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Two group comparison
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Two group comparison

t.test(yA,yB)

##
## Welch Two Sample t-test
##
## data: yA and yB
## t = -2.5922, df = 16.037, p-value = 0.01962
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -47.543740 -4.770049
## sample estimates:
## mean of x mean of y
## 38.88928 65.04617
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Two group comparison

t.test(yA,yB,var.equal=TRUE)

##
## Two Sample t-test
##
## data: yA and yB
## t = -2.5922, df = 18, p-value = 0.0184
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -47.356240 -4.957549
## sample estimates:
## mean of x mean of y
## 38.88928 65.04617
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Multi group comparisons
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NELS data
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Data analysis goals

Descriptions of center:

• overall mean

• within group means

Descriptions of variability:

• across group variability

• within group variability

Tests and comparisons:

• Overall evaluation: Is there evidence of differences between groups?

• Specific comparisons:
Which group has the largest mean?
Which has the smallest?
How confident are we in these evaluations?
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Review of ANOVA

Example (wheat yield):

• m = 10 regions of land were randomly selected,

• n = 5 plots of land were seeded within each region.

• yi,j=the yield of plot i in region j .

●

●

●

●

●

●●

●
●
●

●
●

●

●

●

●●

●

●

●
●

●

●

●

● ●●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

2 4 6 8 10

12
14

16
18

region

yi
el

d

●

●

●

●

●

1 3 5 7 9

12
14

16
18

region

yi
el

d

8/1



Review of ANOVA

Example (wheat yield):

• m = 10 regions of land were randomly selected,

• n = 5 plots of land were seeded within each region.

• yi,j=the yield of plot i in region j .
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One-way ANOVA model

yi,j =µ+ aj + εi,j (treatment effects model) , or

yi,j =µj + εi,j (treatment means model),

where µj = µ+ aj .

• µ is expected yield across all regions;

• µj is expected yield from region j ;

• aj is the deviation of region-specific expected yield from µ;

µj = µ+ aj ⇔ aj = µj − µ

• εi,j deviation of an observed plot yield from its region-specific expectation.
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Identifiability

The standard ANOVA model parameterizes things so that

•
∑

j aj = 0 (sum-to-zero side conditions),

• {εi,j} ∼ i.i.d. p(ε), with E[εi,j ] = 0 within all groups.

In this case,

E[yi,j |µ, a1, . . . , am] = E[µ+ aj + εi,j |µ, a1, . . . , am]

= E[µ|µ, a1, . . . , am] + E[aj |µ, a1, . . . , am] + E[εi,j |µ, a1, . . . , am]

= µ+ aj

= µj

If we assume p(ε) is the normal(0, σ2) distribution, then the model is

yi,j ∼ normal(µ+ aj , σ
2) or equivalently,

yi,j ∼ normal(µj , σ
2).
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Parameter estimates

Parameters to estimate include

• {µ1, . . . , µm, σ
2}, or equivalently

• {µ, a1, . . . , am, σ
2}

If µ̂j is an estimate of µj , we say that

• ŷi,j = µ̂j is the fitted value of yi,j ;

• ε̂i,j = yi,j − ŷi,j = yi,j − µ̂j is the residual for yi,j .

OLS estimation: The OLS estimates are the values that minimize

SSE(µ̂1, . . . , µ̂m) = (y1,1 − µ̂1)2 + (y2,1 − µ̂1)2 + · · ·+ (yn−1,m − µ̂m)2 + (yn,m − µ̂m)2

=
m∑
j=1

n∑
i=1

(yi,j − µ̂j)
2
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Minimizing sums of squares

Task: Find the value µ̂ that minimizes

n∑
i=1

(yi − µ̂)2

Solution:

n∑
i=1

(yi − µ̂)2 =
n∑

i=1

(yi − ȳ + ȳ − µ̂)2

=
n∑

i=1

[(yi − ȳ)2 + 2(yi − ȳ)(ȳ − µ̂) + (ȳ − µ̂)2]

=
∑

(yi − ȳ)2 + n(ȳ − µ̂)2,

• The sum of squares is minimized by µ̂ = ȳ ;

• The minimim value is SSE =
∑

(yi − ȳ)2;

• Recall that the sample variance is given by 1
n−1

SSE .
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OLS estimates

Not surprisingly,
(µ̂1, . . . , µ̂m) = (ȳ1, . . . , ȳm).

For the “treatment effects” parametrization,

µ̂ = ȳ··

âj = (µ̂j − µ̂) = (ȳj − ȳ··)

Exercises: Show that (in this case of equal group sample sizes),

• µ̂ =
∑
µ̂j/m;

•
∑

âj = 0.
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ANOVA decomposition

The OLS estimates provide a “decomposition” of the data:

yi,j = ȳ·· + (ȳ·j − ȳ··) + (yi,j − ȳ·j)
µ̂ + âj + ε̂i,j .
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ANOVA decomposition

Total Group Error
y11 − ȳ.. = (ȳ.1 − ȳ..) + (y11 − ȳ.1)
y21 − ȳ.. = (ȳ.1 − ȳ..) + (y21 − ȳ.1)

. = . + .

. = . + .

. = . + .
yn1 − ȳ.. = (ȳ.1 − ȳ..) + (yn1 − ȳ.1)
y12 − ȳ.. = (ȳ.2 − ȳ..) + (y12 − ȳ.2)

. = . + .

. = . + .

. = . + .
yn2 − ȳ.. = (ȳ.2 − ȳ..) + (yn2 − ȳ.2)

...
...

...
y1m − ȳ.. = (ȳ.m − ȳ..) + (y1m − ȳ.m)

. = . + .

. = . + .

. = . + .
ynm − ȳ.. = (ȳ.m − ȳ..) + (ynm − ȳ.m)

SST = SSG + SSE
mn − 1 = m − 1 + m(n − 1)
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ANOVA decomposition

SST: Total sum of squares variation = variation around ȳ··.

SSG: Total group variation = variation of group means around grand mean.

SSE: Error or residual variation = variation of data around group means.

Sum of squares decomposition: You can show that

SST = SSG + SSE
total variation = between group variation + within group variation
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ANOVA for wheat yield
y

## [1] 17.37 15.78 14.35 12.10 16.82 16.16 16.20 17.56 17.39 17.06 16.28
## [12] 16.08 15.08 12.16 15.85 17.87 17.73 15.87 17.28 18.54 18.33 16.26
## [23] 16.95 16.33 14.46 14.41 14.44 14.91 16.55 16.07 16.36 16.24 17.58
## [34] 17.38 15.62 15.90 17.42 17.99 16.75 18.15 17.27 15.84 17.19 15.11
## [45] 18.73 18.43 15.11 14.15 16.43 15.43

g

## [1] 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5
## [24] 5 5 6 6 6 6 6 7 7 7 7 7 8 8 8 8 8 9 9 9 9 9 10
## [47] 10 10 10 10

mu.grand<-mean(y)
mu.group<-tapply(y,g,mean)

mu.grand

## [1] 16.3064

mu.group

## 1 2 3 4 5 6 7 8 9 10
## 15.284 16.874 15.090 17.458 16.466 15.276 16.636 17.242 16.828 15.910

mean(mu.group)

## [1] 16.3064
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ANOVA for wheat yield

SST<-sum( (y-mu.grand)^2 )
SST

## [1] 104.8566

mu.group[ g ]

## 1 1 1 1 1 2 2 2 2 2
## 15.284 15.284 15.284 15.284 15.284 16.874 16.874 16.874 16.874 16.874
## 3 3 3 3 3 4 4 4 4 4
## 15.090 15.090 15.090 15.090 15.090 17.458 17.458 17.458 17.458 17.458
## 5 5 5 5 5 6 6 6 6 6
## 16.466 16.466 16.466 16.466 16.466 15.276 15.276 15.276 15.276 15.276
## 7 7 7 7 7 8 8 8 8 8
## 16.636 16.636 16.636 16.636 16.636 17.242 17.242 17.242 17.242 17.242
## 9 9 9 9 9 10 10 10 10 10
## 16.828 16.828 16.828 16.828 16.828 15.910 15.910 15.910 15.910 15.910

SSG<-sum( (mu.group[ g ]-mu.grand)^2 )
SSG

## [1] 33.36831

n*sum( (mu.group-mu.grand)^2 )

## [1] 33.36831
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ANOVA for wheat yield

SSE<-sum( (y-mu.group[ g ])^2 )
SSE

## [1] 71.48824

SSE+SSG

## [1] 104.8566

SST

## [1] 104.8566
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ANOVA table

The ANOVA decomposition is usually summarized with an ANOVA table:

source deg of freedom SS MS F -ratio
groups m − 1 SSG MSG=SSG/(m − 1) MSG/MSE
residuals m(n − 1) SSE MSE=SSE/m(n − 1)

total mn − 1 SST

anova( lm(y~as.factor(g)) )

## Analysis of Variance Table
##
## Response: y
## Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(g) 9 33.368 3.7076 2.0745 0.0555 .
## Residuals 40 71.488 1.7872
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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ANOVA table

anova( lm(y~as.factor(g)) )

## Analysis of Variance Table
##
## Response: y
## Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(g) 9 33.368 3.7076 2.0745 0.0555 .
## Residuals 40 71.488 1.7872
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

SSG

## [1] 33.36831

SSG/(m-1)

## [1] 3.70759

SSE

## [1] 71.48824

SSE/(m*(n-1))

## [1] 1.787206

(SSG/(m-1)) / (SSE/(m*(n-1)))

## [1] 2.07451822/1



ANOVA decomposition as a description

The ANOVA decomposition and sums of squares provide

Descriptions of center:

• overall mean: ȳ··

• group means: ȳ1, . . . , ȳm

• group effects: ȳ1 − ȳ··, . . . , ȳ1 − ȳ··

Descriptions of variability:

• across group variability

SSG =
∑
j

∑
i

(ȳj − ȳ··)
2

= n
∑
j

(ȳj − ȳ··)
2 = n × (m − 1)× sample variance(ȳ1, . . . , ȳm)

• within group variability

SSE =
∑
j

∑
i

(yi,j − ȳj)
2 =

∑
j

(n − 1)s2
j
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SSG:

SSG

## [1] 33.36831

n*(m-1)*var(mu.group)

## [1] 33.36831

SSE:

SSE

## [1] 71.48824

tapply(y,g,var)

## 1 2 3 4 5 6 7 8 9
## 4.49173 0.43388 2.88970 0.99197 1.94843 0.95908 0.67748 0.86467 1.96792
## 10
## 2.64720

sum( ( n-1)* tapply(y,g,var) )

## [1] 71.48824
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Tests and comparisons

Tests and comparisons:

• Overall evaluation: Is there evidence of differences between groups?

• Specific comparisons:
Which group has the largest mean?
Which has the smallest?
How confident are we in these evaluations?

The first of these can be addressed with an F-test.
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Testing for across-group heterogeneity

Model:
yi,j = µ+ aj + εi,j {εi,j} ∼ iid N(0, σ2)

Hypotheses:
Consider deciding between the following hypotheses:

H0 : aj = 0 for all j

H1 : aj 6= 0 for some j

H0 imples all group means are the same, H1 implies the opposite.

Statistical inference:
How can we evaluate H1 versus H0 based on the observed data?
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SSG as a measure of heterogeneity

MSG = n × sample variance(ȳ1, . . . , ȳm)

Proceeding heuristically,

E[ȳj ] = µ+ aj

ȳj ≈ µ+ aj

sample variance(ȳ1, . . . , ȳm) ≈ sample variance(µ+ a1, . . . , µ+ am)

= sample variance(a1, . . . , am)

=
1

m − 1

∑
a2
j

Intuitively,

H0 true⇔ 1

m − 1

∑
a2
j = 0⇔ small MSG

H1 true⇔ 1

m − 1

∑
a2
j > 0⇔ large MSG
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Expected mean squares

MSG = n × sample variance(ȳ1, . . . , ȳm)

≈ n × sample variance(a1, . . . , am)

= n × 1

m − 1

∑
a2
j

More precisely, one can show that

E[MSG ] = σ2 + n × 1

m − 1

∑
a2
j ,

where the σ2 comes from the fact that ȳj only approximates aj .

Letting τ 2 = 1
m−1

∑
a2
j , we have

E[MSG ] = σ2 + n × τ 2,

where τ 2 is the across-group variability.

28/1



Comparison to σ2

Idea:

MSG ≈ σ2 ⇒ τ 2 is small or zero ⇒ accept H0

MSG > σ2 ⇒ τ 2 is not zero ⇒ accept H1

Problem: We don’t know what σ2 is.

Solution: Compare MSG to an estimate of σ2.
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Comparison to MSE

MSE = SSE/m(n − 1) =
1

m(n − 1)

∑
j

∑
i

(yi,j − ȳj)
2

=
1

m

∑
j

1

n − 1

∑
i

(yi,j − ȳj)
2

=
1

m

∑
j

s2
j .

Recall that E[s2
j ] = σ2, and so

E[MSE ] = σ2
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The F -statistic

E[MSG ] = σ2 + n × τ 2

E[MSE ] = σ2

Let F = MSG/MSE . Then

under H0, MSG/MSE should be around 1,

under H1, MSG/MSE should be bigger than 1.
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Null distribution

Under the normal model y1, . . . , yn ∼ iid N(µ, σ2),

MSG/MST = F ∼ Fm−1,m(n−1)

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

F

p(
F

)

32/1



Classical testing for across-group heterogeneity

• We expect an Fm−1,m(n−1)-distribution under H0.

• We observe F (y) = MSG/MSE .

• Discrepancy between Fm−1,m(n−1) and F (y) is evidence against H0.

p-value = Pr(Fm−1,m(n−1) ≥ F (y))

MSG<-SSG/(m-1)
MSE<-SSE/(m*(n-1))
MSG/MSE

## [1] 2.074518

1-pf( MSG/MSE, m-1,m*(n-1))

## [1] 0.05550019
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ANOVA table

anova(lm(y~as.factor(g)))

## Analysis of Variance Table
##
## Response: y
## Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(g) 9 33.368 3.7076 2.0745 0.0555 .
## Residuals 40 71.488 1.7872
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Classical data analysis and estimation

The “classical” hypothesis testing and parameter estimation procedure is

If the p-value < 0.05,
• reject H0, and conclude there are group differences,
• estimate µj with ȳ·j .

If the p-value > 0.05,
• accept H0, and conclude there is no evidence of group differences,
• estimate µj with ȳ··.

Note that the esitmator of µj can be written as

µ̂j = wȳj + (1− w)ȳ··
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Classical data analysis and estimation

Advantages of classical procedure:

• controls the type I error rate of rejecting H0;
• is easy to implement and report.

Disadvantages:

• rejecting H0 doesn’t mean no similarities across groups
⇒ ȳ·j is an inefficient estimate of µj

• accepting H0 doesn’t mean no differences between groups
⇒ ȳ·· is an inaccurate estimate of µj .
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An alternative strategy

µ̂j = wȳj + (1− w)ȳ··

Classical approach: w is the indicator of rejecting H0.

Multilevel approach: w = n/σ̂2

n/σ̂2+1/τ̂2

The multilevel approach will allow for

• sharing of information across groups,

• the amount of sharing to be estimated from the data.
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