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Assumptions of the HNM

Yij = Wi+ €ij
{eij} ~iid N(0,0?) (1)
/’Lla--wum’\“iid N(:u’77—2) (2)

Assumptions concerning within-group variation: ltem (1) implies

Assumptions concerning between-group variation: ltem (2) implies
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Assumptions of the HNM

Yij = pi+ €ij
{eij} ~iid N(0,07)
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e the ¢;;'s are normally distributed.

Assumptions concerning between-group variation: Item (2) implies

e the y;'s are independent;
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Hierarchy of micro-level assumptions

Some assumptions are more important than others. Statistical folklore (and
theoretical results) suggest the order of importance of the assumptions is

independence: the €;;'s are independent;
constant variance: the ¢;;'s have the same variance in each group;

normality: the ¢;;'s are normally distributed.

Cautions: Ignoring violations can lead to invalid inference
dependence: can lead to inaccurate p-values and confidence intervals;
nonconstant variance: can affect type | error rates and estimation efficiency;

nonnormality: our procedures are somewhat robust to nonnormality (CLT).
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Checking micro-level assumptions with residuals

We don't observe the €;;'s, so we can’t check these assumptions directly.
Standard practice is to evaluate the residuals:

Yij =M te€ij
€ij=Yij— 1Y

If ij = p;j, then

€ = Yij = M R Yij = €
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Vlacro-level assumptions

Checking micro-level assumptions with residuals

We don't observe the €;;'s, so we can’t check these assumptions directly.
Standard practice is to evaluate the residuals:

Yij = Mjt+e€ij
€ij = Yij— 1
If ij = p;j, then
€ij = Yij— R Yij— [ =E&j

Here, [i; could be either y; or the shrinkage estimator.
Standard practice is to use ;.
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Checking normality

Macro-level assumptions

Q-Q plots: A useful visual tool for checking normality is the normal scores
plot. This plots the sample quantiles versus those of the normal distribution.

y10<-rnorm(10) ; y50<-rnorm(50) ; y100<-rnorm(100)
qqnorm(y10) ; qqline(y10)

qgnorm(y50) ; qqline(y50)

qgnorm(y100) ; qqline(y100)

Normal Q-Q Plot Normal Q-Q Plot

Normal Q-Q Plot
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The wrong way to check normality
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The wrong way to check normality

par (mfrow=c(1,2))
hist(y)
qgnorm(y) ; qqline(y)

Histogram of y Normal Q-Q Plot
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The right way to check normality
par (mfrow=c(1,2))
fit<-1m(y~as.factor(g))
res<-fit$res
hist(res)

qgnorm(res) ; qqline(res)

Histogram of res Normal Q-Q Plot
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Example: Wheat yield
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Example: Wheat yield
par (mfrow=c(1,2))
fit.wheat<-1m(y.wheat~as.factor(g.wheat))
res<-fit.wheat$res
hist(res)

qgnorm(res) ; qqline(res)

Histogram of res Normal Q-Q Plot
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Example: NELS data

par (mfrow=c(1,2))
fit.nels<-1m(y.nels"as.factor(g.nels))
res<-fit.nels$res

hist(res)

qgnorm(res) ; qqline(res)

Histogram of res Normal Q-Q Plot
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Question: Why do you think these data look so normal?
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grouseticks[1:5,]

##
##
##
##
##
##

response

13/47

g wWwN e

80

60

40

20

Checking for heteroscedasticity

Macro-level assumptions

000000000000 0000

Example: Grouse ticks

INDEX TICKS BROOD HEIGHT YEAR LOCATION  cHEIGHT
1 0 501 465 95 32 2.759305
2 0 501 465 95 32 2.759305
3 0 502 472 95 36 9.759305
4 0 503 475 95 37 12.759305
5 0 503 475 95 37 12.759305
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Example: Grouse ticks

par (mfrow=c(1,2))
fit.grouse<-1m(y.grouse~as.factor(g.grouse))
res<-fit.grouse$res

hist(res)

qgnorm(res) ; qqline(res)

Histogram of res Normal Q-Q Plot
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Example: Grouse ticks normality evaluation, the wrong way

par (mfrow=c(1,2))
hist(y.grouse)

qqnorm(y.grouse) ; qqline(y.grouse)

Histogram of y.grouse Normal Q-Q Plot
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What should my residuals look like?
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Normal Q-Q Plot

Normal Q-Q Plot

Macro-level assumptions
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Within-group variance

{ei j} ~ N(0,0%)

This implies that not only are the errors normal, but their variance is the same

for all groups.
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17/47



Checking for nonnormality Checking for heteroscedasticity N

000000000000 ©000000000000000

Vlacro-level assumptions

Within-group variance

{ei j} ~ N(0,0%)

This implies that not only are the errors normal, but their variance is the same
for all groups.

How might we evaluate this assumption?
Idea: Suppose €1, ..., €y ~ iid N(0,07)
2, 2
[ Sj ~ UJ
o differences between af’s can be evaluated by differences between sjz’s.

17/47



Checking for nonnormality Checking for heteroscedasticity N

000000000000 ©000000000000000

Vlacro-level assumptions

Within-group variance

{ei j} ~ N(0,0%)

This implies that not only are the errors normal, but their variance is the same
for all groups.

How might we evaluate this assumption?
Idea: Suppose €1, ..., €y ~ iid N(0,07)
2, 2
[ Sj ~ UJ
o differences between af’s can be evaluated by differences between sjz’s.

17/47



Checking for nonnormality Checking for heteroscedasticity Macro-level assumptions
000000000000 O@00000000000000

Example: wheat yield

s2.wheat<-c(tapply(y.wheat,g.wheat,var))

s2.wheat

## 1 2 3 4 5 6 7 8 9
## 4.49173 0.43388 2.88970 0.99197 1.94843 0.95908 0.67748 0.86467 1.96792
## 10

## 2.64720

max (s2.wheat) /min(s2.wheat)

## [1] 10.35247
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Example: wheat yield

s2.wheat<-c(tapply(y.wheat,g.wheat,var))

s2.wheat
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## 4.49173 0.43388 2.88970 0.99197 1.94843 0.95908 0.67748 0.86467 1.96792
## 10
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max (s2.wheat) /min(s2.wheat)

## [1] 10.35247

Is the heterogeneity large? Remember n; =5 for all groups.
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Example: wheat yield

0

2.wheat<-c(tapply(y.wheat,g.wheat,var))

s2.wheat

## 1 2 3 4 5 6 7 8 9
## 4.49173 0.43388 2.88970 0.99197 1.94843 0.95908 0.67748 0.86467 1.96792
## 10

## 2.64720

max(s2.wheat) /min(s2.wheat)

## [1] 10.35247

Is the heterogeneity large? Remember n; =5 for all groups.

Fmax test: A test of equality of variances - reject Hp : O‘j2 =02 if

2 2
smax/smin > Fmaxlfa,m,n

The critical value must be looked up on a table.
It is not the same as the usual F-distribution.
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Levene's test

Idea: If o7 is large, then |y;; — ;| = |é;] should be large.

o Let Zij = ‘@fJW
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Idea: If o7 is large, then |y;; — ;| = |é;] should be large.

o Let Zij = |€iJ|

Checking for heteroscedasticity
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Levene's test

z.wheat<-abs( fit.wheat$res )
anova(lm(z.wheat~as.factor(g.wheat)) )

##
##
##
##
##
##

Analysis of Variance Table

Response: z.wheat

as.factor(g.wheat)
Residuals

o Use the ANOVA F-test for across-group differences in the z;;'s

Df Sum Sq Mean Sq F value Pr(>F)

9 4.8893 0.54325
40 20.9174 0.52294

1.0389 0.4273

Macro-level assumptions



Checking for nonnormality Checking for heteroscedasticity Macro-level assumptions
000000000000 000@000000000000

Example: NELS data

s2.nels<-c(tapply(y.nels,g.nels,var))
max(s2.nels,na.rm=TRUE)

## [1] 187.082
min(s2.nels,na.rm=TRUE)

## [1] 3.20045

n.nels<-table(g.nels)

n.nels[ which.max(s2.nels)]

## 320
## 19

n.nels[ which.min(s2.nels)]

## 643
## 2
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Example: NELS data

z.nels<-abs( fit.nels$res )
anova(lm(z.nels~as.factor(g.nels)) )

##
##
##
##
##
##
##
##

Analysis of Variance Table

Response: z.nels

Df Sum Sq Mean Sq F value Pr (>F)
as.factor(g.nels) 683 27078 39.645 1.6092 < 2.2e-16 **x
Residuals 12290 302776 24.636

Signif. codes: 0 '*x*' 0.001 '*x' 0.01 'x' 0.05 '.' 0.1 ' '

1

Macro-level assumptions
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Example: Grouse tick data

s2.grouse<-c(tapply(y.grouse,g.grouse,var))

max (s2.grouse,na.rm=TRUE)
## [1] 346.3

min(s2.grouse,na.rm=TRUE)

## [1]1 0

n.grouse<-table(g.grouse)

n.grouse[ which.max(s2.grouse)]

## 626
##* 5

n.grouse[ which.min(s2.grouse)]

## 501
## 2

22/47
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Example: Grouse tick data

z.grouse<-abs( fit.grouse$res )
anova(lm(z.grouse~as.factor(g.grouse)) )

##
##
##
##
##
##
##
##

Analysis of Variance Table

Response: z.grouse

Df Sum Sq Mean Sq F value Pr (>F)
as.factor(g.grouse) 117 3954.0 33.795 4.8627 < 2.2e-16 **x*
Residuals 285 1980.7  6.950

Signif. codes: 0 '*x*' 0.001 '*x' 0.01 'x' 0.05 '.' 0.1 ' '

1

Macro-level assumptions
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Remedies

NELS data:

e The evidence suggests the residual variance is not equal across schools.
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e Coming up, we will evaluate heteroscedasticity after including additional
micro-level information. This generally reduces the across-group
heteroscedasticity.
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Why are data normal?

Often, an outcome is the result of many additive effects:

Yij =Mt €ij
= pi Xt Xijet o+ Xijp
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Why are data normal?

Additiive effects: Often, an outcome is the result of many additive effects:
Yij = Hj +€ij
=W X1t Xij2 £t Xigp

CLT:
In such cases, if the x;j «'s vary somewhat independently across subjects,the
distribution of the y;;'s should look normal (even if the x; j «'s are not normal).
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Multiplicative effects

Multiplicative effects: Some outcomes are the result of multiplicative effects:
Yij = Hj X Xij1 X Xjj2 X X Xijp
eg., the outcome when x; ;1 = 2 is twice that when x; ;1 = 1.

Mean-variance relationship: Let ¢;; = XX j1 X -+ X Xjjp. Then

Yij = Hj X €ij
Varly;j|u] = Var[p x eij|py]
= pj x Varleij|]

If there are multiplicative effects, we expect heteroscedasticity:

e groups with large means will have large variances;

e groups with small means will have small variances.
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Mean-variance relationships

A mean-variance relationship can be evaluated with a fitted versus residual plot.

plot( fit.grouse$fit, fit.grouse$res)
abline(h=0,1ty=2)
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fit.grouse$fit
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Variance stabilizing transformations

Log transformation: Suppose the multiplicative model is correct.

Vij =logyij =log(i; X xij1 X Xij2 X ==+ X Xij,p)
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Power transformations

In many cases, the effects are neither strictly additive or multiplicative.
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In many cases, the effects are neither strictly additive or multiplicative.

In such cases, we might hope that there is some value p for which
G P — e
Yij =VYij = W tE€ij

holds approximately.

29/47



29/47

Checking for heteroscedasticity
000000000000 e000

Power transformations

In many cases, the effects are neither strictly additive or multiplicative.
In such cases, we might hope that there is some value p for which

Vii =iy =t e
holds approximately.

Common power transformations:
p name

1 no transformation

1/2  square-root transformation

1/4  quarter-power transformation

0 log transformation (in a limiting sense)
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ty.grouse<-sqrt(y.grouse)
fit.tgrouse<-lm(ty.grouse~as.factor(g.grouse))

mpar ()

par (mfrow=c(1,2))

Checking for heteroscedasticity
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Example: Tick data

plot(fit.tgrouse$fit, fit.tgrouse$res) ; abline(h=0)
plot(fit.grouse$fit, fit.grouse$res) ; abline(h=0)
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What about normality?
mpar ()
par (mfrow=c(1,2))
qqnorm(fit.tgrouse$res) ; qqline(fit.tgrouse$res)
qgnorm(fit.grouse$res) ; qgline(fit.grouse$res)
Normal Q-Q Plot ° Normal Q-Q Plot
™ °
5 °
w®
L
s
3 2o g
2 29 3
= c L
[ [}
=3 3
(o4 (o4
2 2
Q Q
£ £°
© a
4] 1]
S
| &
o
N
I o
T T T T T T T T T T T T T T
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

31/47

Theoretical Quantiles

Theoretical Quantiles



Checking for nonnormality Checking for heteroscedasticity Macro-level assumptions
000000000000 0000000000000 00e

Recommendations

Power transformations: Pros
If your data are non-normal and exhibit a mean variance relation, a
transformation can

e stabilize the variance across groups;
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Macro-level assumptions

Yij = pi+€ij
{eij} ~iid N(0,0)
1y i~ iid N(p, 7°)

Assumptions concerning between-group variation:

There is no heteroscedasticity to check.

Only normality and independence need to be considered.
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Macro-level assumptions

Yij = pi + €ij
{eij} ~iid N(0,07)
Hiyevvs fbm ™ iid N(,LL, 7—2)

Assumptions concerning between-group variation:

e the y;'s are independent;
e the p;'s are normally distributed.

There is no heteroscedasticity to check.

Only normality and independence need to be considered.

Macro-level assumptions
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Checking the macro level distribution

M1y ooy om iid N(/L,O’2)
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Checking the macro level distribution

M1y ooy om iid N(/IJ70—2)

Evaluation via group sample means:
Assumptions about y;'s can be assesed via the the y;’s.
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Distribution of group sample means

Assume for the moment that the sample sizes are constant.
Expectation of y;: Under the assumptions,
Elyi] = E[w + &]
= E[ui] + E[¢]]
=p
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Distribution of group sample means

Assume for the moment that the sample sizes are constant.

Expectation of y;: Under the assumptions,
Ely] = Elw; + &l
= E[w] + E[¢]
=pu
Variance of y;: Under the assumptions,
Var[y;] = Var[p; + &]
= Var|uj] + Var[¢j]

=7 +0°/n
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Checking for nonnormality
0000000000000000

Distribution of group sample means

Assume for the moment that the sample sizes are constant.
Expectation of y;: Under the assumptions,
Elyi] = E[w + &]

= E[w] + E[&]

=u
Variance of y;: Under the assumptions,

Varly;] = Var(u; + &]
= Var|uj] + Var[¢j]
=7 +0°/n
Distribution of y;: If ¢;;'s are iid normal and, independently, p;’s are iid

normal, then
Vi,eooy Ym ~ iid N(M,T2 + Jz/n)
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Example: Wheat yield

ybar.wheat<-c(tapply(y.wheat,g.wheat,mean))

qgnorm(ybar.wheat) ; qqline(ybar.wheat)

Normal Q-Q Plot

Sample Quantiles

15.0

15

Theoretical Quantiles
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Example: Wheat yield

ybar.wheat<-c(tapply(y.wheat,g.wheat,mean))

qgnorm(ybar.wheat) ; qqline(ybar.wheat)

Normal Q-Q Plot
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No cause for alarm.
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Unequal sample sizes

Var[y;] = 24 02/nj

If sample sizes are unequal, then
® Vi,...,¥m's are not identically distributed.

e the variance of y; depends on its sample size.

The distribution of yi, ..., ¥m will be a scale mixture of normals.

In practice
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Var[y] = 2+ 02/nj

If sample sizes are unequal, then
® Vi,...,¥m's are not identically distributed.

e the variance of y; depends on its sample size.

The distribution of y1,..., ¥m will be a scale mixture of normals.
In practice
e If 0°/n; is small compared to 72, {J1, ..., ym} should look normal.

37/47



Checking for nonnormality Checking for heteroscedasticity Macro-level assumptions
000000000000 000000000000 0000

Unequal sample sizes
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If sample sizes are unequal, then
® Vi,...,¥m's are not identically distributed.

e the variance of y; depends on its sample size.

The distribution of y1,..., ¥m will be a scale mixture of normals.
In practice
e If 02/n; is small compared to 72, {}1,..., ¥} should look normal.
e If 6°/n; is large compared to 72, {71, ..., ¥} might not look normal, even

if the assumptions are correct.
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t2<-

A fabricated example

1 ; s2<-5 ; mu<-60

m<-100

mu. group<-rnorm(m,mu,sqrt (t2))

n.sim<-y.sim<-g.sim<-NULL
for(j in 1:m)

{

n.

y

j<-round(1+49#*rbeta(l,.1,.1))

.j<-rnorm(n.j,mu.group[jl,sqrt(s2))

.sim<-c(y.sim,y.j)
.sim<-c(g.sim,rep(j,n.j))
.sim<-c(n.sim,n.j)

table(n.sim)

## n.sim
## 1 2 3 7 8 10 11 14 17 23 25 26 33 36 44 45 49 50
##36 2 1 2 1 1 3 2 3 2 1 1 1 1 2 2 633

Macro-level assumptions



Checking for nonnormality
000000000000

39/47

Checking for heteroscedasticity
0000000000000 000

A fabricated example

ybar.sim<-c(tapply(y.sim,g.sim,mean))

mpar ()

par (mfrow=c(1,4))

qgnorm(ybar.sim); qgline(ybar.sim)

z<-rnorm(length(ybar.sim))
z<-rnorm(length(ybar.sim))

z<-rnorm(length(ybar.sim))

Normal Q-Q Plot

; qqnorm(z); qqline(z)

; qqnorm(z); qqline(z)

; qgnorm(z); qqline(z)

Normal Q-Q Plot

Normal Q-Q Plot

Macro-level assumptions

Normal Q-Q Plot
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Standardized effects

If we knew p, 02, 72, we could standardize the ¥;'s appropriately:

Y F N, 1)

/T2 + 0?/n;
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Standardized effects

If we knew p, 0%, 7%, we could standardize the ;'s appropriately:
Y F N, 1)

zbar.sim<- (ybar.sim -mu)/sqrt( t2+ s2/n.sim)
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Standardized effects

mpar ()

par (mfrow=c(1,2))
qgnorm(ybar.sim); qgline(ybar.sim)
qgnorm(zbar.sim); qgqline(zbar.sim)

Normal Q-Q Plot

Normal Q-Q Plot

Macro-level assumptions
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Standardized effects

An ad-hoc approach is to replace i, 0%, 72 with their estimates:
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Standardized effects

An ad-hoc approach is to replace i, 0%, 72 with their estimates:

il LN, 1)

## fit mized effects model and extract coefficients
fit.1lme<-lmer(y.sim~1+(1lg.sim))

mu.mle<-fixef (fit.lme)

s2.mle<- sigma(fit.lme) 2

t2.mle <- as.numeric(VarCorr(fit.lme)$g)

## compuate standardized group means
zbar.sim<- (ybar.sim -mu.mle)/sqrt( t2.mle+ s2.mle/n.sim)
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Standardized effects

mpar ()

par (mfrow=c(1,2))
qgnorm(ybar.sim); qgline(ybar.sim)
qgnorm(zbar.sim); qgqline(zbar.sim)

Normal Q-Q Plot

Normal Q-Q Plot

Macro-level assumptions
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Example:

ybar.nels<-c(tapply(y.nels,g.nels,mean))

mpar () par(mfrow=c(1,4)) qqnorm(ybar.nels) ; qqline(ybar.nels)
z<-rnorm(length(ybar.
z<-rnorm(length(ybar.
z<-rnorm(length(ybar.

Normal Q-Q Plot

nels)) ; qqnorm(z);
nels)) ; qgnorm(z);
nels)) ; qgnorm(z);

Normal Q-Q Plot

NELS data

qqline(z)
qqline(z)
qqline(z)

Normal Q-Q Plot

Macro-level assumptions

Normal Q-Q Plot
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Standardized effects

## fit mized effects model and extract coefficients
fit.lme<-lmer(y.nels~1+(1lg.nels))

mu.mle<-fixef (fit.1lme)

s2.mle<- sigma(fit.lme) 2

t2.mle <- as.numeric(VarCorr(fit.lme)$g)

## compuate standardized group means
zbar.nels<- (ybar.nels -mu.mle)/sqrt( t2.mle+ s2.mle/n.nels)
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Standardized effects

mpar ()

par (mfrow=c(1,2))

qgnorm(ybar.nels); gqline(ybar.nels)
qqnorm(zbar.nels); qqline(zbar.nels)

Normal Q-Q Plot Normal Q-Q Plot
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Comments

QQplots of sample means should be sufficient:
It is hard to imagine erroneously rejecting normality because of a sample size
difference.
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Comments

QQplots of sample means should be sufficient:
It is hard to imagine erroneously rejecting normality because of a sample size
difference.

Nonnormality may be due to observable group-level factors:

Yij = Wj +€ij
K = Bo + Bixi +
Y1y ooy Ym ~ did N(O, 7'2)

We will consider such models next.
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