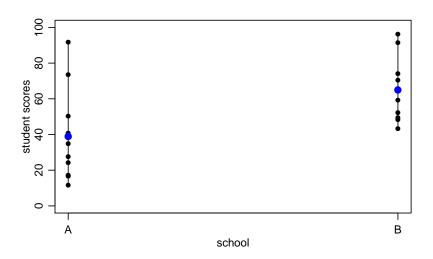
ANOVA

560 Hierarchical modeling

Peter Hoff

Statistics, University of Washington

Two group comparison



Two group comparison

```
t.test(yA,yB)

##

## Welch Two Sample t-test

##

## data: yA and yB

## t = -2.5922, df = 16.037, p-value = 0.01962

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## -47.543740 -4.770049

## sample estimates:

## mean of x mean of y

## 38.88928 65.04617
```

Two group comparison

```
t.test(yA,yB,var.equal=TRUE)

##

## Two Sample t-test

##

## data: yA and yB

## t = -2.5922, df = 18, p-value = 0.0184

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

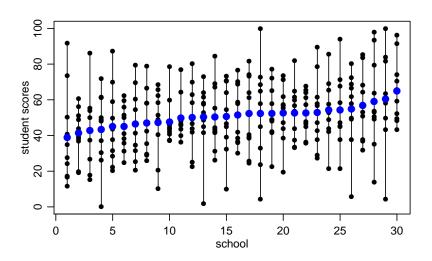
## -47.356240 -4.957549

## sample estimates:

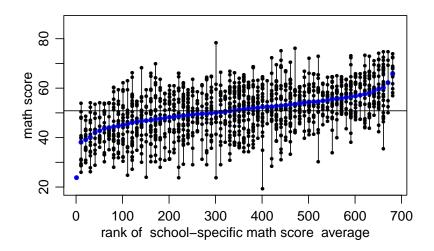
## mean of x mean of y

## 38.88928 65.04617
```

Multi group comparisons



NELS data



Data analysis goals

Descriptions of center:

- overall mean
- within group means

Descriptions of variability:

- · across group variability
- · within group variability

Tests and comparisons:

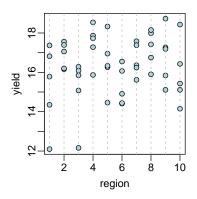
- Overall evaluation: Is there evidence of differences between groups?
- Specific comparisons:

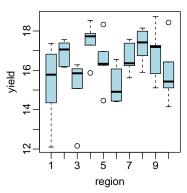
Which group has the largest mean? Which has the smallest? How confident are we in these evaluations?

Review of ANOVA

Example (wheat yield):

- m = 10 regions of land were randomly selected,
- n = 5 plots of land were seeded within each region.
- $y_{i,j}$ =the yield of plot i in region j.

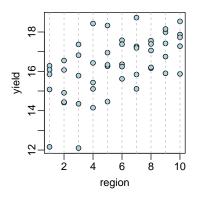


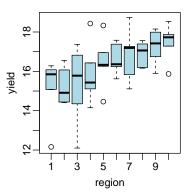


Review of ANOVA

Example (wheat yield):

- m = 10 regions of land were randomly selected,
- n = 5 plots of land were seeded within each region.
- $y_{i,j}$ =the yield of plot i in region j.





One-way ANOVA model

$$y_{i,j} = \mu + a_j + \epsilon_{i,j}$$
 (treatment effects model) , or $y_{i,j} = \mu_j + \epsilon_{i,j}$ (treatment means model),

where $\mu_j = \mu + a_j$.

- μ is expected yield across all regions;
- μ_j is expected yield from region j;
- a_j is the deviation of region-specific expected yield from μ ;

$$\mu_j = \mu + a_j \iff a_j = \mu_j - \mu$$

• $\epsilon_{i,j}$ deviation of an observed plot yield from its region-specific expectation.

Identifiability

The standard ANOVA model parameterizes things so that

- $\sum_{i} a_{i} = 0$ (sum-to-zero side conditions),
- $\{\epsilon_{i,j}\} \sim$ i.i.d. $p(\epsilon)$, with $\mathsf{E}[\epsilon_{i,j}] = \mathsf{0}$ within all groups.

In this case,

$$\begin{aligned} \mathsf{E}[y_{i,j}|\mu, a_1, \dots, a_m] &= \mathsf{E}[\mu + a_j + \epsilon_{i,j}|\mu, a_1, \dots, a_m] \\ &= \mathsf{E}[\mu|\mu, a_1, \dots, a_m] + \mathsf{E}[a_j|\mu, a_1, \dots, a_m] + \mathsf{E}[\epsilon_{i,j}|\mu, a_1, \dots, a_m] \\ &= \mu + a_j \\ &= \mu_i \end{aligned}$$

If we assume $p(\epsilon)$ is the normal $(0, \sigma^2)$ distribution, then the model is

$$y_{i,j} \sim \operatorname{normal}(\mu + a_j, \sigma^2)$$
 or equivalently, $y_{i,j} \sim \operatorname{normal}(\mu_j, \sigma^2)$.

Parameter estimates

Parameters to estimate include

- $\{\mu_1, \ldots, \mu_m, \sigma^2\}$, or equivalently
- $\{\mu, a_1, \ldots, a_m, \sigma^2\}$

If $\hat{\mu}_j$ is an estimate of μ_j , we say that

- $\hat{y}_{i,j} = \hat{\mu}_i$ is the *fitted value* of $y_{i,j}$;
- $\hat{\epsilon}_{i,j} = y_{i,j} \hat{y}_{i,j} = y_{i,j} \hat{\mu}_j$ is the *residual* for $y_{i,j}$.

OLS estimation: The OLS estimates are the values that minimize

$$SSE(\hat{\mu}_1, \dots, \hat{\mu}_m) = (y_{1,1} - \hat{\mu}_1)^2 + (y_{2,1} - \hat{\mu}_1)^2 + \dots + (y_{n-1,m} - \hat{\mu}_m)^2 + (y_{n,m} - \hat{\mu}_m)^2$$
$$= \sum_{i=1}^m \sum_{j=1}^n (y_{i,j} - \hat{\mu}_j)^2$$

Minimizing sums of squares

Task: Find the value $\hat{\mu}$ that minimizes

$$\sum_{i=1}^n (y_i - \hat{\mu})^2$$

Solution:

$$\sum_{i=1}^{n} (y_i - \hat{\mu})^2 = \sum_{i=1}^{n} (y_i - \bar{y} + \bar{y} - \hat{\mu})^2$$

$$= \sum_{i=1}^{n} [(y_i - \bar{y})^2 + 2(y_i - \bar{y})(\bar{y} - \hat{\mu}) + (\bar{y} - \hat{\mu})^2]$$

$$= \sum_{i=1}^{n} (y_i - \bar{y})^2 + n(\bar{y} - \hat{\mu})^2,$$

- The sum of squares is minimized by $\hat{\mu} = \bar{y}$;
- The minimim value is $SSE = \sum (y_i \bar{y})^2$;
- Recall that the sample variance is given by $\frac{1}{n-1}SSE$.

OLS estimates

Not surprisingly,

$$(\hat{\mu}_1,\ldots,\hat{\mu}_m)=(\bar{y}_1,\ldots,\bar{y}_m).$$

For the "treatment effects" parametrization,

$$\hat{\mu} = \bar{y}$$
..
$$\hat{a}_j = (\hat{\mu}_j - \hat{\mu}) = (\bar{y}_j - \bar{y}$$
..)

Exercises: Show that (in this case of equal group sample sizes),

- $\hat{\mu} = \sum \hat{\mu}_j/m$;
- $\sum \hat{a}_j = 0$.

ANOVA decomposition

The OLS estimates provide a "decomposition" of the data:

$$y_{i,j} = \begin{array}{ccc} \bar{y}_{\cdot \cdot \cdot} & + & (\bar{y}_{\cdot j} - \bar{y}_{\cdot \cdot}) & + & (y_{i,j} - \bar{y}_{\cdot j}) \\ \hat{\mu} & + & \hat{a}_j & + & \hat{\epsilon}_{i,j}. \end{array}$$

ANOVA decomposition

Total		Group		Error
$y_{11} - \bar{y}_{}$	=	$(\bar{y}_{.1} - \bar{y}_{})$	+	$(y_{11} - \bar{y}_{.1})$
$y_{21} - \bar{y}_{}$	=	$(ar{y}_{.1}-ar{y}_{})$	+	$(y_{21} - \bar{y}_{.1})$
	=		+	
•	=	•	+	
•	=		+	
$y_{n1} - \bar{y}_{}$	=	$(\bar{y}_{.1} - \bar{y}_{}) \over (\bar{y}_{.2} - \bar{y}_{})$	+	$(y_{n1} - \bar{y}_{.1})$
$y_{12} - \bar{y}_{}$	=	$(\bar{y}_{.2} - \bar{y}_{})$	+	$(y_{12} - \bar{y}_{.2})$
	=		+	
•	=		+	
	=		+	
$y_{n2} - \bar{y}_{}$	=	$(\bar{y}_{.2} - \bar{y}_{})$	+	$(y_{n2} - \bar{y}_{.2})$
:		:		:
·				
$y_{1m}-\bar{y}_{}$	=	$(\bar{y}_{.m} - \bar{y}_{})$	+	$(y_{1m}-\bar{y}_{.m})$
•	=		+	•
•	=	•	+	•
	=		+	
$y_{nm} - \bar{y}_{}$	=	$(\bar{y}_{.m} - \bar{y}_{})$	+	$(y_{nm}-\bar{y}_{.m})$
SST	=	SSG	+	SSE
mn-1	=	m-1	+	m(n-1)

ANOVA decomposition

SST: Total sum of squares variation = variation around \bar{y} ...

SSG: Total group variation = variation of group means around grand mean.

SSE: Error or residual variation = variation of data around group means.

Sum of squares decomposition: You can show that

SST = SSG + SSEtotal variation = between group variation + within group variation

ANOVA for wheat yield

```
У
## [1] 17.37 15.78 14.35 12.10 16.82 16.16 16.20 17.56 17.39 17.06 16.28
## [12] 16.08 15.08 12.16 15.85 17.87 17.73 15.87 17.28 18.54 18.33 16.26
## [23] 16.95 16.33 14.46 14.41 14.44 14.91 16.55 16.07 16.36 16.24 17.58
## [34] 17.38 15.62 15.90 17.42 17.99 16.75 18.15 17.27 15.84 17.19 15.11
## [45] 18.73 18.43 15.11 14.15 16.43 15.43
g
## [1] 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 ## [24] 5 5 6 6 6 6 6 6 7 7 7 7 7 8 8 8 8 8 9 9 9 9 9 9 10
## [47] 10 10 10 10
mu.grand<-mean(y)</pre>
mu.group<-tapply(y,g,mean)</pre>
mu.grand
## [1] 16.3064
mu.group
## 15.284 16.874 15.090 17.458 16.466 15.276 16.636 17.242 16.828 15.910
mean (mu.group)
## [1] 16.3064
```

ANOVA for wheat yield

```
SST<-sum( (y-mu.grand)^2)
SST
## [1] 104.8566
mu.group[g]
## 1 1 1 1 1 2 2 2 2 2 2
## 15.284 15.284 15.284 15.284 15.284 16.874 16.874 16.874 16.874 16.874
## 3 3 3 3 3 4 4 4 4 4
## 15.090 15.090 15.090 15.090 15.090 17.458 17.458 17.458 17.458 17.458
## 5 5 5 5 5 6 6 6 6 6
## 16.466 16.466 16.466 16.466 16.466 15.276 15.276 15.276 15.276 15.276
## 16.636 16.636 16.636 16.636 16.636 17.242 17.242 17.242 17.242 17.242
## 9 9 9 9 10 10 10 10 10
## 16.828 16.828 16.828 16.828 16.828 15.910 15.910 15.910 15.910 15.910
SSG<-sum( (mu.group[ g ]-mu.grand)^2 )
SSG
## [1] 33.36831
n*sum( (mu.group-mu.grand)^2 )
## [1] 33.36831
```

ANOVA for wheat yield

```
SSE<-sum((y-mu.group[g])^2)
SSE

## [1] 71.48824

SSE+SSG

## [1] 104.8566

SST

## [1] 104.8566
```

ANOVA table

The ANOVA decomposition is usually summarized with an ANOVA table:

```
\begin{array}{c|cccc} \underline{\text{source}} & \underline{\text{deg of freedom}} & \underline{\text{SS}} & \underline{\text{MS}} & \underline{F\text{-ratio}} \\ \text{groups} & m-1 & \text{SSG} & \text{MSG=SSG}/(m-1) & \text{MSG/MSE} \\ \hline \text{residuals} & m(n-1) & \text{SSE} & \text{MSE=SSE}/m(n-1) \\ \hline \text{total} & mn-1 & \text{SST} \end{array}
```

ANOVA table

```
anova( lm(y~as.factor(g)) )
## Analysis of Variance Table
##
## Response: y
               Df Sum Sq Mean Sq F value Pr(>F)
##
## as.factor(g) 9 33.368 3.7076 2.0745 0.0555 .
## Residuals 40 71.488 1.7872
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
SSG
## [1] 33.36831
SSG/(m-1)
## [1] 3.70759
SSE
## [1] 71.48824
SSE/(m*(n-1))
## [1] 1.787206
(SSG/(m-1)) / (SSE/(m*(n-1)))
## [1] 2 074518
```

ANOVA decomposition as a description

The ANOVA decomposition and sums of squares provide

Descriptions of center:

- overall mean: $\bar{y}_{..}$
- group means: $\bar{y}_1, \ldots, \bar{y}_m$
- group effects: $\bar{y}_1 \bar{y}_{\cdots}, \dots, \bar{y}_1 \bar{y}_{\cdots}$

Descriptions of variability:

across group variability

$$\begin{aligned} \mathsf{SSG} &=& \sum_{j} \sum_{i} (\bar{y}_{j} - \bar{y}_{\cdot \cdot})^{2} \\ &=& n \sum_{j} (\bar{y}_{j} - \bar{y}_{\cdot \cdot})^{2} = n \times (m-1) \times \mathsf{sample variance}(\bar{y}_{1}, \dots, \bar{y}_{m}) \end{aligned}$$

within group variability

$$SSE = \sum_{i} \sum_{j} (y_{i,j} - \bar{y}_{j})^{2} = \sum_{i} (n-1)s_{j}^{2}$$

SSG:

```
## [1] 33.36831

n*(m-1)*var(mu.group)

## [1] 33.36831
```

SSE:

```
## [1] 71.48824

tapply(y,g,var)

## 1 2 3 4 5 6 7 8 9

## 4.49173 0.43388 2.88970 0.99197 1.94843 0.95908 0.67748 0.86467 1.96792

## 10

## 2.64720

sum( (n-1)* tapply(y,g,var) )

## [1] 71.48824
```

Tests and comparisons

Tests and comparisons:

- Overall evaluation: Is there evidence of differences between groups?
- Specific comparisons:

Which group has the largest mean? Which has the smallest? How confident are we in these evaluations?

The first of these can be addressed with an F-test.

Testing for across-group heterogeneity

Model:

$$y_{i,j} = \mu + a_j + \epsilon_{i,j} \quad \{\epsilon_{i,j}\} \sim \text{iid } N(0, \sigma^2)$$

Hypotheses:

Consider deciding between the following hypotheses:

 H_0 : $a_j = 0$ for all j

 H_1 : $a_j \neq 0$ for some j

 H_0 implies all group means are the same, H_1 implies the opposite.

Statistical inference:

How can we evaluate H_1 versus H_0 based on the observed data?

SSG as a measure of heterogeneity

$$MSG = n \times \text{sample variance}(\bar{y}_1, \dots, \bar{y}_m)$$

Proceeding heuristically,

$$\mathbf{E}[\bar{y}_j] = \mu + \mathbf{a}_j \\
\bar{y}_j \approx \mu + \mathbf{a}_j$$

sample variance
$$(\bar{y}_1, \dots, \bar{y}_m)$$
 \approx sample variance $(\mu + a_1, \dots, \mu + a_m)$
 $=$ sample variance (a_1, \dots, a_m)
 $=$ $\frac{1}{m-1} \sum a_j^2$

Intuitively,

$$H_0$$
 true $\Leftrightarrow rac{1}{m-1}\sum a_j^2=0 \Leftrightarrow ext{small MSG}$ H_1 true $\Leftrightarrow rac{1}{m-1}\sum a_j^2>0 \Leftrightarrow ext{large MSG}$

Expected mean squares

$$\begin{array}{rcl} \textit{MSG} & = & n \times \mathsf{sample \ variance}(\bar{y}_1, \dots, \bar{y}_m) \\ & \approx & n \times \mathsf{sample \ variance}(a_1, \dots, a_m) \\ & = & n \times \frac{1}{m-1} \sum a_j^2 \end{array}$$

More precisely, one can show that

$$\mathsf{E}[MSG] = \sigma^2 + n \times \frac{1}{m-1} \sum a_j^2,$$

where the σ^2 comes from the fact that \bar{y}_j only approximates a_j .

Letting $\tau^2 = \frac{1}{m-1} \sum a_j^2$, we have

$$\mathsf{E}[\mathit{MSG}] = \sigma^2 + \mathit{n} \times \tau^2,$$

where τ^2 is the across-group variability.

Comparison to σ^2

Idea:

$$\mathit{MSG} \approx \sigma^2 \; \Rightarrow \; \; \tau^2 \; \text{is small or zero} \; \Rightarrow \; \; \text{accept} \; H_0$$

$$\mathit{MSG} > \sigma^2 \; \Rightarrow \; \; \tau^2 \; \text{is not zero} \; \Rightarrow \; \; \text{accept} \; \mathit{H}_1$$

Problem: We don't know what σ^2 is.

Solution: Compare MSG to an estimate of σ^2 .

Comparison to MSE

$$MSE = SSE/m(n-1) = \frac{1}{m(n-1)} \sum_{j} \sum_{i} (y_{i,j} - \bar{y}_{j})^{2}$$
$$= \frac{1}{m} \sum_{j} \frac{1}{n-1} \sum_{i} (y_{i,j} - \bar{y}_{j})^{2}$$
$$= \frac{1}{m} \sum_{j} s_{j}^{2}.$$

Recall that $E[s_i^2] = \sigma^2$, and so

$$E[MSE] = \sigma^2$$

The *F*-statistic

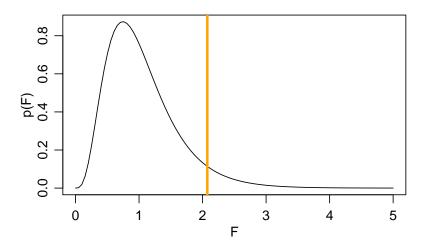
$$E[MSG] = \sigma^2 + n \times \tau^2$$
$$E[MSE] = \sigma^2$$

Let F = MSG/MSE. Then under H_0 , MSG/MSE should be around 1, under H_1 , MSG/MSE should be bigger than 1.

Null distribution

Under the normal model $y_1, \ldots, y_n \sim \text{ iid } N(\mu, \sigma^2)$,

$$MSG/MST = F \sim F_{m-1,m(n-1)}$$



Classical testing for across-group heterogeneity

- We expect an $F_{m-1,m(n-1)}$ -distribution under H_0 .
- We observe F(y) = MSG/MSE.
- Discrepancy between $F_{m-1,m(n-1)}$ and F(y) is evidence against H_0 .

$$p$$
-value = $\Pr(F_{m-1,m(n-1)} \ge F(y))$

```
MSG<-SSG/(m-1)
MSE<-SSE/(m*(n-1))
MSG/MSE

## [1] 2.074518

1-pf( MSG/MSE, m-1,m*(n-1))

## [1] 0.05550019
```

ANOVA table

Classical data analysis and estimation

The "classical" hypothesis testing and parameter estimation procedure is

If the p-value < 0.05,

- reject H₀, and conclude there are group differences,
- estimate μ_i with $\bar{y}_{.i}$.

If the p-value > 0.05,

- accept H_0 , and conclude there is no evidence of group differences,
- estimate μ_i with \bar{y} ...

Note that the esitmator of μ_i can be written as

$$\hat{\mu}_j = w\bar{y}_j + (1-w)\bar{y}_{\cdot \cdot \cdot}$$

Classical data analysis and estimation

Advantages of classical procedure:

- controls the type I error rate of rejecting H₀;
- is easy to implement and report.

Disadvantages:

- rejecting H_0 doesn't mean no similarities across groups $\Rightarrow \bar{y}_{\cdot j}$ is an inefficient estimate of μ_j
- accepting H₀ doesn't mean no differences between groups
 ⇒ ȳ.. is an inaccurate estimate of μ_j.

An alternative strategy

$$\hat{\mu}_j = w\bar{y}_j + (1-w)\bar{y}_{\cdot \cdot}$$

Classical approach: w is the indicator of rejecting H_0 .

Multilevel approach:
$$w = \frac{n/\hat{\sigma}^2}{n/\hat{\sigma}^2 + 1/\hat{\tau}^2}$$

The multilevel approach will allow for

- · sharing of information across groups,
- the amount of sharing to be estimated from the data.