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Data for today

ndat[1:5,]

## school enroll flp public urbanicity hwh ses mscore
## 1 1011 5 3 1 urban 2 -0.23 52.11
## 2 1011 5 3 1 urban 0 0.69 57.65
## 3 1011 5 3 1 urban 4 -0.68 66.44
## 4 1011 5 3 1 urban 5 -0.89 44.68
## 5 1011 5 3 1 urban 3 -1.28 40.57

table(ndat$public)

##
## 0 1
## 3161 9813

table(ndat$urbanicity)

##
## rural suburban urban
## 2349 6114 4511
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Data for today

par(mfrow=c(1,3),mar=c(3,3,2,1),mgp=c(1.75,.75,0))
hist(ndat$mscore,main="")
boxplot(ndat$mscore~ndat$public)
boxplot(ndat$mscore~ndat$urbanicity)

ndat$mscore
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Data for today

y<-ndat$mscore
g<-match(ndat$school , sort(unique(ndat$school)))

# school specific sample sizes
n.g<-c(table(g) )

plot(table(n.g))
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Data for today

# school specific mscore means
ybar.g<-c(tapply(y,g,"mean"))

par(mfrow=c(1,2),mar=c(3,3,2,1),mgp=c(1.75,.75,0))
hist(ybar.g,main="")
plot(ybar.g~n.g)
abline(h=mean(ybar.g))
abline(h=mean(y),col="gray")

ybar.g
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Testing for across-group differences

fit.ols<-lm(y~as.factor(g))
anova(fit.ols)

## Analysis of Variance Table
##
## Response: y
## Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(g) 683 342385 501.30 6.8118 < 2.2e-16 ***
## Residuals 12290 904450 73.59
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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MLEs

library(lme4)
fit.lme<-lmer(y~1+(1|g),REML=FALSE)
summary(fit.lme)

## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula: y ~ 1 + (1 | g)
##
## AIC BIC logLik deviance df.resid
## 93919.3 93941.7 -46956.6 93913.3 12971
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.8112 -0.6534 0.0093 0.6732 4.6999
##
## Random effects:
## Groups Name Variance Std.Dev.
## g (Intercept) 23.63 4.861
## Residual 73.71 8.585
## Number of obs: 12974, groups: g, 684
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 50.9391 0.2026 251.4
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Parameter estimates

VarCorr(fit.lme)

## Groups Name Std.Dev.
## g (Intercept) 4.8615
## Residual 8.5854

t2.mle<-as.numeric(VarCorr(fit.lme)$g)

t2.mle

## [1] 23.63411

sigma(fit.lme)

## [1] 8.585362

s2.mle<-sigma(fit.lme)^2

s2.mle

## [1] 73.70844

fixef(fit.lme)

## (Intercept)
## 50.9391

mu.mle<-fixef(fit.lme)
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Group-specific estimates

What about estimates of µ1, . . . , µm?

Unbiased estimate:

E[ȳj − µj |µj ] = E[ȳj |µj ]− E[µj |µj ]

= µj − µj = 0

ȳj is an unbiased estimator of µj .

Expected squared error of unbiased estimate:

E[(ȳj − µj)
2|µj ] = Var[ȳj |µj ]

= σ2/nj

Standard error of unbiased estimate:

se[ȳj |µj ] = σ̂/
√
nj
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= σ2/nj

Standard error of unbiased estimate:
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League tables

### top ten schools
topten<-order(ybar.g,decreasing=TRUE)[1:10]

topten

## [1] 639 349 618 616 386 337 637 73 680 352

ybar.g[topten]

## 639 349 618 616 386 337 637 73
## 69.40250 67.40645 67.15500 65.86786 65.01750 64.37632 64.12091 63.86083
## 680 352
## 63.59818 63.16263

### top three schools
ybar.t3<-c(ybar.g[topten[1]] , ybar.g[topten[2]], ybar.g[topten[3]] )

ybar.t3

## 639 349 618
## 69.40250 67.40645 67.15500

10/45



Approximate confidence intervals

### sample sizes of top three
n.t3<-c(n.g[topten[1]] , n.g[topten[2]], n.g[topten[3]] )

n.t3

## [1] 4 31 6

### se of ybar for top three
se.t3<-sqrt(s2.mle/n.t3)

se.t3

## [1] 4.292681 1.541977 3.504959

### approximate 95 CIs
rbind(ybar.t3+2*se.t3, ybar.t3-2*se.t3)

## 639 349 618
## [1,] 77.98786 70.4904 74.16492
## [2,] 60.81714 64.3225 60.14508
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More approximate confidence intervals
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MSE and shrinkage estimates

MSE: The mean squared error of an estimator θ̂ in estimating θ is

MSE(θ̂|θ) = E[(θ̂ − θ)2|θ]

Quiz: What is the MSE of ȳj for estimating µj?

E[(ȳj − µj)
2|µj ] = Var[ȳj |µj ]

= σ2/nj

General result: The MSE of an unbiased estimator is its variance.

HW: What is the unconditional MSE of ȳj , treating µj as sampled?

MSE(ȳj) = σ2/nj
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= σ2/nj

General result: The MSE of an unbiased estimator is its variance.

HW: What is the unconditional MSE of ȳj , treating µj as sampled?
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A shrinkage estimator

Suppose µ, σ2, τ 2 are known. Can we find a better estimator than ȳj?

Intuition: If τ 2 is small and σ2/nj large, then

• ȳj might be far from µj ;

• µj should be close to µ.

This suggests the following “shrinkage estimator:”

µ̂j = wj ȳj + (1− wj)µ , where wj =
nj/σ

2

nj/σ2 + 1/τ 2
.

Quiz: Describe how µ̂j changes with

• nj

• σ2

• τ 2
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Intuition: If τ 2 is small and σ2/nj large, then
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MSE of the shrinkage estimator

Let µ = 0 so µ̂j = wȳj .

MSE(µ̂j |µj) = E[(wȳj − µj)
2|µj ]

MSE(µ̂j) = E[MSE(µ̂j |µj)]

Useful for calculations is the following identity:

(wȳj − µj)
2 = (w(ȳj − µj)− (1− w)µj)

2

= w 2(ȳj − µj)
2 − 2w(1− w)(ȳj − µj)µj + (1− w)2µ2

j

Unconditional MSE:

MSE(µ̂j) = E[MSE(µ̂j |µj)] = w 2σ2/nj + (1− w)2τ 2
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2 − 2w(1− w)(ȳj − µj)µj + (1− w)2µ2

j

Unconditional MSE:

MSE(µ̂j) = E[MSE(µ̂j |µj)] = w 2σ2/nj + (1− w)2τ 2

15/45



MSE Comparison

MSE(ȳj) = σ2/nj

MSE(µ̂j) = w 2σ2/nj + (1− w)2τ 2

Which is bigger?

Recall:

w =
n/σ2

n/σ2 + 1/τ 2
∈ (0, 1)

This implies w 2 ∈ (0, 1), so

w 2σ2/nj < σ2/nj

What about the other part of MSE(µ̂j)?

Intuition: If τ 2 small ⇒ other part is small, expect MSE(µ̂j) < MSE(ȳj).

Result: In fact,

MSE(µ̂j) =
(

τ2

τ2+σ2/n

)
σ2/n < σ2/n = MSE(ȳj)

for all µ, σ2, τ 2, nj .
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Intuition: If τ 2 small ⇒ other part is small, expect MSE(µ̂j) < MSE(ȳj).

Result: In fact,

MSE(µ̂j) =
(

τ2

τ2+σ2/n

)
σ2/n < σ2/n = MSE(ȳj)

for all µ, σ2, τ 2, nj .
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Bias and variance

More generally, let

• θ̂ be an estimator of θ.

• E[θ̂|θ] = θ0.

If θ0 = θ, then θ̂ is unbiased.

MSE(θ̂|θ) = E[(θ̂ − θ)2|θ]

= E[([θ̂ − θ0] + [θ0 − θ])2|θ]

= E[(θ̂ − θ0)2|θ] + 2× E[(θ̂ − θ0)(θ0 − θ)|θ] + E[(θ0 − θ)2|θ]

• E[(θ̂ − θ0)2|θ] = Var[θ̂|θ]

• E[(θ̂ − θ0)(θ0 − θ)|θ] = 0

• E[(θ0 − θ)2|θ] = (θ0 − θ)2 =bias(θ̂|θ)2.
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Bias-variance tradeoff

In general,
MSE(θ̂|θ) = Var[θ̂|θ] + bias(θ̂|θ)2

How well an estimator θ̂ does at estimating θ depends on variance and bias.

In general,

• estimators with low bias have have high variance;

• estimators with low variance have high bias.

Minimizing MSE requires balancing bias and variance.
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Bias-variance tradeoff

θ
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Summary of bias and variance for the hierarchical model

If we are interested in how well we do across groups, we would compute

MSE(µ̂j) = E[MSE(µ̂j |µj)]

where the second expectation is with respect to µj ∼ N(µ, τ 2).

Bias and variance of ȳj :

MSE(ȳj |µj) = σ2/nj

MSE(ȳj) = E[MSE(ȳj |µj)] = σ2/nj

Bias and variance of µ̂j :

MSE(µ̂j |µj) = w 2σ2/nj + (1− w)2(µj − µ)2

MSE(µ̂j) = w 2σ2/nj + (1− w)2τ 2

You can show that the value of w that minimizes the unconditional MSE is

wj =
nj/σ

2

nj/σ2 + 1/τ 2
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Terminology: BLUPs, Bayes and shrinkage

The shrinkage estimators µ̂1, . . . , µ̂m are also called

• Bayes estimators;

• BLUPs (best unbiased linear predictors)

Bayesian interpretation: If

• µj ∼ N(µ, τ 2) represents your uncertainty about µj , and

• you observe y1,j , . . . , yn,j ∼ i.i.d. N(µj , σ
2), then

your optimal guess about µj is

µ̂j =
nj/σ

2

nj/σ2 + 1/τ 2
ȳj +

1/τ 2

nj/σ2 + 1/τ 2
µ.
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BLUPs

The µ̂j ’s are sometimes called the best unbiased linear predictors (BLUPs) .

This is confusing, as we have discussed how these estimators are biased:

E[µ̂j |µj ] = E[wȳj + (1− w)µ|µj ]

= wµj + (1− w)µ 6= µj

µ̂j is conditionally biased.

The “U” in BLUP refers to bias only in an unconditional sense:

E[µ̂j ] = E[E[µ̂j |µj ]]

= E[wµj + (1− w)µ]

= wµ+ (1− w)µ = µ.

Since E[µ̂j ] = E[µj ] = µ unconditionally, people might say µ̂j is “unbiased.”
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Understanding conditional and unconditional expectation

school A B C D E F G H I J
mean µA µB µC µD µE µF µG µH µI µJ

Let µ = (µA + · · ·µJ)/10.

Study design:

• sample m schools at random from the population of schools.

• sample n students at random from each of the m schools.

What is the expectation of µ1, ȳ1, µ̂1?

Expectation of µ1 : Since each school A through J has equal probability of
being selected as unit 1:

E[µ1] = µA × Pr(unit 1 =A) + · · ·+ µJ × Pr(unit 1=J)

= µA
1
10

+ · · ·+ µJ
1
10

= µ
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Understanding conditional expectation

E[ȳ1 − µ1|unit 1 = D ] = E[ȳD − µD ] = µD − µD = 0

E[µ̂1 − µ1|unit 1 = D] = E[wȳD + (1− w)µ− µD ]

= wµD + (1− w)µ− µD = (1− w)(µ− µD) 6= 0

Conditionally on unit 1=D,

• ȳ1 = ȳD is unbiased for µD ,

• µ̂1 = µ̂D is biased for µD .

In English, if your first sampled school is school D, then

• ȳ1 = ȳD and ȳD is unbiased for µD

• µ̂1 = µ̂D and µ̂D is biased for µD .
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= wµD + (1− w)µ− µD = (1− w)(µ− µD) 6= 0

Conditionally on unit 1=D,
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E[ȳ1 − µ1|unit 1 = D ] = E[ȳD − µD ] = µD − µD = 0

E[µ̂1 − µ1|unit 1 = D] = E[wȳD + (1− w)µ− µD ]
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Understanding unconditional expectation

Before you sample the schools, unit 1 is equally likely to be school A, B, . . . , J.

E[µ̂1 − µ1] = E[µ̂A − µA] Pr(unit 1=A) + · · ·+ E[µ̂J − µJ ] Pr(unit 1=J)

= (1− w)(µ− µA)× 1
10

+ · · ·+ (1− w)(µ− µJ)× 1
10

= (1− w)µ− (1− w)(µA + · · ·+ µJ) 1
10

= (1− w)µ− (1− w)µ = 0.

This unconditional expectation, and the “U” in BLUP, refers to averaging
across the possibilities for the samples:

• µ̂j will be a biased estimator of the mean of whatever unit is picked jth.

• on average across studies, µ̂1, . . . , µ̂m will be unbiased.
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Summary

In most applications I am familiar with, interest is more in the conditional
expectations.

From this perspective, the shrinkage estimators µ̂1, . . . , µ̂m

• are biased;

• have conditional MSE given by

w 2σ2/nj + (1− w)2(µj − µ)2,

• which is usually lower than the conditional MSE of ȳj .
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Plug-in estimates

In practice, we replace µ, σ2, τ 2 with estimates:

µ̂j = wj ȳj + (1− wj)µ̂ , where wj =
nj/σ̂

2

nj/σ̂2 + 1/τ̂ 2
.

w.shrink<- (n.g/s2.mle) /(n.g/s2.mle + 1/t2.mle)

mu.shrink<-w.shrink*ybar.g + (1-w.shrink)*mu.mle

mu.mle

## (Intercept)
## 50.9391

cbind(ybar.g, n.g, mu.shrink)[1:8,]

## ybar.g n.g mu.shrink
## 1 51.19300 30 51.16909
## 2 49.37133 15 49.64119
## 3 38.06833 12 40.72335
## 4 46.12172 29 46.58949
## 5 44.36308 13 45.63544
## 6 48.53091 22 48.82991
## 7 50.28111 18 50.37828
## 8 55.55792 24 55.02674
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Shrinkage

cbind(ybar.g, n.g, mu.shrink)[topten,]

## ybar.g n.g mu.shrink
## 639 69.40250 4 61.31365
## 349 67.40645 31 65.90120
## 618 67.15500 6 61.60894
## 616 65.86786 14 63.14810
## 386 65.01750 4 58.84972
## 337 64.37632 19 62.48167
## 637 64.12091 22 62.48426
## 73 63.86083 12 61.19530
## 680 63.59818 22 62.02644
## 352 63.16263 19 61.43912
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Shrinkage estimates from lme4

mu.shrink[1:10]

## 1 2 3 4 5 6 7 8
## 51.16909 49.64119 40.72335 46.58949 45.63544 48.82991 50.37828 55.02674
## 9 10
## 51.19648 48.70906

a.shrink<-ranef(fit.lme)[[1]][,1]

mu.mle+a.shrink[1:10]

## [1] 51.16909 49.64119 40.72335 46.58949 45.63544 48.82991 50.37828
## [8] 55.02674 51.19648 48.70906

In lme4, ranef(fit.lme)[[k]][,l] refers to the

• lth random effect for the

• kth grouping variable.
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Confidence intervals for group means

CIs from unbiased estimators: How far away is ȳj from µj?

E[(ȳj − µj)
2|µj ] = σ2/nj

An approximate 95% CI for µj is

ȳj ± 2
√
σ̂2/nj
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Confidence intervals for group means

CIs from shrinkage estimators: How far away is µ̂j from µj? We showed

E[(µ̂j − µj)
2|µj ] = w 2σ2/nj + (1− w)2(µj − µ)2

On average across groups, this squared distance is

E[(µ̂j − µj)
2] = w 2σ2/nj + (1− w)2τ 2 =

(
τ2

τ2+σ2/nj

)
σ2/nj

=
1

1/τ 2 + nj/σ2

An approximate 95% CI for µj is

µ̂j ± 2
√

1
1/τ2+nj/σ

2 .

The 95% coverage is on average, across groups.
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Simulation study

## Warning in optwrap(optimizer, devfun, getStart(start, rho$lower, rho$pp), :
convergence code 3 from bobyqa: bobyqa -- a trust region step failed to reduce q
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Inference for an underperforming school
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Inference for a middling school
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Inference for an overperforming school
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Unconditional unbiasedness of estimates
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Confidence interval coverage
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Summary

• coverage for schools with extreme values of µj is too low;

• coverage for schools with middling values of µj is too high.

Advice:

• Estimation and confidence interval construction are different tasks.

• Use a procedure that aligns with your data analysis goals.

• Be aware of the statistical properties of your analysis procedures.
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