Random effects ANOVA

560 Hierarchical modeling

Peter Hoff

Statistics, University of Washington

Classical data analysis and estimation

The "classical" testing and estimation procedure is as follows:

If the p-value < 0.05,

- reject H₀, and conclude there are group differences,
- estimate μ_j with $\bar{y}_{.j}$.

$$\hat{\mu}_j = \bar{y}_{\cdot j}$$

If the p-value > 0.05,

- accept H_0 , and conclude there is no evidence of group differences,
- estimate μ_i with \bar{y}_{\dots}

$$\hat{\mu}_j = \bar{y}_{..}$$

Note that the estimator of μ_i can be written as

$$\hat{\mu}_j = w ar{y}_j + (1-w) ar{y}_{..}$$

Classical data analysis and estimation

Advantages of classical procedure:

- controls the type I error rate of rejecting H₀;
- is easy to implement and report.

Disadvantages:

- rejecting H_0 doesn't mean no similarities across groups $\Rightarrow \bar{y}_{\cdot j}$ is an inefficient estimate of μ_j
- accepting H_0 doesn't mean no differences between groups $\Rightarrow \overline{y}_{..}$ is an inaccurate estimate of μ_j .

An alternative strategy

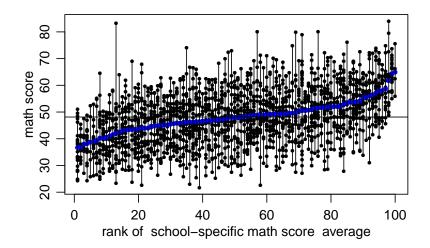
$$\hat{\mu}_j = w \bar{y}_j + (1 - w) \bar{y}_{..}$$

Classical approach: *w* is the indicator of rejecting H_0 .

Multilevel approach:
$$w = \frac{n/\hat{\sigma}^2}{n/\hat{\sigma}^2 + 1/\hat{\tau}^2}$$

The multilevel approach will allow for

- sharing of information across groups,
- the amount of sharing to be estimated from the data.



```
y.3122<-ndat$mathscore[ndat$school=="3122"]
y.2832<-ndat$mathscore[ndat$school=="2832"]</pre>
```

y.3122

[1] 75.62 55.86 66.16 62.43

y.2832

[1] 66.26 66.12 71.22 54.90 61.98 69.42 61.22 62.99 57.99 61.33 66.85 ## [12] 67.87 63.94 73.70 70.36 64.01 57.35 68.25 57.39

mean(ndat\$mathscore)

[1] 48.07446

mean(y.3122)

[1] 65.0175

mean(y.2832)

[1] 64.37632

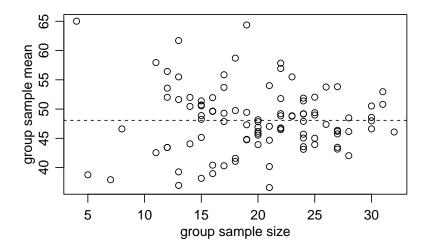
Based on the data $\{y_{i,j}\}$, how would you estimate μ_{3122} and μ_{2832} ?

Ignoring across-group information :

- $\hat{\mu}_{2832} = \bar{y}_{2832} = 64.3763158$
- $\hat{\mu}_{3122} = \bar{y}_{3122} = 65.0175$
- $\hat{\mu}_{2832} < \hat{\mu}_{3122}$

Considering across-group information and sample size:

- $\hat{\mu}_{2832} < \bar{y}_{2832} = 64.3763158$
- $\hat{\mu}_{3122} < \bar{y}_{3122} = 65.0175$
- $\hat{\mu}_{2832} \gtrless \hat{\mu}_{3122}$?



Possible explanations for \bar{y}_{3122} :

- \bar{y}_{3122} is large because μ_{3122} is large;
- \bar{y}_{3122} is large because sd(\bar{y}_{3122}) is large.

Possible explanations for \bar{y}_{2832} :

- \bar{y}_{2832} is large because μ_{2832} is large;
- \bar{y}_{2832} is large because sd(\bar{y}_{2832}) is large.

The plausibility of the explanations will depend on

- the group specific sample sizes, n_1, \ldots, n_m ;
- the observed across-group heterogeneity.

Example: Free throws

ftdat[1:20,]

##		PLAYER1	PLAYER2	TEAM	MIN	FTM	FTA	FT.
##	1	Sam	Jacobson	LAL	12	2	2	1.000
##	2	Steve	Henson	DET	25	2	2	1.000
##	3	Radoslav	Nesterovic	MIN	30	2	2	1.000
##	4	Bryce	Drew	HOU	441	8	8	1.000
##	5	Charles	0'bannon	DET	165	8	8	1.000
##	6	Marty	Conlon	MIA	35	2	2	1.000
##	7	Mikki	Moore	DET	6	2	2	1.000
##	8	John	Crotty	POR	19	3	3	1.000
##	9	Gerald	Wilkins	ORL	28	2	2	1.000
##	10	Korleone	Young	DET	15	2	2	1.000
##	11	Brian	Evans	MIN	145	4	4	1.000
##	12	Pooh	Richardson	LAC	130	4	4	1.000
##	13	Michael	Hawkins	SAC	203	3	3	1.000
##	14	Randy	Livingston	PHO	22	2	2	1.000
##	15	Rusty	Larue	CHI	732	17	17	1.000
##	16	Fred	Hoiberg	IND	87	6	6	1.000
##	17	Herb	Williams	NYK	34	2	2	1.000
##	18	Ryan	Stack	CLE	199	19	20	0.950
##	19	Sam	Cassell	MIL	199	47	50	0.940
##	20	Reggie	Miller	IND	1787	226	247	0.915

Who does Indiana pick to shoot its technical foul free throws?

Further limitations of ANOVA

In the wheat yield example we might be interested in

- (1) what the yield might be in other plots of land in these 10 regions, or
- (2) what the yield might be in other regions.

For general hierarchical data, these questions translate into

- (1) making inference about units within groups in our study;
- (2) making inference about groups that weren't in our study.

Inference for (1) can be obtained with ANOVA.

Inference for (2) requires

- treating the *m* groups as a sample from a larger population;
- a statistical model for this larger population.

The hierarchical normal model

$$y_{i,j} = \mu + a_j + \epsilon_{i,j} \tag{1}$$

$$\{\epsilon_{1,1}, \dots, \epsilon_{n_1,1}\}, \dots, \{\epsilon_{1,m}, \dots, \epsilon_{n_m,m}\} \sim \text{ i.i.d. normal}(0, \sigma^2)$$
(2)
$$a_1, \dots, a_m \sim \text{ i.i.d. normal}(0, \tau^2)$$
(3)

The classical ANOVA model consists of (1) and (2).

The HNM assumes the sampling model (3) for the groups.

- {*a*₁,..., *a_m*} represent differences across groups
- $\{\epsilon_{i,j}\}$ represent differences within groups

The HNM represents this heterogeneity in terms of population variances:

$$Var[a] = \tau^2 = across-group variance$$

 $Var[\epsilon] = \sigma^2 = within-group variance$

Marginal and conditional variation

Two levels of heterogeneity require two versions of variance and covariance:

Within-group variance:

- Describes heterogeneity/variance within a particular group;
- Mathematically, is calculated *conditionally* on group-level parameters.

Population-level variance:

- Describes heterogeneity/variance across the population;
- Mathematically, is calculated *marginally* over group-level parameters.

Conditional variance and covariance

For a fixed group *j*,

$$\{y_{1,j}, \dots, y_{n_j,j}\} \sim \text{ i.i.d. normal}(\mu + a_j, \sigma^2)$$

$$\{y_{1,j}, \dots, y_{n_j,j}\} \sim \text{ i.i.d. normal}(\mu_j, \sigma^2)$$

Variation *around the group mean* μ_j is as follows

$$\begin{array}{rcl} \mathsf{E}[y_{i,j}|\mu, a_j] &=& \mu + a_j = \mu_j \\ \mathsf{Var}[y_{i,j}|\mu, a_j] &=& \sigma^2, \\ \mathsf{Cov}[y_{i_1,j}, y_{i_2,j}|\mu, a_j] &=& 0. \end{array}$$

In words,

- sample observations from the group are centered around μ_j ;
- the variation of the sample *around* μ_j is σ^2 ;
- the observations within a group are uncorrelated *around* μ_j .

Regarding correlation: Knowing how far $y_{1,j}$ is from μ_j doesn't inform you about about how far $y_{2,j}$ is from μ_j .

Within-group variance and covariance

$$y_{i,j} = \mu + a_j + \epsilon_{i,j}$$

$$y_{i,j} = \mu_j + \epsilon_{i,j}$$

$$Var[y_{i,j}|\mu_j] \equiv E[(y_{i,j} - E[y_{i,j}|\mu_j])^2|\mu_j] \\ = E[(y_{i,j} - \mu_j)^2|\mu_j] \\ = E[(\mu_j + \epsilon_{i,j} - \mu_j)^2|\mu_j] \\ = E[\epsilon_{i,j}^2|\mu_j] = \sigma^2$$

$$Cov[y_{i_1,j}, y_{i_2,j}|\mu_j] \equiv E[(y_{i_1,j} - E[y_{i_1,j}|\mu_j]) \times (y_{i_2,j} - E[y_{i_2,j}|\mu_j])|\mu_j] \\ = E[(y_{i_1,j} - \mu_j) \times (y_{i_2,j} - \mu_j)|\mu_j] \\ = E[\epsilon_{i_1,j}\epsilon_{i_2,j}|\mu_j] = 0$$

Population level variance and covariance

Across all groups,

$$a_1, \ldots, a_m \sim \text{ i.i.d. normal}(0, \tau^2)$$

 $\{y_{1,j}, \ldots, y_{n_j,j}\} \sim \text{ i.i.d. normal}(\mu + a_j, \sigma^2)$

For a randomly sampled observation i from a randomly sampled group j,

$$\begin{aligned} \mathsf{E}[y_{i,j}|\mu] &= \mathsf{E}[\mu + \mathbf{a}_j + \epsilon_{i,j}|\mu] \\ &= \mathsf{E}[\mu|\mu] + \mathsf{E}[\mathbf{a}_j|\mu] + \mathsf{E}[\epsilon_{i,j}|\mu] \\ &= \mu + 0 + 0 = \mu \end{aligned}$$

This is the *population mean*.

Population level variance and covariance

Variation *around the population mean* μ is as follows:

$$\begin{array}{lll} \mathsf{E}[y_{i,j}|\mu] &=& \mathsf{E}[\mu+a_j|\mu] = \mu + 0 = \mu, \\ \mathsf{Var}[y_{i,j}|\mu] &=& \sigma^2 + \tau^2, \\ \mathsf{Cov}[y_{i_1,j},y_{i_2,j}|\mu] &=& \tau^2. \end{array}$$

In words,

- sampled observations across groups are centered around μ;
- the variation of the sample *around* μ is $\sigma^2 + \tau^2$;
- the observations within a group are correlated around μ .

Regarding correlation: Knowing how far $y_{1,j}$ is from μ does inform you about how far $y_{2,j}$ is from μ .

Population level variance

$$\begin{aligned} \mathsf{Var}[y_{i,j}|\mu] &\equiv \mathsf{E}[(y_{i,j} - \mathsf{E}[y_{i,j}|\mu])^2|\mu] \\ &= \mathsf{E}[(y_{i,j} - \mu)^2|\mu] \\ &= \mathsf{E}[(\mu + a_j + \epsilon_{i,j} - \mu)^2|\mu] \\ &= \mathsf{E}[(a_j + \epsilon_{i,j})^2|\mu] \\ &= \mathsf{E}[a_j^2 + 2a_j\epsilon_{i,j} + \epsilon_{i,j}^2|\mu] \\ &= \tau^2 + 0 + \sigma^2 = \sigma^2 + \tau^2 \end{aligned}$$

$$Cov[y_{i_1,j}, y_{i_2,j}|\mu] \equiv E[(y_{i_1,j} - E[y_{i_1,j}|\mu]) \times (y_{i_2,j} - E[y_{i_2,j}])|\mu]$$

= E[(y_{i_1,j} - \mu) \times (y_{i_2,j} - \mu)|\mu]
= \tau^2

$$\begin{aligned} \mathsf{Cor}[y_{i_1,j}, y_{i_2,j}|\mu] &\equiv \frac{\mathsf{Cov}[y_{i_1,j}, y_{i_2,j}|\mu]}{\sqrt{\mathsf{Var}[y_{i_1,j}|\mu]}\mathsf{Var}[y_{i_2,j}|\mu]} \\ &= \frac{\tau^2}{\tau^2 + \sigma^2} \equiv \rho \end{aligned}$$

The correlation ρ is the *intraclass correlation coefficient*.

Estimation of τ^2 and ρ

The easiest way to estimate au^2 is using the method-of-moments. Recall,

$$MSG = \frac{1}{m-1} \sum_{j} \sum_{i} (\bar{y}_{j} - \bar{y}_{..})^{2}$$
$$= \frac{n}{m-1} \sum_{j} (\bar{y}_{j} - \bar{y}_{..})^{2}$$
$$E[MSG|a_{1}, ..., a_{m}] = \frac{n}{m-1} \left(\frac{m-1}{n}\sigma^{2} + \sum_{j} a_{j}^{2}\right)$$
$$= \sigma^{2} + n \times \frac{1}{m-1} \sum_{j} a_{j}^{2}.$$

If groups are sampled, the expectation of MSG over samples is given by

$$E[E[MSG|a_1,...,a_m]] = E[\sigma^2 + n \times \frac{1}{m-1} \sum a_j^2]$$

= $\sigma^2 + n \times E[\frac{1}{m-1} \sum a_j^2]$
= $\sigma^2 + n\tau^2$.

(In the ANOVA parameterization, $\sum a_j^2 = \sum (a_j - \bar{a})^2$ becuase $\bar{a} = 0$)

20/37

The result suggests

$$\widehat{\sigma^2 + n\tau^2} = MSG.$$

How to estimate τ^2 ? Recall $E[MSE] = \sigma^2$, so we can use

$$\hat{\sigma^2} = MSE$$

This suggests

$$\widehat{n\tau^2} = MSG - MSE$$

 $\hat{\tau}^2 = (MSG - MSE)/n$

Comments:

- MSG MSE could be negative. If so, it is standard to set $\hat{\tau}^2 = 0$.
- If sample sizes are unequal, the formula must be modified slightly:

$$\hat{\tau}^2 = (MSG - MSE)/\tilde{n}$$

where there is a horrible formula for \tilde{n} .

Unequal sample sizes

$$\hat{\tau}^2 = (MSG - MSE)/\tilde{n}$$

$$\tilde{n} = \bar{n} - \frac{\text{sample variance}(n_1, \dots, n_m)}{m\bar{n}}$$

where $\bar{n} = \sum_{j} n_{j}/m$ = sample mean (n_{1}, \ldots, m_{m}) .

It is common to use a "plug-in" estimate of ρ :

$$\hat{\rho} = \frac{\widehat{\tau^2}}{\tau^2 + \sigma^2} = \frac{\hat{\tau}^2}{\hat{\tau}^2 + \hat{\sigma}^2}$$

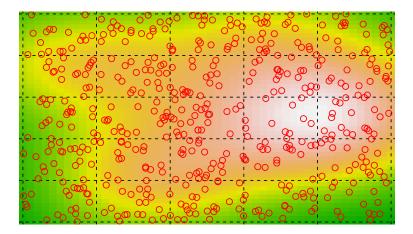
A standard error for ρ (with which we can get a CI) is

$$\operatorname{se}(\hat{
ho}) = (1-\hat{
ho}) imes (1+(n-1)\hat{
ho}) \sqrt{rac{2}{n(n-1)(m-1)}}.$$

Example: Wheat

```
fit<-anova(lm(y~as.factor(g)) )</pre>
MSG<-fit[1,3]
MSE<-fit[2,3]
MSG
## [1] 3.70759
MSE
## [1] 1.787206
t2<-(MSG-MSE)/n
rho<-t2/(t2+MSE)
rho
## 1
## 0.1768894
se.rho<- (1-rho)*(1+(n-1)*rho)*sqrt( 2/( n*(n-1)*(m-1)))
rho + c(-2,2)*se.rho
## [1] -0.1194179 0.4731966
```

Two-stage sampling



 $\mu = 2.1124814$

Ignoring across-group heterogeneity

Task: Construct a 95% CI for the population mean.

t-interval for SRS:

If y_1, \ldots, y_n is an iid sample with $E[y_i] = \mu$ and $Var[y_i] = \sigma^2$,

$$\mathsf{E}[\bar{y}] = \mu \,\,,\,\, \mathsf{Var}[\bar{y}] = \sigma^2/n.$$

By the central limit theorem,

$$ar{y} \stackrel{.}{\sim} \mathsf{N}(\mu, \sigma^2/n) \;,\; rac{ar{y} - \mu}{\sigma/\sqrt{n}} \stackrel{.}{\sim} \mathsf{N}(0, 1).$$

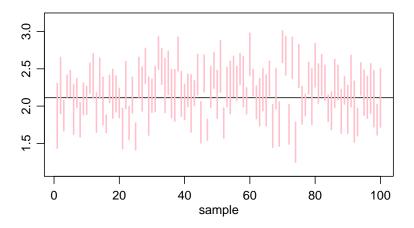
As σ^2 is generally unknown, we use

$$rac{ar y-\mu}{s/\sqrt{n}} \stackrel{.}{\sim} t_{n-1}, \,$$
 , where $s^2=rac{1}{n-1}\sum(y_i-ar y)^2.$

From this, we have

$$ar{y} \pm t_{n-1,.975} imes s/\sqrt{n}$$
 is a 95% CI for μ .

Ignoring across-group heterogeneity



Building an accurate *t*-interval

Recall that an approximate 95% CI for μ is given by

 $\bar{y} \pm 2 \times \operatorname{se}(\bar{y}),$

where $se(\bar{y})$ is an approximation to the standard deviation of \bar{y} .

How to find $se(\bar{y})$:

- 1. compute the variance v of \bar{y} based on the model;
- 2. find an estimate \hat{v} of v;
- 3. let $se(\bar{y}) = \sqrt{v}$.

So the first step is to find $Var[\bar{y}]$:

Variance of a group mean around population mean

$$Var[\bar{y}] = Var[\frac{1}{mn} \sum_{j} \sum_{i} y_{i,j}]$$
$$= Var[\frac{1}{m} \sum_{j} \frac{1}{n} \sum_{i} y_{i,j}]$$
$$= Var[\frac{1}{m} \sum_{j} \bar{y}_{j}]$$
$$= \frac{1}{m^{2}} Var[\sum_{j} \bar{y}_{j}]$$
$$= \frac{1}{m^{2}} \sum_{j} Var[\bar{y}_{j}]$$
$$= \frac{1}{m^{2}} mVar[\bar{y}_{1}]$$
$$= \frac{1}{m} Var[\bar{y}_{1}]$$

Variance of a group mean around population mean

What is $Var[\bar{y}_1]$? We've shown

$$\mathsf{Var}[y_{i,1}] = \sigma^2 + \tau^2,$$

but generally,

$$\operatorname{Var}[\bar{y}_1] \neq [\sigma^2 + \tau^2]/n.$$

Quiz: What is the smallest that $Var[\bar{y}_1]$ could be for fixed σ^2 and n? Recall

$$\operatorname{Cor}[y_{i,1}, y_{i,2}] = \frac{\tau^2}{\tau^2 + \sigma^2}$$

Answer: When τ^2 is zero the within group samples are independent and so

$$\mathsf{Var}[ar{y}_1] \geq \sigma^2/n$$

Quiz: what is the smallest that $Var[\bar{y}_1]$ could be for fixed σ^2 and τ^2 ?

Answer: Increasing *n* can reduce variation of \bar{y}_1 around μ_1 , but across group heterogeneity remains:

for large $n, \bar{y}_1 \approx \mu_1$ $Var[\mu_1] = \tau^2$ $Var[\bar{y}_1] \ge \tau^2$

Variance of a group mean around population mean

Let's compute Var[$\bar{\mathbf{y}}_1$]. For notational convenience, we'll drop the group index, and assume $\mu = 0$, so

$$\mathsf{E}[y_i] = 0$$
, $\mathsf{E}[y_i^2] = \sigma^2 + \tau^2$, $\mathsf{E}[y_i y_k] = \tau^2$

In this case,

$$Var[\bar{y}] = E[\bar{y}^2]$$

$$= E[\frac{1}{n^2}(\sum y_i)^2]$$

$$= \frac{1}{n^2}E[\sum y_i^2 + \sum_{i \neq k} y_i y_j]$$

$$= \frac{1}{n^2}(n[\sigma^2 + \tau^2] + n(n-1)\tau^2)$$

$$= \frac{\sigma^2}{n} + \frac{1}{n}\tau^2 + \frac{n-1}{n}\tau^2$$

$$= \frac{\sigma^2}{n} + \tau^2$$

Exercise: Make sure the answer makes sense to you intuitively.

Variance of the sample grand mean

$$egin{aligned} \mathsf{Var}[ar{y}_{\cdot\cdot}] &= rac{1}{m} \mathsf{Var}[ar{y}_j] \ \mathsf{Var}[ar{y}_j] &= rac{1}{n} \sigma^2 + au^2 \end{aligned}$$

$$\mathsf{Var}[\bar{y}_{\cdot\cdot}] = \frac{1}{nm}\sigma^2 + \frac{1}{m}\tau^2$$

What happens as

- $n \to \infty$ and *m* stays fixed?
- $m \to \infty$ and *n* stays fixed?

Standard error and CI

$$\widehat{\mathsf{Var}}[\overline{y}_{\cdot\cdot}] = \frac{1}{nm}\hat{\sigma}^2 + \frac{1}{m}\tau^2$$

•
$$\hat{\sigma}^2 = MSE$$

•
$$\hat{\tau}^2 = (MSG - MSE)/n$$

$$\widehat{\mathsf{Var}}[\bar{y}_{\cdot\cdot}] = \frac{1}{mn}MSG$$

-

This should make sense, because previously we claimed

$$\mathsf{E}[MSG] = \sigma^2 + \mathbf{n} \times \tau^2,$$

so

$$\mathsf{E}[\frac{1}{mn}MSG] = \frac{1}{mn}\sigma^2 + \frac{1}{m}\tau^2 = \mathsf{Var}[\bar{y}_{\cdot\cdot}]$$

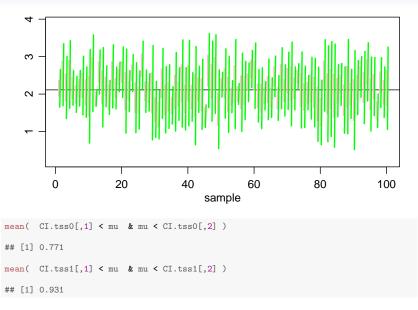
Confidence interval

```
\bar{y}_{..} \pm 2 \times \sqrt{MSG/mn}
```

```
round(y,2)
## [1] 2.40 2.31 2.14 2.27 2.31 1.73 1.92 1.50 1.94 1.88 1.65 0.98 0.71 1.56
## [15] 1.68 3.36 3.26 3.33 3.40 3.06
g
## [1] 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4
anova(lm(y~as.factor(g)))
## Analysis of Variance Table
##
## Response: y
##
               Df Sum Sg Mean Sg F value Pr(>F)
## as.factor(g) 3 10.6178 3.5393 55.477 1.122e-08 ***
## Residuals 16 1.0207 0.0638
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
MSG<-anova(lm(y<sup>as.factor(g)))[1,3]</sup>
mean(y) + c(-2,2)*sqrt(MSG/(m*n))
## [1] 1.328860 3.011539
mean(y) + c(-2,2)*sqrt(var(y)/(m*n))
## [1] 1.820184 2.520215
```

35/37

Accounting for across-group heterogeneity



Summary

$$y_{i,j} = \mu + a_j + \epsilon_{i,j}$$

 $Var[\epsilon_{i,j}] = \sigma^2$
 $Var[a_j] = \tau^2$

Variation around the group mean: $\mu_j = \mu + a_j$

- Var[$y_{i,j}|\mu_j$] = σ^2
- $Cov[y_{i_1,j}, y_{i_2,j}|\mu_j] = 0$
- Var $[\bar{y}_j | \mu_j] = \sigma^2 / n$

Variation around the grand mean:

- Var[$y_{i,j}|\mu$] = $\sigma^2 + \tau^2$
- $Cov[y_{i_1,j}, y_{i_2,j}|\mu] = \tau^2$
- $\operatorname{Var}[\bar{y}_j|\mu] = \sigma^2/n + \tau^2$
- $Var[\bar{y}_{..}|\mu] = \sigma^2/(mn) + \tau^2/m$