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Classical data analysis and estimation

The “classical” testing and estimation procedure is as follows:

If the p-value < 0.05,
• reject H0, and conclude there are group differences,
• estimate µj with ȳ·j .

µ̂j = ȳ·j

If the p-value > 0.05,
• accept H0, and conclude there is no evidence of group differences,
• estimate µj with ȳ··.

µ̂j = ȳ··

Note that the estimator of µj can be written as

µ̂j = wȳj + (1− w)ȳ··
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Classical data analysis and estimation

Advantages of classical procedure:

• controls the type I error rate of rejecting H0;
• is easy to implement and report.

Disadvantages:

• rejecting H0 doesn’t mean no similarities across groups
⇒ ȳ·j is an inefficient estimate of µj

• accepting H0 doesn’t mean no differences between groups
⇒ ȳ·· is an inaccurate estimate of µj .
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An alternative strategy

µ̂j = wȳj + (1− w)ȳ··

Classical approach: w is the indicator of rejecting H0.

Multilevel approach: w = n/σ̂2

n/σ̂2+1/τ̂2

The multilevel approach will allow for

• sharing of information across groups,

• the amount of sharing to be estimated from the data.

4/37



Example: Test scores
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Example: Test scores

y.3122<-ndat$mathscore[ndat$school=="3122"]
y.2832<-ndat$mathscore[ndat$school=="2832"]

y.3122

## [1] 75.62 55.86 66.16 62.43

y.2832

## [1] 66.26 66.12 71.22 54.90 61.98 69.42 61.22 62.99 57.99 61.33 66.85
## [12] 67.87 63.94 73.70 70.36 64.01 57.35 68.25 57.39

mean(ndat$mathscore)

## [1] 48.07446

mean(y.3122)

## [1] 65.0175

mean(y.2832)

## [1] 64.37632
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Example: Test scores

48.0744556 < 64.3763158 < 65.0175

ȳ·· < ȳ2832 < ȳ3122

Based on the data {yi,j}, how would you estimate µ3122 and µ2832?

Ignoring across-group information :

• µ̂2832 = ȳ2832 = 64.3763158

• µ̂3122 = ȳ3122 = 65.0175

• µ̂2832 < µ̂3122

Considering across-group information and sample size:

• µ̂2832 < ȳ2832 = 64.3763158

• µ̂3122 < ȳ3122 = 65.0175

• µ̂2832 ≷ µ̂3122 ?
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Example: Test scores
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Example: Test scores

Possible explanations for ȳ3122:

• ȳ3122 is large because µ3122 is large;

• ȳ3122 is large because sd(ȳ3122) is large.

Possible explanations for ȳ2832:

• ȳ2832 is large because µ2832 is large;

• ȳ2832 is large because sd(ȳ2832) is large.

The plausibility of the explanations will depend on

• the group specific sample sizes, n1, . . . , nm;

• the observed across-group heterogeneity.
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Example: Free throws

ftdat[1:20,]

## PLAYER1 PLAYER2 TEAM MIN FTM FTA FT.
## 1 Sam Jacobson LAL 12 2 2 1.000
## 2 Steve Henson DET 25 2 2 1.000
## 3 Radoslav Nesterovic MIN 30 2 2 1.000
## 4 Bryce Drew HOU 441 8 8 1.000
## 5 Charles O'bannon DET 165 8 8 1.000
## 6 Marty Conlon MIA 35 2 2 1.000
## 7 Mikki Moore DET 6 2 2 1.000
## 8 John Crotty POR 19 3 3 1.000
## 9 Gerald Wilkins ORL 28 2 2 1.000
## 10 Korleone Young DET 15 2 2 1.000
## 11 Brian Evans MIN 145 4 4 1.000
## 12 Pooh Richardson LAC 130 4 4 1.000
## 13 Michael Hawkins SAC 203 3 3 1.000
## 14 Randy Livingston PHO 22 2 2 1.000
## 15 Rusty Larue CHI 732 17 17 1.000
## 16 Fred Hoiberg IND 87 6 6 1.000
## 17 Herb Williams NYK 34 2 2 1.000
## 18 Ryan Stack CLE 199 19 20 0.950
## 19 Sam Cassell MIL 199 47 50 0.940
## 20 Reggie Miller IND 1787 226 247 0.915

Who does Indiana pick to shoot its technical foul free throws?
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Further limitations of ANOVA

In the wheat yield example we might be interested in

(1) what the yield might be in other plots of land in these 10 regions, or

(2) what the yield might be in other regions.

For general hierarchical data, these questions translate into

(1) making inference about units within groups in our study;

(2) making inference about groups that weren’t in our study.

Inference for (1) can be obtained with ANOVA.

Inference for (2) requires

• treating the m groups as a sample from a larger population;

• a statistical model for this larger population.
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The hierarchical normal model

yi,j = µ+ aj + εi,j (1)

{ε1,1, . . . , εn1,1}, . . . , {ε1,m, . . . , εnm,m} ∼ i.i.d. normal(0, σ2) (2)

a1, . . . , am ∼ i.i.d. normal(0, τ 2) (3)

The classical ANOVA model consists of (1) and (2).

The HNM assumes the sampling model (3) for the groups.

• {a1, . . . , am} represent differences across groups

• {εi,j} represent differences within groups

The HNM represents this heterogeneity in terms of population variances:

Var[a] = τ 2 = across-group variance

Var[ε] = σ2 = within-group variance
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Marginal and conditional variation

Two levels of heterogeneity require two versions of variance and covariance:

Within-group variance:

• Describes heterogeneity/variance within a particular group;

• Mathematically, is calculated conditionally on group-level parameters.

Population-level variance:

• Describes heterogeneity/variance across the population;

• Mathematically, is calculated marginally over group-level parameters.
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Conditional variance and covariance

For a fixed group j ,

{y1,j , . . . , ynj ,j} ∼ i.i.d. normal(µ+ aj , σ
2)

{y1,j , . . . , ynj ,j} ∼ i.i.d. normal(µj , σ
2)

Variation around the group mean µj is as follows

E[yi,j |µ, aj ] = µ+ aj = µj

Var[yi,j |µ, aj ] = σ2,

Cov[yi1,j , yi2,j |µ, aj ] = 0.

In words,

• sample observations from the group are centered around µj ;

• the variation of the sample around µj is σ2;

• the observations within a group are uncorrelated around µj .

Regarding correlation: Knowing how far y1,j is from µj doesn’t inform you
about about how far y2,j is from µj .
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Within-group variance and covariance

yi,j = µ+ aj + εi,j

yi,j = µj + εi,j

Var[yi,j |µj ] ≡ E[(yi,j − E[yi,j |µj ])
2|µj ]

= E[(yi,j − µj)
2|µj ]

= E[(µj + εi,j − µj)
2|µj ]

= E[ε2
i,j |µj ] = σ2

Cov[yi1,j , yi2,j |µj ] ≡ E[(yi1,j − E[yi1,j |µj ])× (yi2,j − E[yi2,j |µj ])|µj ]

= E[(yi1,j − µj)× (yi2,j − µj)|µj ]

= E[εi1,jεi2,j |µj ] = 0
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Population level variance and covariance

Across all groups,

a1, . . . , am ∼ i.i.d. normal(0, τ 2)

{y1,j , . . . , ynj ,j} ∼ i.i.d. normal(µ+ aj , σ
2)

For a randomly sampled observation i from a randomly sampled group j ,

E[yi,j |µ] = E[µ+ aj + εi,j |µ]

= E[µ|µ] + E[aj |µ] + E[εi,j |µ]

= µ+ 0 + 0 = µ

This is the population mean.
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Population level variance and covariance

Variation around the population mean µ is as follows:

E[yi,j |µ] = E[µ+ aj |µ] = µ+ 0 = µ,

Var[yi,j |µ] = σ2 + τ 2,

Cov[yi1,j , yi2,j |µ] = τ 2.

In words,

• sampled observations across groups are centered around µ;

• the variation of the sample around µ is σ2 + τ 2;

• the observations within a group are correlated around µ.

Regarding correlation: Knowing how far y1,j is from µ does inform you about
how far y2,j is from µ.
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Population level variance

Var[yi,j |µ] ≡ E[(yi,j − E[yi,j |µ])2|µ]

= E[(yi,j − µ)2|µ]

= E[(µ+ aj + εi,j − µ)2|µ]

= E[(aj + εi,j)
2|µ]

= E[a2
j + 2ajεi,j + ε2

i,j |µ]

= τ 2 + 0 + σ2 = σ2 + τ 2
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Population level covariance and correlation

Cov[yi1,j , yi2,j |µ] ≡ E[(yi1,j − E[yi1,j |µ])× (yi2,j − E[yi2,j ])|µ]

= E[(yi1,j − µ)× (yi2,j − µ)|µ]

= τ 2

Cor[yi1,j , yi2,j |µ] ≡ Cov[yi1,j , yi2,j |µ]√
Var[yi1,j |µ]Var[yi2,j |µ]

=
τ 2

τ 2 + σ2
≡ ρ

The correlation ρ is the intraclass correlation coefficient.
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Estimation of τ2 and ρ
The easiest way to estimate τ 2 is using the method-of-moments. Recall,

MSG =
1

m − 1

∑
j

∑
i

(ȳj − ȳ··)
2

=
n

m − 1

∑
(ȳj − ȳ··)

2

E[MSG |a1, . . . , am] =
n

m − 1

(
m − 1

n
σ2 +

∑
a2
j

)
= σ2 + n × 1

m − 1

∑
a2
j .

If groups are sampled, the expectation of MSG over samples is given by

E[E[MSG |a1, . . . , am]] = E[σ2 + n × 1

m − 1

∑
a2
j ]

= σ2 + n × E[
1

m − 1

∑
a2
j ]

= σ2 + nτ 2.

(In the ANOVA parameterization,
∑

a2
j =

∑
(aj − ā)2 becuase ā = 0)
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Estimation of τ2 and ρ

The result suggests
̂σ2 + nτ 2 = MSG .

How to estimate τ 2? Recall E[MSE ] = σ2, so we can use

σ̂2 = MSE .

This suggests

n̂τ 2 = MSG −MSE

τ̂ 2 = (MSG −MSE)/n.

Comments:

• MSG −MSE could be negative. If so, it is standard to set τ̂ 2 = 0.

• If sample sizes are unequal, the formula must be modified slightly:

τ̂ 2 = (MSG −MSE)/ñ

where there is a horrible formula for ñ.
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Unequal sample sizes

τ̂ 2 = (MSG −MSE)/ñ

ñ = n̄ − sample variance(n1, . . . , nm)

mn̄

where n̄ =
∑

j nj/m = sample mean(n1, . . . ,mm).
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Estimation of τ2 and ρ

It is common to use a “plug-in” estimate of ρ:

ρ̂ =
τ̂ 2

τ 2 + σ2
=

τ̂ 2

τ̂ 2 + σ̂2
.

A standard error for ρ (with which we can get a CI) is

se(ρ̂) = (1− ρ̂)× (1 + (n − 1)ρ̂)

√
2

n(n − 1)(m − 1)
.
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Example: Wheat

fit<-anova(lm(y~as.factor(g)) )

MSG<-fit[1,3]
MSE<-fit[2,3]

MSG

## [1] 3.70759

MSE

## [1] 1.787206

t2<-(MSG-MSE)/n

rho<-t2/(t2+MSE)

rho

## 1
## 0.1768894

se.rho<- (1-rho)*(1+(n-1)*rho)*sqrt( 2/( n*(n-1)*(m-1)))

rho + c(-2,2)*se.rho

## [1] -0.1194179 0.4731966
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Two-stage sampling
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Ignoring across-group heterogeneity

Task: Construct a 95% CI for the population mean.

t-interval for SRS:
If y1, . . . , yn is an iid sample with E[yi ] = µ and Var[yi ] = σ2,

E[ȳ ] = µ , Var[ȳ ] = σ2/n.

By the central limit theorem,

ȳ ∼̇ N(µ, σ2/n) ,
ȳ − µ
σ/
√
n
∼̇ N(0, 1).

As σ2 is generally unknown, we use

ȳ − µ
s/
√
n
∼̇ tn−1, ,where s2 =

1

n − 1

∑
(yi − ȳ)2.

From this, we have

ȳ ± tn−1,.975 × s/
√
n is a 95% CI for µ.
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Ignoring across-group heterogeneity
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Building an accurate t-interval

Recall that an approximate 95% CI for µ is given by

ȳ ± 2× se(ȳ),

where se(ȳ) is an approximation to the standard deviation of ȳ .

How to find se(ȳ):

1. compute the variance v of ȳ based on the model;

2. find an estimate v̂ of v ;

3. let se(ȳ) =
√
v .

So the first step is to find Var[ȳ ]:
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Variance of a group mean around population mean

Var[ȳ ] = Var[
1

mn

∑
j

∑
i

yi,j ]

= Var[
1

m

∑
j

1

n

∑
i

yi,j ]

= Var[
1

m

∑
j

ȳj ]

=
1

m2
Var[

∑
j

ȳj ]

=
1

m2

∑
j

Var[ȳj ]

=
1

m2
mVar[ȳ1]

=
1

m
Var[ȳ1]
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Variance of a group mean around population mean

What is Var[ȳ1]? We’ve shown

Var[yi,1] = σ2 + τ 2,

but generally,
Var[ȳ1] 6= [σ2 + τ 2]/n.

Quiz: What is the smallest that Var[ȳ1] could be for fixed σ2 and n? Recall

Cor[yi,1, yi,2] =
τ 2

τ 2 + σ2

Answer: When τ 2 is zero the within group samples are independent and so

Var[ȳ1] ≥ σ2/n
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Variance of a group mean around population mean

Quiz: what is the smallest that Var[ȳ1] could be for fixed σ2 and τ 2?

Answer: Increasing n can reduce variation of ȳ1 around µ1, but across group
heterogeneity remains:

for large n, ȳ1 ≈ µ1

Var[µ1] = τ 2

Var[ȳ1] ≥ τ 2
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Variance of a group mean around population mean

Let’s compute Var[ȳ1]. For notational convenience, we’ll drop the group index,
and assume µ = 0, so

E[yi ] = 0 , E[y 2
i ] = σ2 + τ 2 , E[yiyk ] = τ 2

In this case,

Var[ȳ ] = E[ȳ 2]

= E[
1

n2
(
∑

yi )
2]

=
1

n2
E[
∑

y 2
i +

∑
i 6=k

yiyj ]

=
1

n2
(n[σ2 + τ 2] + n(n − 1)τ 2)

=
σ2

n
+

1

n
τ 2 +

n − 1

n
τ 2

=
σ2

n
+ τ 2

Exercise: Make sure the answer makes sense to you intuitively.
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Variance of the sample grand mean

Var[ȳ··] =
1

m
Var[ȳj ]

Var[ȳj ] =
1

n
σ2 + τ 2

Var[ȳ··] =
1

nm
σ2 +

1

m
τ 2

What happens as

• n→∞ and m stays fixed?

• m→∞ and n stays fixed?
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Standard error and CI

V̂ar[ȳ··] =
1

nm
σ̂2 +

1

m
τ 2

• σ̂2 = MSE

• τ̂ 2 = (MSG −MSE)/n

V̂ar[ȳ··] =
1

mn
MSG

This should make sense, because previously we claimed

E[MSG ] = σ2 + n × τ 2,

so

E[
1

mn
MSG ] =

1

mn
σ2 +

1

m
τ 2 = Var[ȳ··]
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Confidence interval

ȳ·· ± 2×
√

MSG/mn

round(y,2)

## [1] 2.40 2.31 2.14 2.27 2.31 1.73 1.92 1.50 1.94 1.88 1.65 0.98 0.71 1.56

## [15] 1.68 3.36 3.26 3.33 3.40 3.06

g

## [1] 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4

anova(lm(y~as.factor(g)))

## Analysis of Variance Table

##

## Response: y

## Df Sum Sq Mean Sq F value Pr(>F)

## as.factor(g) 3 10.6178 3.5393 55.477 1.122e-08 ***

## Residuals 16 1.0207 0.0638

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

MSG<-anova(lm(y~as.factor(g)))[1,3]

mean(y) + c(-2,2)*sqrt( MSG/(m*n) )

## [1] 1.328860 3.011539

mean(y) + c(-2,2)*sqrt( var(y)/(m*n) )

## [1] 1.820184 2.52021535/37



Accounting for across-group heterogeneity

0 20 40 60 80 100

1
2

3
4

sample

mean( CI.tss0[,1] < mu & mu < CI.tss0[,2] )

## [1] 0.771

mean( CI.tss1[,1] < mu & mu < CI.tss1[,2] )

## [1] 0.931
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Summary

yi,j = µ+ aj + εi,j

Var[εi,j ] = σ2

Var[aj ] = τ 2

Variation around the group mean: µj = µ+ aj

• Var[yi,j |µj ] = σ2

• Cov[yi1,j , yi2,j |µj ] = 0

• Var[ȳj |µj ] = σ2/n

Variation around the grand mean:

• Var[yi,j |µ] = σ2 + τ 2

• Cov[yi1,j , yi2,j |µ] = τ 2

• Var[ȳj |µ] = σ2/n + τ 2

• Var[ȳ··|µ] = σ2/(mn) + τ 2/m
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