \sum_j \sum_i (y_{i,j} - \bar{y}_j)^2 = \sum_j (n-1)s_j^2$$

SSG:

SSG

[1] 33.36831

n*(m-1)*var(mu.group)

[1] 33.36831

SSE:

SSE
[1] 71.48824
tapply(y,g,var)
1 2 3 4 5 6 7 8 9
4.49173 0.43388 2.88970 0.99197 1.94843 0.95908 0.67748 0.86467 1.96792
10
2.64720
sum((n-1)* tapply(y,g,var))
[1] 71.48824

Tests and comparisons

Tests and comparisons:

- Overall evaluation: Is there evidence of differences between groups?
- Specific comparisons:

Which group has the largest mean? Which has the smallest? How confident are we in these evaluations?

The first of these can be addressed with an *F-test*.

Testing for across-group heterogeneity

Model:

$$y_{i,j} = \mu + a_j + \epsilon_{i,j}$$
 { $\epsilon_{i,j}$ } ~ iid $N(0, \sigma^2)$

Hypotheses:

Consider deciding between the following hypotheses:

$$H_0 : a_j = 0 \text{ for all } j$$
$$H_1 : a_j \neq 0 \text{ for some } j$$

 H_0 imples all group means are the same, H_1 implies the opposite.

Statistical inference:

How can we evaluate H_1 versus H_0 based on the observed data?

SSG as a measure of heterogeneity

 $MSG = n \times \text{sample variance}(\bar{y}_1, \ldots, \bar{y}_m)$

Proceeding heuristically,

sample variance $(\bar{y}_1, \dots, \bar{y}_m) \approx \text{sample variance}(\mu + a_1, \dots, \mu + a_m)$ = sample variance (a_1, \dots, a_m) = $\frac{1}{m-1} \sum a_j^2$

Intuitively,

$$H_0 ext{ true} \Leftrightarrow rac{1}{m-1} \sum a_j^2 = 0 \Leftrightarrow ext{small MSG}$$

 $H_1 ext{ true} \Leftrightarrow rac{1}{m-1} \sum a_j^2 > 0 \Leftrightarrow ext{ large MSG}$

27/1

Expected mean squares

$$\begin{array}{lll} MSG &=& n \times \text{sample variance}(\bar{y}_1, \dots, \bar{y}_m) \\ &\approx& n \times \text{sample variance}(a_1, \dots, a_m) \\ &=& n \times \frac{1}{m-1} \sum a_j^2 \end{array}$$

More precisely, one can show that

$$\mathsf{E}[MSG] = \sigma^2 + n \times \frac{1}{m-1} \sum \mathsf{a}_j^2,$$

where the σ^2 comes from the fact that \bar{y}_j only approximates a_j .

Letting $\tau^2 = \frac{1}{m-1}\sum \textit{a}_j^2,$ we have $\mathsf{E}[\textit{MSG}] = \sigma^2 + \textit{n} \times \tau^2,$

where τ^2 is the across-group variability.

Comparison to σ^2

Idea:

$$MSG \approx \sigma^2 \Rightarrow \tau^2$$
 is small or zero \Rightarrow accept H_0

$$MSG > \sigma^2 \Rightarrow \tau^2$$
 is not zero \Rightarrow accept H_1

Problem: We don't know what σ^2 is.

Solution: Compare *MSG* to an estimate of σ^2 .

Comparison to MSE

$$MSE = SSE/m(n-1) = \frac{1}{m(n-1)} \sum_{j} \sum_{i} (y_{i,j} - \bar{y}_{j})^{2}$$
$$= \frac{1}{m} \sum_{j} \frac{1}{n-1} \sum_{i} (y_{i,j} - \bar{y}_{j})^{2}$$
$$= \frac{1}{m} \sum_{j} s_{j}^{2}.$$

Recall that $E[s_i^2] = \sigma^2$, and so

 $\mathsf{E}[\textit{MSE}] = \sigma^2$

The F-statistic

$$E[MSG] = \sigma^{2} + n \times \tau^{2}$$
$$E[MSE] = \sigma^{2}$$

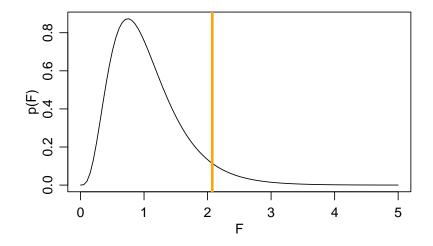
Let F = MSG/MSE. Then

under H_0 , MSG/MSE should be around 1, under H_1 , MSG/MSE should be bigger than 1.

Null distribution

Under the normal model $y_1, \ldots, y_n \sim \text{ iid } N(\mu, \sigma^2)$,

$$MSG/MST = F \sim F_{m-1,m(n-1)}$$



Classical testing for across-group heterogeneity

- We expect an $F_{m-1,m(n-1)}$ -distribution under H_0 .
- We observe F(y) = MSG/MSE.
- Discrepancy between $F_{m-1,m(n-1)}$ and F(y) is evidence against H_0 .

```
p-value = \Pr(F_{m-1,m(n-1)} \ge F(y))
```

```
MSG<-SSG/(m-1)
MSEX-SSE/(m*(n-1))
MSG/MSE
## [1] 2.074518
1-pf( MSG/MSE, m-1,m*(n-1))
## [1] 0.05550019
```

ANOVA table

```
anova(lm(y~as.factor(g)))
## Analysis of Variance Table
##
## Response: y
## Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(g) 9 33.368 3.7076 2.0745 0.0555 .
## Residuals 40 71.488 1.7872
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Classical data analysis and estimation

The "classical" hypothesis testing and parameter estimation procedure is

If the p-value < 0.05,

- reject H_0 , and conclude there are group differences,
- estimate μ_j with $\bar{y}_{.j}$.
- If the p-value > 0.05,
 - accept H_0 , and conclude there is no evidence of group differences,
 - estimate μ_j with y
 _j...

Note that the esitmator of μ_j can be written as

$$\hat{\mu}_j = w \bar{y}_j + (1 - w) \bar{y}_{..}$$

Classical data analysis and estimation

Advantages of classical procedure:

- controls the type I error rate of rejecting H₀;
- is easy to implement and report.

Disadvantages:

- rejecting H_0 doesn't mean no similarities across groups $\Rightarrow \bar{y}_{\cdot j}$ is an inefficient estimate of μ_j
- accepting H_0 doesn't mean no differences between groups $\Rightarrow \overline{y}_{..}$ is an inaccurate estimate of μ_j .

An alternative strategy

$$\hat{\mu}_j = w \bar{y}_j + (1 - w) \bar{y}_{..}$$

Classical approach: *w* is the indicator of rejecting H_0 .

Multilevel approach:
$$w = \frac{n/\hat{\sigma}^2}{n/\hat{\sigma}^2 + 1/\hat{\tau}^2}$$

The multilevel approach will allow for

- sharing of information across groups,
- the amount of sharing to be estimated from the data.