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lme4 software

lmer package:lme4 R Documentation

Fit Linear Mixed-Effects Models

Description:

Fit a linear mixed-effects model (LMM) to data.

Usage:

lmer(formula, data = NULL, REML = TRUE,
control = lmerControl(), start = NULL, verbose = 0L,
subset, weights, na.action, offset, contrasts = NULL,
devFunOnly = FALSE, ...)
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lme4 software

library(lme4)

lmer(y~1+(1|g))

## Linear mixed model fit by REML ['lmerMod']
## Formula: y ~ 1 + (1 | g)
## REML criterion at convergence: 177.9876
## Random effects:
## Groups Name Std.Dev.
## g (Intercept) 0.6197
## Residual 1.3369
## Number of obs: 50, groups: g, 10
## Fixed Effects:
## (Intercept)
## 16.31
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Method of moments

aovfit<-anova(lm(y~as.factor(g)) )

MSG<-aovfit[1,3]

MSE<-aovfit[2,3]

t2<-(MSG-MSE)/n

s2<-MSE

t2

## 1

## 0.3840768

s2

## [1] 1.787206

sqrt(t2)

## 1

## 0.6197393

sqrt(s2)

## [1] 1.336864

mean(y)

## [1] 16.3064
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A more complicated example

nels_mathdat[1:10,]

## school enroll flp public urbanicity hwh ses mscore
## 1 1011 5 3 1 urban 2 -0.23 52.11
## 2 1011 5 3 1 urban 0 0.69 57.65
## 3 1011 5 3 1 urban 4 -0.68 66.44
## 4 1011 5 3 1 urban 5 -0.89 44.68
## 5 1011 5 3 1 urban 3 -1.28 40.57
## 6 1011 5 3 1 urban 5 -0.93 35.04
## 7 1011 5 3 1 urban 1 0.36 50.71
## 8 1011 5 3 1 urban 4 -0.24 66.17
## 10 1011 5 3 1 urban 8 -1.07 46.17
## 11 1011 5 3 1 urban 2 -0.10 58.76
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A more complicated example

yi,j = (β0 + β0,j) + β1 × flpj + β2 × enrollj + (β3 + β3,j)× sesi,j + εi,j

fit<-lmer(mscore~flp+enroll+ses+(ses|school),data=nels_mathdat,REML=FALSE)
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summary(fit)

## Linear mixed model fit by maximum likelihood ['lmerMod']

## Formula: mscore ~ flp + enroll + ses + (ses | school)

## Data: nels_mathdat

##

## AIC BIC logLik deviance df.resid

## 92397.7 92457.5 -46190.9 92381.7 12966

##

## Scaled residuals:

## Min 1Q Median 3Q Max

## -3.9797 -0.6399 0.0180 0.6681 4.5053

##

## Random effects:

## Groups Name Variance Std.Dev. Corr

## school (Intercept) 9.004 3.001

## ses 1.600 1.265 0.05

## Residual 67.260 8.201

## Number of obs: 12974, groups: school, 684

##

## Fixed effects:

## Estimate Std. Error t value

## (Intercept) 55.429339 0.402907 137.57

## flp -2.411519 0.185311 -13.01

## enroll 0.007095 0.082023 0.09

## ses 4.116886 0.125381 32.83

##

## Correlation of Fixed Effects:

## (Intr) flp enroll

## flp -0.815

## enroll -0.300 -0.193

## ses -0.202 0.212 0.007
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Models and inference

A statistical model is a collection of probability distributions for observed data:

P = {p(y |θ), θ ∈ Θ}

• y is the data;

• Θ is the set of parameter values;

• p(y |θ) is a probability (density) for each θ ∈ Θ.
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Example: Normal model

For example, the normal model is

{p(y |µ, σ2) = (2πσ2)−1/2 exp{−(y − µ)2/(2σ2)}, µ ∈ R, σ2 ∈ R+}.

• y is a single observed data value;

• θ = {µ, σ2} is the parameter (or are the parameters);

• Θ = R× R+ is the set of possible parameter values;

• p(y |µ, σ2) is the normal probability density for each µ, σ2.
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Example: Normal model
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Model-based inference

Model-based statistical inference involves

Estimation: Obtaining a value θ̂ ∈ Θ that “best” represents the population.

Inference: Describing how well θ̂ represents the population.

Inference includes things like: confidence intervals, hypotheses tests.

Likelihood-based statistical inference:

• a type of model based inference;

• estimation and inference are based on the likelihood function.
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Joint probability of the data

Independent events: Recall if A and B are independent events,

Pr(A and B) = Pr(A)× Pr(B).

Independent observations: If y1 and y2 are independent observations, then

py1y2 (y1, y2|θ) = p(y1|θ)× p(y2|θ)

=
2∏

i=1

p(yi |θ)

Independent sample: If y = (y1, . . . , yn) are independent observations, then

py (y |θ) = p(y1|θ)× · · · × p(yn|θ)

=
n∏

i=1

p(yi |θ)

py(y|θ) is the joint probability (density) of the data.
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Example: Binary data

Suppose we are sampling people from a population and recording whether or
not they have a particular disease.

Let yi ∈ {0, 1} depending on if they are uninfected or infected.

A natural model is the binomial/binary model:

y1, . . . , yn ∼ i.i.d. binary(θ), θ ∈ [0, 1]

In this model

• The parameter is θ ∈ [0, 1].

• The probability density is

p(y |θ) =

{
(1− θ) if y = 0
θ if y = 1

,

which can be compactly written as p(y |θ) = θy (1− θ)1−y .
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Joint probability

If y1, . . . , yn are i.i.d. samples from this population,

p(y |θ) =
n∏

i=1

p(yi |θ)

=
n∏

i=1

θyi (1− θ)1−yi

= θ
∑

yi (1− θ)n−
∑

yi

Interpretation:
p(y |θ) tells you how probable a given outcome is, for a particular θ.
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Binary sequence probabilities

Quiz: If n = 3 and θ = 1/2, what is

• p({1, 0, 1}|θ)?

• p({0, 0, 0}|θ)?

Quiz: If n = 3 and θ = 1/3, what is

• p({1, 0, 1}|θ)?

• p({0, 0, 0}|θ)?

Foreshadowing:
If your observed data were {0, 0, 0}, which θ value is “more likely”?
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Likelihood

The likelihood is the probability of the data as a function of the parameter:

L(θ : y) = p(y |θ)

Example (binomial model): If y = {0, 0, 0}, then

L( 1
2

: {0, 0, 0}) = 1
8

= 0.125

L( 1
3

: {0, 0, 0}) = 8
27
≈ 0.296

We say {θ = 1/3} has a higher likelihood than {θ = 1/2} for these data.
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Maximum likelihood

The maximum likelihood estimator, or MLE, is the value of θ that maximizes
the likelihood:

θ̂MLE = arg max
θ∈Θ

L(θ : y)

Example (binomial model): If y = {0, 0, 0} and θ is either 1/2 or 1/3, then

Θ = {1/3, 1/2}

θ̂MLE = 1/3

because L(1/3 : {0, 0, 0}) > L(1/2 : {0, 0, 0}).
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Binomial MLE
Suppose 5 people are infected in a sample of size 30.

n = 30,
∑

yi = 5

The likelihood function is

L(θ : y) = θ
∑

yi (1− θ)n−
∑

yi = θ5(1− θ)25.
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Careful examination, or trial and error gives θ̂ = 5/30 = 1/6 = 0.1666̄.
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Binomial MLE
Suppose 50 people are infected in a sample of size 300.

n = 300,
∑

yi = 50

The likelihood function is

L(θ : y) = θ
∑

yi (1− θ)n−
∑

yi = θ50(1− θ)250.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0e

+
00

5.
0e

−
60

1.
0e

−
59

1.
5e

−
59

2.
0e

−
59

θ

lik
el

ih
oo

d

Careful examination, or trial and error gives θ̂ = 50/300 = 1/6.
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Log likelihoods

Likelihoods with lots of data can give extreme numbers.

Alternatively, we can make inference with the log-likelihood:

If θ̂ maximizes L(θ : y) then it also maximizes log L(θ : y) = l(θ : y).

To find the MLE we can work with the log-likelihood. For the binomial model,

L(θ : y) = θ
∑

yi (1− θ)n−
∑

yi

l(θ : y) = log
(
θ
∑

yi (1− θ)n−
∑

yi
)

= log θ
∑

yi + log(1− θ)n−
∑

yi

= (
∑

yi )× log θ + (n −
∑

yi )× log(1− θ)
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Binomial MLE
Suppose 5 people are infected in a sample of size 30.

n = 30,
∑

yi = 5

The log-likelihood function is

l(θ : y) = 5× log(θ) + 25× log(1− θ).
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As before, θ̂ = 5/30 = 1/6 = 0.1666̄.
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Binomial MLE
Suppose 50 people are infected in a sample of size 300.

n = 300,
∑

yi = 50

The log-likelihood function is

l(θ : y) = 50× log(θ) + 250× log(1− θ).
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As before, θ̂ = 5/30 = 1/6 = 0.1666̄.
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Comparing log-likelihoods
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Inference with the likelihood function

As we’ve seen and discussed,

• the peak of the log-likelihood gives the MLE.

• the curvature of the log-likelihood gives the information or certainty.

How can we find the peak in general?

What is the information? How does it relate to estimation accuracy?
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Finding the MLE

Recall from calculus that the tangent or derivative of a function, at a local
maximum, will be zero. This tells us how to find the MLE:

θ̂MLE satisfies
d

dθ
l(θ : y)|θ=θ̂ = 0

Let’s try this for the binomial model. Recall that

d

dθ
log θ = 1/θ,

d

dθ
log(1− θ) = −1/(1− θ)

The derivative of the log-likelihood is

d

dθ
l(θ : y) =

d

dθ

(∑
yi × log θ + (n −

∑
yi )× log(1− θ)

)
=

∑
yi
θ
− n −

∑
yi

1− θ
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Finding the MLE

Therefore

dl(θ : y)

dθ
|θ=θ̂ =

∑
yi

θ̂
− n −

∑
yi

1− θ̂
= 0 if∑

yi

θ̂
=

n −
∑

yi

1− θ̂∑
yi − θ̂

∑
yi = θ̂n − θ̂

∑
yi

θ̂ =
∑

yi/n

So not surprisingly, the MLE is the sample proportion
∑

yi/n.
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Information and precision

The precision of the MLE (how well it estimates the truth) depends on the
second derivative, or curvature, of the log-likelihood.

For the binomial model, the second derivative is

d2l(θ : y)

dθ2
= −

∑
yi

θ2
− n −

∑
yi

(1− θ)2

Plugging in the MLE θ̂ for θ gives

d2l(θ : y)

dθ2
|θ=θ̂ = −n

θ̂
− n

(1− θ̂)
= − n

θ̂(1− θ̂)

Information: In stat theory, the observed information about θ is

In = − d2

dθ2
l(θ : y)|θ̂

=
n

θ̂(1− θ̂)
for the binomial model

Exercise: Consider how In varies with n and θ̂.
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Information, variance and CIs
In many problems, the inverse of the information gives a variance estimate:

Var[θ̂] ≈ 1/In

sd(θ̂) ≈
√

1/In

se(θ̂) =
√

1/In

For the binomial model, In = n/[θ̂(1− θ̂)], so

Var[θ̂] ≈ θ̂(1− θ̂)/n

sd(θ̂) ≈
√
θ̂(1− θ̂)/n

se(θ̂) =

√
θ̂(1− θ̂)/n

An approximate 95% CI for θ is then

θ̂ ± 2

√
θ̂(1− θ̂)/n.

This is known as the “Wald interval” for a binomial proportion.
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MLE for the hierarchical normal model

yi,j = µ+ aj + εi,j

{εi,j} ∼ iid N(0, σ2)

{aj} ∼ iid N(0, τ 2)

Parameters to estimate:

• Fixed effects: µ

• Variance components: σ2, τ 2

• Random effects: a1, . . . , am

Likelihood estimation focuses on estimation of θ = (µ, σ2, τ 2)

Alternative methods are requred for estimation of a1, . . . , am.
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HNM likelihood

Data:

y = (y1,1, . . . , ynj ,1, . . . , y1,m, . . . , ynm,m)

= ({y1,1, . . . , ynj ,1}, . . . , {y1,m, . . . , ynm,m})
= (y 1, . . . , y n)

Likelihood:
l(µ, σ2, τ 2 : y) = p(y |µ, τ 2, σ2)

Recall: Under the HNM,

• observations within groups are correlated;

• observations across groups are independent.

l(µ, σ2, τ 2 : y) = p(y |µ, τ 2, σ2) = p(y 1|µ, τ
2, σ2)× · · · × p(ym|µ, τ

2, σ2)

=
m∏
j=1

p(y j |µ, τ
2, σ2)
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Likelihood contribution from a single group

yi,j = µ+ aj + εi,j

ε1,j , . . . , εnj ,j ∼ iid N(0, σ2)

aj ∼ N(0, τ 2)

As we’ve discussed, the yi,j ’s are normal with

• E[yi,j |µ] = µ

• Var[yi,j |µ] = σ2 + τ 2

• Cov[yi1,j , yi2,j ] = τ 2

In vector form, we can express this as follows:

E[y j |µ] =


µ
µ
...
µ

 = µ1 Cov[yj |µ] =


σ2 + τ 2 τ 2 · · · τ 2

τ 2 σ2 + τ 2 · · · τ 2

...
...

...
τ 2 τ 2 · · · σ2 + τ 2


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Multivariate normal distribution

This means that y j has a multivariate normal distribution.

The density of a general multivariate normal(µ,Σ) distribution is

p(y |θ,Σ) = (2π)−p/2|Σ|−1/2 exp{−(y − θ)TΣ−1(y − θ)/2}

where

y =


y1

y2

...
yp

 θ =


θ1

θ2

...
θp

 Σ =


σ2

1 σ1,2 · · · σ1,p

σ1,2 σ2
2 · · · σ2,p

...
...

...
σ1,p σ2,p · · · σ2

p

 .

ldmvnorm<-function(y, theta, Sig)
{
-.5*(
length(y)*log(2*pi) +
log(det(Sig)) +
t(y-theta)%*%solve(Sig)%*%(y-theta)

)
}
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Computing the log-likelihood

MLEs of (µ, σ2, τ 2) can be found by maximizing the log likelihood.

Log likelihood:

L(y : µ, σ2, τ 2) = p(y 1, . . . , ym|µ, σ
2, τ 2)

l(y : µ, σ2, τ 2) = log p(y 1, . . . , ym|µ, σ
2, τ 2)

= log
m∏
j=1

p(y j |µ, σ
2, τ 2)

=
m∑
j=1

log p(y j |µ, σ
2, τ 2),

where log p(y j |µ, σ2, τ 2) is the log of a multivariate normal density.

For the HNM, we replace

• θ with µ1

• Σ with the covariance matrix from the previous slide.
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Computing the (minus) log-likelihood

mll.oneway

## function(mus2t2,y,g)
##
## {
## mu<-mus2t2[1] ; s2<-mus2t2[2] ; t2<-mus2t2[3]
##
## ll<-0
##
## for(gj in sort(unique(g)))
##
## {
##
## nj<-sum(g==gj)
##
## S<-diag(s2,nj) + matrix(t2,nj,nj)
##
## ll<-ll+ldmvnorm(y[g==gj],mu,S)
##
## }
##
## -ll
##
## }
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Example: Wheat data

mll.oneway( c(16.3, 1.787, 0.384 ), y,g)

## [,1]
## [1,] 88.6121

mll.oneway( c(15, 1.787, 0.384 ), y,g)

## [,1]
## [1,] 100.1217

mll.oneway( c(16.3, 2, 0.384 ), y,g)

## [,1]
## [1,] 88.76881

mll.oneway( c(16.3, 1.787, 0.3 ), y,g)

## [,1]
## [1,] 88.58599

mll.oneway( c(16.3, 1.787, 0.2 ), y,g)

## [,1]
## [1,] 88.67161
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Optimization in R

fit.ml<-optim(c(15,1,1),mll.oneway,gr=NULL,y=y,g=g,lower=c(-Inf,0,0),method="L-BFGS-B",hessian=TRUE)

fit.ml

## $par

## [1] 16.3063995 1.7872063 0.3099255

##

## $value

## [1] 88.5851

##

## $counts

## function gradient

## 16 16

##

## $convergence

## [1] 0

##

## $message

## [1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"

##

## $hessian

## [,1] [,2] [,3]

## [1,] 1.498426e+01 2.186695e-06 1.090683e-05

## [2,] 2.186695e-06 6.710598e+00 2.245294e+00

## [3,] 1.090683e-05 2.245294e+00 1.122654e+01

The MLEs are

µ̂ = 16.3063995 , σ̂2 = 1.7872063 , τ̂ 2 = 0.3099255
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Confidence intervals via the Information matrix

For maximum likelihood estimation in general,

• θ̂MLE → θ as the sample size goes to infinity (if the model is correct);

• θ̂
·∼ normal(θ,Var[θ̂]), where

• Var[θ̂] ≈ −[d2l(θ|y)/dθ2]−1 for large sample sizes.

For our hierarchical normal model, this means that approximate 95% confidence
intervals for (µ, τ 2, σ2) can be obtained from the curvature of the log likelihood.
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Confidence intervals via the Information matrix

The observed information matrix is the (matrix of) second derivative(s) of the
negative log-likelihood function at the MLE (aka the Hessian):

In(θ̂ : y) = {−∂
2l(θ : y)

∂θj∂θk
}|θ=θ̂

The inverse of the information matrix gives an estimate of the
variance/covariance of the MLE’s:

Var[θ̂ : y ] ≈ I−1
n (θ̂ : y)

From this, we can get confidence intervals:

•
√

I−1
jj gives an approximate standard error for θk .

• The MLE plus and minus 2 standard errors gives a rough confidence
interval for the parameters.

Pr(θ ∈ θ̂ ± 2× se[θ̂]) ≈ 0.95
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Confidence intervals via the Information matrix

theta.wheat<-fit.ml$par

theta.wheat

## [1] 16.3063995 1.7872063 0.3099255

I<-fit.ml$hessian

V.wheat<-solve(I)

V.wheat

## [,1] [,2] [,3]
## [1,] 6.673668e-02 -5.694851e-11 -6.482475e-08
## [2,] -5.694851e-11 1.597051e-01 -3.194081e-02
## [3,] -6.482475e-08 -3.194081e-02 9.546274e-02

sqrt(diag(V.wheat))

## [1] 0.2583344 0.3996312 0.3089705

theta.wheat+2*sqrt(diag(V.wheat))

## [1] 16.8230684 2.5864686 0.9278664

theta.wheat-2*sqrt(diag(V.wheat))

## [1] 15.7897307 0.9879440 -0.3080154
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NELS example

100 randomly sampled schools from the NELS dataset
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Analysis of all schools

fit.ml.nels<-optim(c(50, 1, 1), mll.oneway, gr = NULL, y = mscores, g = schools, lower = c(-Inf, 0, 0), method = "L-BFGS-B", hessian = TRUE)

fit.ml.nels

## $par

## [1] 50.93914 73.70881 23.63382

##

## $value

## [1] 46956.63

##

## $counts

## function gradient

## 27 27

##

## $convergence

## [1] 0

##

## $message

## [1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"

##

## $hessian

## [,1] [,2] [,3]

## [1,] 24.35837087 -0.01576882 0.04913818

## [2,] -0.01576882 1.13128044 0.03026526

## [3,] 0.04913818 0.03026526 0.42089960

The MLEs are

µ̂ = 50.9391407 , σ̂2 = 73.708808 , τ̂ 2 = 23.6338229
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Confidence intervals via the Information matrix

theta.nels<-fit.ml.nels$par

theta.nels

## [1] 50.93914 73.70881 23.63382

I<-fit.ml.nels$hessian

V.nels<-solve(I)

V.nels

## [,1] [,2] [,3]
## [1,] 0.0410638760 0.0007019913 -0.004844505
## [2,] 0.0007019913 0.8856698641 -0.063767034
## [3,] -0.0048445047 -0.0637670344 2.381014344

sqrt(diag(V.nels))

## [1] 0.2026422 0.9411003 1.5430536

theta.nels+2*sqrt(diag(V.nels))

## [1] 51.34443 75.59101 26.71993

theta.nels-2*sqrt(diag(V.nels))

## [1] 50.53386 71.82661 20.54772
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Fitting via lme4: Wheat

fit.wheat<-lmer(yield~1+(1|region),REML=FALSE)

summary(fit.wheat)

## Linear mixed model fit by maximum likelihood ['lmerMod']

## Formula: yield ~ 1 + (1 | region)

##

## AIC BIC logLik deviance df.resid

## 183.2 188.9 -88.6 177.2 47

##

## Scaled residuals:

## Min 1Q Median 3Q Max

## -2.7913 -0.6035 0.1311 0.6520 1.7262

##

## Random effects:

## Groups Name Variance Std.Dev.

## region (Intercept) 0.3099 0.5567

## Residual 1.7872 1.3369

## Number of obs: 50, groups: region, 10

##

## Fixed effects:

## Estimate Std. Error t value

## (Intercept) 16.3064 0.2583 63.12

theta.wheat

## [1] 16.3063995 1.7872063 0.3099255

sqrt(diag(V.wheat))

## [1] 0.2583344 0.3996312 0.3089705
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Fitting via lme4: Schools

fit.nels<-lmer(mscores~1+(1|schools),REML=FALSE)

summary(fit.nels)

## Linear mixed model fit by maximum likelihood ['lmerMod']

## Formula: mscores ~ 1 + (1 | schools)

##

## AIC BIC logLik deviance df.resid

## 93919.3 93941.7 -46956.6 93913.3 12971

##

## Scaled residuals:

## Min 1Q Median 3Q Max

## -3.8112 -0.6534 0.0093 0.6732 4.6999

##

## Random effects:

## Groups Name Variance Std.Dev.

## schools (Intercept) 23.63 4.861

## Residual 73.71 8.585

## Number of obs: 12974, groups: schools, 684

##

## Fixed effects:

## Estimate Std. Error t value

## (Intercept) 50.9391 0.2026 251.4

theta.nels

## [1] 50.93914 73.70881 23.63382

sqrt(diag(V.nels))

## [1] 0.2026422 0.9411003 1.5430536
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Our technology so far

ANOVA, method of moments:

• Estimation: µ̂ = ȳ··, σ̂
2 = MSE , τ̂ 2 = (MSG −MSE)/n

• Inference: F -test for across-group differences.

Maximum likelihood:

• Estimation: MLEs µ̂, σ̂2, τ̂ 2)

• Inference: CIs via likelihood curvature.

What about estimation of aj or µj ’s ?
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Estimation of group level means

We will consider two types of estimates of the µj ’s:

Unbiased sample mean estimates:

µ̂j = ȳj

Biased shrinkage estimates:

µ̂j =
nj/σ̂

2

nj/σ̂2 + τ̂ 2
ȳj +

1/1̂/τ 2

nj/σ̂2 + 1/τ̂ 2
ȳ ··

The latter will be preferable when τ 2 is small compared to σ2/nj .
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