Estimation of group effects 560 Hierarchical modeling

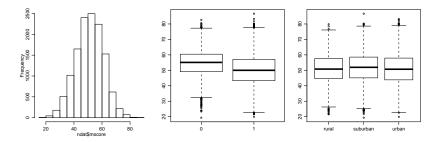
Peter Hoff

Statistics, University of Washington

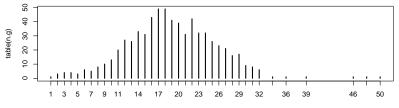
ndat[1:5,]

##		school	enroll	flp	public	urbanicity	hwh	ses	mscore	
##	1	1011	5	3	1	urban	2	-0.23	52.11	
##	2	1011	5	3	1	urban	0	0.69	57.65	
##	3	1011	5	3	1	urban	4	-0.68	66.44	
##	4	1011	5	3	1	urban	5	-0.89	44.68	
##	5	1011	5	3	1	urban	3	-1.28	40.57	
<pre>table(ndat\$public) ##</pre>										
## 0 1										
## 3161 9813										
<pre>table(ndat\$urbanicity)</pre>										
##										
##		rural	suburba	an	urban					
##		2349	61:	14	4511					

```
par(mfrow=c(1,3),mar=c(3,3,2,1),mgp=c(1.75,.75,0))
hist(ndat$mscore,main="")
boxplot(ndat$mscore~ndat$public)
boxplot(ndat$mscore~ndat$urbanicity)
```

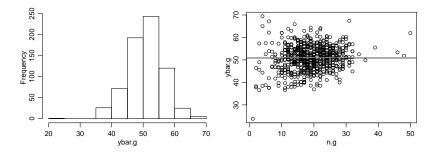


```
y<-ndat$mscore
g<-match(ndat$school , sort(unique(ndat$school)))
# school specific sample sizes
n.g<-c(table(g) )
plot(table(n.g))</pre>
```



n.g

```
# school specific mscore means
ybar.g<-c(tapply(y,g,"mean"))
par(mfrow=c(1,2),mar=c(3,3,2,1),mgp=c(1.75,.75,0))
hist(ybar.g,main="")
plot(ybar.g~n.g)
abline(h=mean(ybar.g))
abline(h=mean(y),col="gray")</pre>
```



Testing for across-group differences

```
fit.ols<-lm(y~as.factor(g))
anova(fit.ols)
## Analysis of Variance Table
##
## Response: y
## Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(g) 683 342385 501.30 6.8118 < 2.2e-16 ***
## Residuals 12290 904450 73.59
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</pre>
```

MLEs

```
library(lme4)
fit.lme<-lmer(y~1+(1|g),REML=FALSE)</pre>
summary(fit.lme)
## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula: v ~ 1 + (1 | g)
##
      AIC BIC logLik deviance df.resid
##
## 93919.3 93941.7 -46956.6 93913.3 12971
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.8112 -0.6534 0.0093 0.6732 4.6999
##
## Random effects:
## Groups Name Variance Std.Dev.
## g (Intercept) 23.63 4.861
## Residual 73.71 8.585
## Number of obs: 12974, groups: g, 684
##
## Fixed effects:
##
      Estimate Std. Error t value
## (Intercept) 50.9391 0.2026 251.4
```

Parameter estimates

VarCorr(fit.lme)

```
## Groups Name
                       Std.Dev.
## g
          (Intercept) 4.8615
## Residual
                         8.5854
t2.mle<-as.numeric(VarCorr(fit.lme)$g)</pre>
t2.mle
## [1] 23.63411
sigma(fit.lme)
## [1] 8.585362
s2.mle<-sigma(fit.lme)^2
s2.mle
## [1] 73.70844
fixef(fit.lme)
## (Intercept)
##
       50.9391
mu.mle<-fixef(fit.lme)</pre>
```

Group-specific estimates

What about estimates of μ_1, \ldots, μ_m ?

Unbiased estimate:

$$\begin{aligned} \mathsf{E}[\bar{y}_j - \mu_j | \mu_j] &= \mathsf{E}[\bar{y}_j | \mu_j] - \mathsf{E}[\mu_j | \mu_j] \\ &= \mu_j - \mu_j = \mathsf{0} \end{aligned}$$

 \bar{y}_j is an *unbiased estimator* of μ_j .

Expected squared error of unbiased estimate:

$$\mathsf{E}[(ar{y}_j-\mu_j)^2|\mu_j] = \mathsf{Var}[ar{y}_j|\mu_j]
onumber \ = \sigma^2/n_j$$

Standard error of unbiased estimate:

$$\mathrm{se}[\bar{y}_j|\mu_j] = \hat{\sigma}/\sqrt{n_j}$$

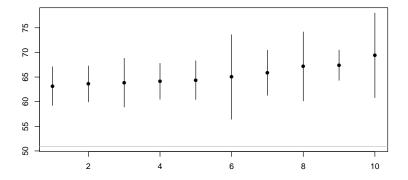
League tables

```
### top ten schools
topten<-order(ybar.g,decreasing=TRUE)[1:10]</pre>
topten
## [1] 639 349 618 616 386 337 637 73 680 352
ybar.g[topten]
       639 349 618 616 386 337 637 73
##
## 69.40250 67.40645 67.15500 65.86786 65.01750 64.37632 64.12091 63.86083
##
       680
               352
## 63.59818 63.16263
### top three schools
ybar.t3<-c(ybar.g[topten[1]], ybar.g[topten[2]], ybar.g[topten[3]])</pre>
ybar.t3
##
      639 349 618
## 69,40250 67,40645 67,15500
```

Approximate confidence intervals

```
### sample sizes of top three
n.t3<-c(n.g[topten[1]] , n.g[topten[2]], n.g[topten[3]] )</pre>
n.t3
## [1] 4 31 6
### se of ybar for top three
se.t3<-sqrt(s2.mle/n.t3)</pre>
se.t3
## [1] 4.292681 1.541977 3.504959
### approximate 95 CIs
rbind(ybar.t3+2*se.t3, ybar.t3-2*se.t3)
## 639 349 618
## [1,] 77.98786 70.4904 74.16492
## [2,] 60.81714 64.3225 60.14508
```

More approximate confidence intervals



MSE and shrinkage estimates

MSE: The mean squared error of an estimator $\hat{\theta}$ in estimating θ is

$$\mathsf{MSE}(\hat{\theta}|\theta) = \mathsf{E}[(\hat{\theta} - \theta)^2|\theta]$$

Quiz: What is the MSE of \bar{y}_j for estimating μ_j ?

$$\begin{split} \mathsf{E}[(\bar{y}_j - \mu_j)^2 | \mu_j] &= \mathsf{Var}[\bar{y}_j | \mu_j] \\ &= \sigma^2 / n_j \end{split}$$

General result: The MSE of an unbiased estimator is its variance.

HW: What is the unconditional MSE of \bar{y}_j , treating μ_j as sampled? $MSE(\bar{y}_j) = \sigma^2/n_j$

A shrinkage estimator

Suppose μ, σ^2, τ^2 are known. Can we find a better estimator than \bar{y}_j ? Intuition: If τ^2 is small and σ^2/n_j large, then

- \bar{y}_j might be far from μ_j ;
- μ_j should be close to μ .

This suggests the following "shrinkage estimator:"

$$\hat{\mu}_j = w_j ar{y}_j + (1-w_j) \mu$$
 , where $w_j = rac{n_j/\sigma^2}{n_j/\sigma^2 + 1/ au^2}.$

Quiz: Describe how $\hat{\mu}_i$ changes with

•
$$n_j$$

• σ^2
• τ^2

MSE of the shrinkage estimator

Let $\mu = 0$ so $\hat{\mu}_j = w\bar{y}_j$. $MSE(\hat{\mu}_j|\mu_j) = E[(w\bar{y}_j - \mu_j)^2|\mu_j]$ $MSE(\hat{\mu}_j) = E[MSE(\hat{\mu}_j|\mu_j)]$

Useful for calculations is the following identity:

$$(w\bar{y}_j - \mu_j)^2 = (w(\bar{y}_j - \mu_j) - (1 - w)\mu_j)^2$$

= $w^2(\bar{y}_j - \mu_j)^2 - 2w(1 - w)(\bar{y}_j - \mu_j)\mu_j + (1 - w)^2\mu_j^2$

Unconditional MSE:

$$MSE(\hat{\mu}_{j}) = E[MSE(\hat{\mu}_{j}|\mu_{j})] = w^{2}\sigma^{2}/n_{j} + (1-w)^{2}\tau^{2}$$

MSE Comparison

$$MSE(\bar{y}_j) = \sigma^2/n_j$$

$$MSE(\hat{\mu}_j) = w^2 \sigma^2/n_j + (1 - w)^2 \tau^2$$

Which is bigger?

Recall:

$$w = rac{n/\sigma^2}{n/\sigma^2 + 1/\tau^2} \in (0,1)$$

This implies $w^2 \in (0, 1)$, so

$$w^2\sigma^2/n_j < \sigma^2/n_j$$

What about the other part of $MSE(\hat{\mu}_j)$?

Intuition: If τ^2 small \Rightarrow other part is small, expect $MSE(\hat{\mu}_j) < MSE(\bar{y}_j)$. Result: In fact,

$$\mathsf{MSE}(\hat{\mu}_j) = \left(\frac{\tau^2}{\tau^2 + \sigma^2/n}\right) \sigma^2/n < \sigma^2/n = \mathsf{MSE}(\bar{y}_j)$$

for all $\mu, \sigma^2, \tau^2, n_j$.

16/45

Bias and variance

More generally, let

- $\hat{\theta}$ be an estimator of θ .
- $\mathsf{E}[\hat{\theta}|\theta] = \theta_0.$

If $\theta_0 = \theta$, then $\hat{\theta}$ is unbiased.

$$\begin{split} \mathsf{MSE}(\hat{\theta}|\theta) &= \mathsf{E}[(\hat{\theta} - \theta)^2|\theta] \\ &= \mathsf{E}[([\hat{\theta} - \theta_0] + [\theta_0 - \theta])^2|\theta] \\ &= \mathsf{E}[(\hat{\theta} - \theta_0)^2|\theta] + 2 \times \mathsf{E}[(\hat{\theta} - \theta_0)(\theta_0 - \theta)|\theta] + \mathsf{E}[(\theta_0 - \theta)^2|\theta] \end{split}$$

•
$$\mathsf{E}[(\hat{\theta} - \theta_0)^2 | \theta] = \mathsf{Var}[\hat{\theta} | \theta]$$

•
$$\mathsf{E}[(\hat{\theta} - \theta_0)(\theta_0 - \theta)|\theta] = 0$$

•
$$\mathsf{E}[(\theta_0 - \theta)^2 | \theta] = (\theta_0 - \theta)^2 = \mathsf{bias}(\hat{\theta} | \theta)^2.$$

Bias-variance tradeoff

In general,

$$\textit{MSE}(\hat{ heta}| heta) = \mathsf{Var}[\hat{ heta}| heta] + \mathsf{bias}(\hat{ heta}| heta)^2$$

How well an estimator $\hat{\theta}$ does at estimating θ depends on *variance* and *bias*. In general,

- estimators with low bias have have high variance;
- estimators with low variance have high bias.

Minimizing MSE requires balancing bias and variance.

Bias-variance tradeoff



Summary of bias and variance for the hierarchical model

If we are interested in how well we do across groups, we would compute

 $MSE(\hat{\mu}_j) = E[MSE(\hat{\mu}_j|\mu_j)]$

where the second expectation is with respect to $\mu_j \sim N(\mu, \tau^2)$.

Bias and variance of \bar{y}_j :

$$MSE(\bar{y}_j|\mu_j) = \sigma^2/n_j$$
$$MSE(\bar{y}_j) = E[MSE(\bar{y}_j|\mu_j)] = \sigma^2/n_j$$

Bias and variance of $\hat{\mu}_i$:

$$\begin{split} MSE(\hat{\mu}_{j}|\mu_{j}) &= w^{2}\sigma^{2}/n_{j} + (1-w)^{2}(\mu_{j}-\mu)^{2} \\ MSE(\hat{\mu}_{j}) &= w^{2}\sigma^{2}/n_{j} + (1-w)^{2}\tau^{2} \end{split}$$

You can show that the value of w that minimizes the unconditional MSE is

$$w_j = \frac{n_j/\sigma^2}{n_j/\sigma^2 + 1/\tau^2}$$

Terminology: BLUPs, Bayes and shrinkage

The shrinkage estimators $\hat{\mu}_1, \ldots, \hat{\mu}_m$ are also called

- Bayes estimators;
- BLUPs (best unbiased linear predictors)

Bayesian interpretation: If

- $\mu_j \sim \mathcal{N}(\mu, \tau^2)$ represents your uncertainty about μ_j , and
- you observe $y_{1,j},\ldots,y_{n,j}\sim {\rm i.i.d.}~N(\mu_j,\sigma^2)$, then

your optimal guess about μ_j is

$$\hat{\mu}_j = rac{n_j/\sigma^2}{n_j/\sigma^2 + 1/\tau^2} ar{y}_j + rac{1/\tau^2}{n_j/\sigma^2 + 1/\tau^2} \mu_j$$

BLUPs

The $\hat{\mu}_j$'s are sometimes called the *best unbiased linear predictors* (*BLUPs*). This is confusing, as we have discussed how these estimators are biased:

$$\begin{split} \mathsf{E}[\hat{\mu}_j | \mu_j] &= \mathsf{E}[w \bar{y}_j + (1-w) \mu | \mu_j] \\ &= w \mu_j + (1-w) \mu \neq \mu_j \end{split}$$

 $\hat{\mu}_j$ is conditionally biased.

The "U" in BLUP refers to bias only in an unconditional sense:

$$egin{split} \mathsf{E}[\hat{\mu}_j] &= \mathsf{E}[\mathsf{E}[\hat{\mu}_j | \mu_j]] \ &= \mathsf{E}[w \mu_j + (1-w) \mu] \ &= w \mu + (1-w) \mu = \mu \end{split}$$

Since $E[\hat{\mu}_j] = E[\mu_j] = \mu$ unconditionally, people might say $\hat{\mu}_j$ is "unbiased."

Understanding conditional and unconditional expectation

school	A	В	С	D	Е	F	G	Н	I	J
mean	μ_A	μ_B	μ_{C}	μ_D	μ_E	μ_{F}	μ_{G}	μ_H	μ_I	μ_J
Let $\mu = (\mu_A + \cdots \mu_J)/10.$										

Study design:

- sample *m* schools at random from the population of schools.
- sample *n* students at random from each of the *m* schools.

What is the expectation of μ_1 , \bar{y}_1 , $\hat{\mu}_1$?

Expectation of μ_1 : Since each school *A* through *J* has equal probability of being selected as unit 1:

$$\mathsf{E}[\mu_1] = \mu_A \times \mathsf{Pr}(\mathsf{unit } 1 = \mathsf{A}) + \dots + \mu_J \times \mathsf{Pr}(\mathsf{unit } 1 = \mathsf{J})$$
$$= \mu_A \frac{1}{10} + \dots + \mu_J \frac{1}{10} = \mu$$

Understanding conditional expectation

$$E[\bar{y}_1 - \mu_1 | unit \ 1 = D] = E[\bar{y}_D - \mu_D] = \mu_D - \mu_D = 0$$

$$\begin{aligned} \mathsf{E}[\hat{\mu}_1 - \mu_1 | \mathsf{unit} \ \mathbf{1} &= \mathsf{D}] &= \mathsf{E}[w\bar{y}_D + (1 - w)\mu - \mu_D] \\ &= w\mu_D + (1 - w)\mu - \mu_D = (1 - w)(\mu - \mu_D) \neq \mathbf{0} \end{aligned}$$

Conditionally on unit 1=D,

- $\bar{y}_1 = \bar{y}_D$ is unbiased for μ_D ,
- $\hat{\mu}_1 = \hat{\mu}_D$ is biased for μ_D .

In English, if your first sampled school is school D, then

- $\bar{y}_1 = \bar{y}_D$ and \bar{y}_D is unbiased for μ_D
- $\hat{\mu}_1 = \hat{\mu}_D$ and $\hat{\mu}_D$ is biased for μ_D .

Before you sample the schools, unit 1 is equally likely to be school A, B, \ldots , J.

$$\begin{split} \mathsf{E}[\hat{\mu}_1 - \mu_1] &= \mathsf{E}[\hat{\mu}_A - \mu_A] \operatorname{Pr}(\mathsf{unit } 1 = \mathsf{A}) + \dots + \mathsf{E}[\hat{\mu}_J - \mu_J] \operatorname{Pr}(\mathsf{unit } 1 = \mathsf{J}) \\ &= (1 - w)(\mu - \mu_A) \times \frac{1}{10} + \dots + (1 - w)(\mu - \mu_J) \times \frac{1}{10} \\ &= (1 - w)\mu - (1 - w)(\mu_A + \dots + \mu_J) \frac{1}{10} \\ &= (1 - w)\mu - (1 - w)\mu = 0. \end{split}$$

This unconditional expectation, and the "U" in BLUP, refers to averaging across the possibilities for the samples:

- $\hat{\mu}_j$ will be a biased estimator of the mean of whatever unit is picked *j*th.
- on average across studies, $\hat{\mu}_1, \ldots, \hat{\mu}_m$ will be unbiased.

Summary

In most applications I am familiar with, interest is more in the conditional expectations.

From this perspective, the shrinkage estimators $\hat{\mu}_1,\ldots,\hat{\mu}_m$

- are biased;
- have conditional MSE given by

$$w^2\sigma^2/n_j + (1-w)^2(\mu_j - \mu)^2$$

• which is usually lower than the conditional MSE of \bar{y}_j .

Plug-in estimates

In practice, we replace μ, σ^2, τ^2 with estimates:

$$\hat{\mu}_j = w_j ar{y}_j + (1-w_j) \hat{\mu}$$
 , where $w_j = rac{n_j/\hat{\sigma}^2}{n_j/\hat{\sigma}^2 + 1/\hat{\tau}^2}$

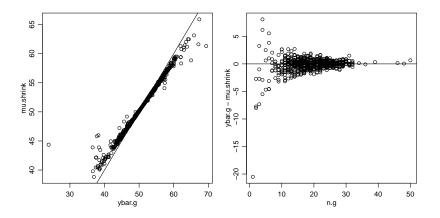
```
w.shrink<- (n.g/s2.mle) /(n.g/s2.mle + 1/t2.mle)
mu.shrink<-w.shrink*ybar.g + (1-w.shrink)*mu.mle</pre>
mu.mle
## (Intercept)
##
      50,9391
cbind(ybar.g, n.g, mu.shrink)[1:8,]
     ybar.g n.g mu.shrink
##
## 1 51.19300 30 51.16909
## 2 49.37133 15 49.64119
## 3 38.06833 12 40.72335
## 4 46.12172 29 46.58949
## 5 44.36308 13 45.63544
## 6 48.53091 22 48.82991
## 7 50.28111 18 50.37828
## 8 55.55792 24 55.02674
```

Shrinkage

cbind(ybar.g, n.g, mu.shrink)[topten,]

##		ybar.g	n.g	mu.shrink
##	639	69.40250	4	61.31365
##	349	67.40645	31	65.90120
##	618	67.15500	6	61.60894
##	616	65.86786	14	63.14810
##	386	65.01750	4	58.84972
##	337	64.37632	19	62.48167
##	637	64.12091	22	62.48426
##	73	63.86083	12	61.19530
##	680	63.59818	22	62.02644
##	352	63.16263	19	61.43912

Shrinkage



Shrinkage estimates from lme4

```
mu.shrink[1:10]
                2 3 4 5
##
        1
                                                 6
                                                   7
                                                                 8
## 51.16909 49.64119 40.72335 46.58949 45.63544 48.82991 50.37828 55.02674
##
         9
               10
## 51,19648 48,70906
a.shrink<-ranef(fit.lme)[[1]][.1]
mu.mle+a.shrink[1:10]
  [1] 51.16909 49.64119 40.72335 46.58949 45.63544 48.82991 50.37828
##
## [8] 55.02674 51.19648 48.70906
```

In lme4, ranef(fit.lme)[[k]][,1] refers to the

- 1th random effect for the
- kth grouping variable.

Confidence intervals for group means

Cls from unbiased estimators: How far away is \bar{y}_j from μ_j ?

$$\mathsf{E}[(\bar{y}_j - \mu_j)^2 | \mu_j] = \sigma^2 / n_j$$

An approximate 95% CI for μ_j is

$$\bar{y}_j \pm 2\sqrt{\hat{\sigma}^2/n_j}$$

Cls from shrinkage estimators: How far away is $\hat{\mu}_j$ from μ_j ? We showed $E[(\hat{\mu}_j - \mu_j)^2 | \mu_j] = w^2 \sigma^2 / n_j + (1 - w)^2 (\mu_j - \mu)^2$

On average across groups, this squared distance is

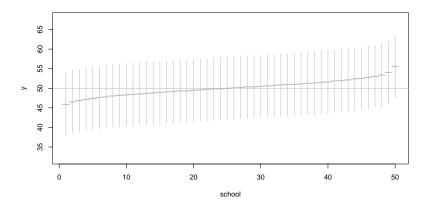
$$egin{aligned} \mathsf{E}[(\hat{\mu}_j - \mu_j)^2] &= w^2 \sigma^2 / n_j + (1 - w)^2 au^2 = \left(rac{ au^2}{ au^2 + \sigma^2 / n_j}
ight) \sigma^2 / n_j \ &= rac{1}{1/ au^2 + n_j / \sigma^2} \end{aligned}$$

An approximate 95% CI for μ_j is

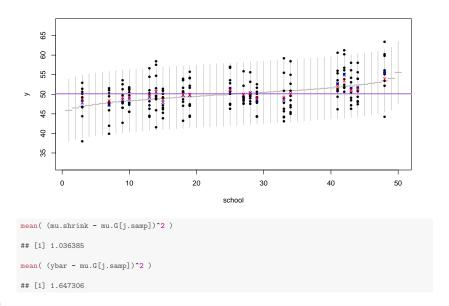
$$\hat{u}_j \pm 2\sqrt{\frac{1}{1/\tau^2 + n_j/\sigma^2}}.$$

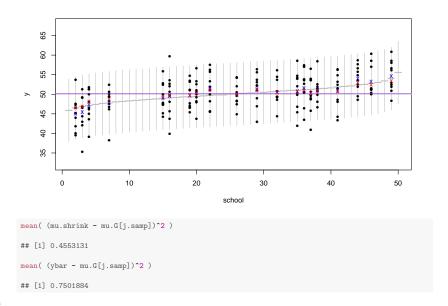
The 95% coverage is on average, across groups.

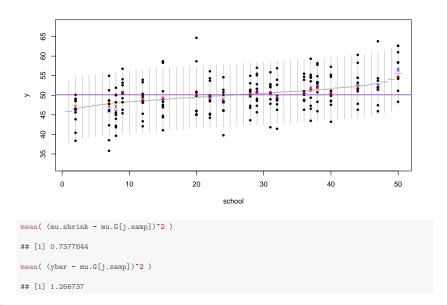
1

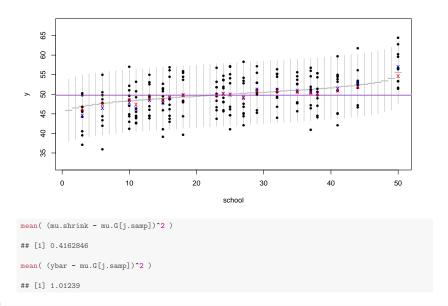


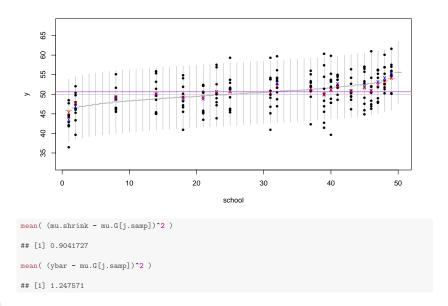
33/45



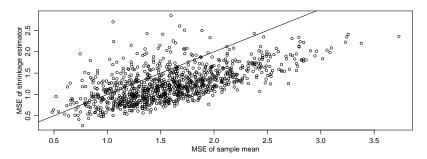








Warning in optwrap(optimizer, devfun, getStart(start, rho\$lower, rho\$pp), :
convergence code 3 from bobyqa: bobyqa -- a trust region step failed to reduce q



```
mean(MSE[,1])
```

[1] 1.60045

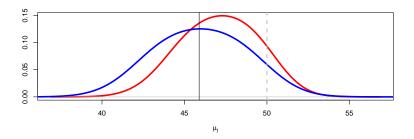
mean(MSE[,2])

[1] 1.24197

mean(MSE[,2]<MSE[,1])</pre>

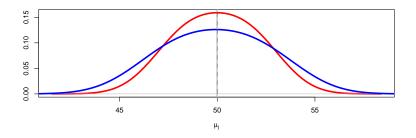
[1] 0.813

Inference for an underperforming school



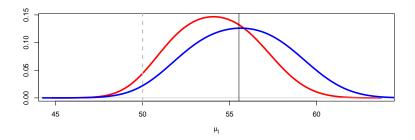
```
# MSE of ybar
mean( (UCI[[j]][,2] - mu.G[j] )^2 )
## [1] 1.748728
# MSE of shrinkage estimator
mean( (SCI[[j]][,2] - mu.G[j] )^2 )
## [1] 2.824414
```

Inference for a middling school



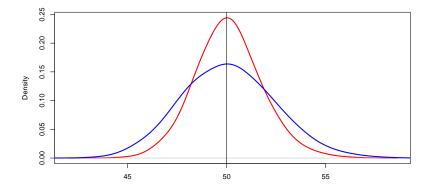
```
# MSE of ybar
mean( (UCI[[j]][,2] - mu.G[j] )^2 )
## [1] 1.566342
# MSE of shrinkage estimator
mean( (SCI[[j]][,2] - mu.G[j] )^2 )
## [1] 0.7849105
```

Inference for an overperforming school

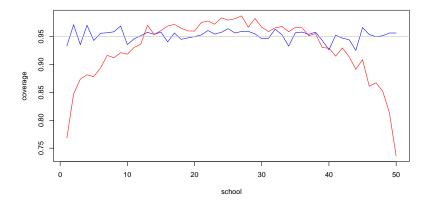


```
# MSE of ybar
mean( (UCI[[j]][,2] - mu.G[j] )^2 )
## [1] 1.627534
# MSE of shrinkage estimator
mean( (SCI[[j]][,2] - mu.G[j] )^2 )
## [1] 3.129529
```

Unconditional unbiasedness of estimates



Confidence interval coverage



Summary

- coverage for schools with extreme values of μ_j is too low;
- coverage for schools with middling values of μ_j is too high.

Advice:

- Estimation and confidence interval construction are different tasks.
- Use a procedure that aligns with your data analysis goals.
- Be aware of the statistical properties of your analysis procedures.