Checking assumptions 560 Hierarchical modeling

Peter Hoff

Statistics, University of Washington

Checking for heteroscedasticity

Macro-level assumptions

Assumptions of the HNM

$$y_{i,j} = \mu_i + \epsilon_{i,j}$$

$$\{\epsilon_{i,j}\} \sim \text{iid } N(0, \sigma^2) \tag{1}$$

$$u_1, \dots, \mu_m \sim \text{iid } N(\mu, \tau^2) \tag{2}$$

Assumptions concerning within-group variation: Item (1) implies

- the $\epsilon_{i,j}$'s are independent;
- the $\epsilon_{i,j}$'s have the same variance in each group;
- the $\epsilon_{i,j}$'s are normally distributed.

- the μ_j 's are independent;
- the μ_j 's are normally distributed.

Checking for heteroscedasticity

Macro-level assumptions

Assumptions of the HNM

$$y_{i,j} = \mu_i + \epsilon_{i,j}$$

$$\{\epsilon_{i,j}\} \sim \text{iid } N(0, \sigma^2) \tag{1}$$

Assumptions concerning within-group variation: Item (1) implies

- the $\epsilon_{i,j}$'s are independent;
- the $\epsilon_{i,j}$'s have the same variance in each group;
- the $\epsilon_{i,j}$'s are normally distributed.

- the μ_j 's are independent;
- the μ_j 's are normally distributed.

Checking for heteroscedasticity

Macro-level assumptions

Assumptions of the HNM

$$y_{i,j} = \mu_i + \epsilon_{i,j}$$

$$\{\epsilon_{i,j}\} \sim \text{iid } N(0, \sigma^2)$$

$$(1)$$

$$\mu_1, \dots, \mu_m \sim \text{iid } N(\mu, \tau^2)$$

$$(2)$$

Assumptions concerning within-group variation: Item (1) implies

- the ε_{i,j}'s are independent;
- the $\epsilon_{i,j}$'s have the same variance in each group;
- the $\epsilon_{i,j}$'s are normally distributed.

- the μ_j's are independent;
- the μ_j 's are normally distributed.

Checking for heteroscedasticity

Macro-level assumptions

Assumptions of the HNM

$$y_{i,j} = \mu_i + \epsilon_{i,j}$$

$$\{\epsilon_{i,j}\} \sim \text{iid } N(0, \sigma^2)$$

$$\mu_1, \dots, \mu_m \sim \text{iid } N(\mu, \tau^2)$$
(2)

Assumptions concerning within-group variation: Item (1) implies

- the ε_{i,j}'s are independent;
- the $\epsilon_{i,j}$'s have the same variance in each group;
- the $\epsilon_{i,j}$'s are normally distributed.

- the μ_j 's are independent;
- the μ_j 's are normally distributed.

Checking for heteroscedasticity

Macro-level assumptions

Assumptions of the HNM

$$y_{i,j} = \mu_i + \epsilon_{i,j}$$

$$\{\epsilon_{i,j}\} \sim \text{iid } N(0, \sigma^2)$$

$$\mu_1, \dots, \mu_m \sim \text{iid } N(\mu, \tau^2)$$
(2)

Assumptions concerning within-group variation: Item (1) implies

- the ε_{i,j}'s are independent;
- the $\epsilon_{i,j}$'s have the same variance in each group;
- the $\epsilon_{i,j}$'s are normally distributed.

- the μ_j 's are independent;
- the μ_j 's are normally distributed.

Checking for heteroscedasticity

Macro-level assumptions

Assumptions of the HNM

$$y_{i,j} = \mu_i + \epsilon_{i,j}$$

$$\{\epsilon_{i,j}\} \sim \text{iid } N(0, \sigma^2) \tag{1}$$

$$\mu_1,\ldots,\mu_m\sim \mathrm{iid} N(\mu,\tau^2)$$
 (2)

Assumptions concerning within-group variation: Item (1) implies

- the $\epsilon_{i,j}$'s are independent;
- the $\epsilon_{i,j}$'s have the same variance in each group;
- the $\epsilon_{i,j}$'s are normally distributed.

- the µ_j's are independent;
- the μ_i's are normally distributed.

Checking for heteroscedasticity

Macro-level assumptions

Assumptions of the HNM

$$y_{i,j} = \mu_i + \epsilon_{i,j}$$

$$\{\epsilon_{i,j}\} \sim \text{iid } N(0, \sigma^2) \tag{1}$$

$$\mu_1,\ldots,\mu_m\sim \text{iid }N(\mu,\tau^2)$$
 (2)

Assumptions concerning within-group variation: Item (1) implies

- the $\epsilon_{i,j}$'s are independent;
- the $\epsilon_{i,j}$'s have the same variance in each group;
- the $\epsilon_{i,j}$'s are normally distributed.

- the µ_j's are independent;
- the μ_i's are normally distributed.

Checking for heteroscedasticity

Macro-level assumptions

Assumptions of the HNM

$$y_{i,j} = \mu_i + \epsilon_{i,j}$$

$$\{\epsilon_{i,j}\} \sim \text{iid } N(0, \sigma^2) \tag{1}$$

$$\mu_1, \dots, \mu_m \sim \text{iid } N(\mu, \tau^2) \tag{2}$$

Assumptions concerning within-group variation: Item (1) implies

- the $\epsilon_{i,j}$'s are independent;
- the $\epsilon_{i,j}$'s have the same variance in each group;
- the $\epsilon_{i,j}$'s are normally distributed.

- the µ_j's are independent;
- the μ_i's are normally distributed.

Checking for heteroscedasticity

Macro-level assumptions

Assumptions of the HNM

$$y_{i,j} = \mu_i + \epsilon_{i,j}$$

$$\{\epsilon_{i,j}\} \sim \text{iid } N(0, \sigma^2) \tag{1}$$

$$\mu_1, \dots, \mu_m \sim \operatorname{IId} N(\mu, \tau^2) \tag{2}$$

Assumptions concerning within-group variation: Item (1) implies

- the $\epsilon_{i,j}$'s are independent;
- the $\epsilon_{i,j}$'s have the same variance in each group;
- the $\epsilon_{i,j}$'s are normally distributed.

- the µ_j's are independent;
- the μ_j 's are normally distributed.

Checking for heteroscedasticity

Macro-level assumptions

Assumptions of the HNM

$$y_{i,j} = \mu_i + \epsilon_{i,j}$$

$$\{\epsilon_{i,j}\} \sim \text{iid } N(0, \sigma^2) \tag{1}$$

$$\mu_1, \dots, \mu_m \sim \operatorname{IId} N(\mu, \tau^2) \tag{2}$$

Assumptions concerning within-group variation: Item (1) implies

- the $\epsilon_{i,j}$'s are independent;
- the $\epsilon_{i,j}$'s have the same variance in each group;
- the $\epsilon_{i,j}$'s are normally distributed.

- the µ_j's are independent;
- the μ_j 's are normally distributed.

Checking for heteroscedasticity

Macro-level assumptions

Assumptions of the HNM

$$y_{i,j} = \mu_i + \epsilon_{i,j}$$

$$\{\epsilon_{i,j}\} \sim \text{iid } N(0, \sigma^2) \tag{1}$$

$$\mu_1,\ldots,\mu_m\sim {\rm iid} N(\mu,\tau^2)$$
 (2)

Assumptions concerning within-group variation: Item (1) implies

- the $\epsilon_{i,j}$'s are independent;
- the $\epsilon_{i,j}$'s have the same variance in each group;
- the $\epsilon_{i,j}$'s are normally distributed.

- the μ_j 's are independent;
- the μ_j 's are normally distributed.

Assumptions of the HNM

$$y_{i,j} = \mu_i + \epsilon_{i,j}$$

$$\{\epsilon_{i,j}\} \sim \text{iid } N(0, \sigma^2)$$
(1)

$$\mu_1,\ldots,\mu_m\sim \mathrm{iid} N(\mu,\tau^2)$$
 (2)

Assumptions concerning within-group variation: Item (1) implies

- the $\epsilon_{i,j}$'s are independent;
- the $\epsilon_{i,j}$'s have the same variance in each group;
- the $\epsilon_{i,j}$'s are normally distributed.

- the μ_j's are independent;
- the μ_j 's are normally distributed.

Assumptions of the HNM

$$y_{i,j} = \mu_i + \epsilon_{i,j}$$

$$\{\epsilon_{i,j}\} \sim \text{iid } N(0, \sigma^2)$$
(1)

$$\mu_1,\ldots,\mu_m\sim \mathrm{iid} N(\mu,\tau^2)$$
 (2)

Assumptions concerning within-group variation: Item (1) implies

- the $\epsilon_{i,j}$'s are independent;
- the $\epsilon_{i,j}$'s have the same variance in each group;
- the $\epsilon_{i,j}$'s are normally distributed.

- the μ_j's are independent;
- the μ_j 's are normally distributed.

Assumptions of the HNM

$$y_{i,j} = \mu_i + \epsilon_{i,j}$$

$$\{\epsilon_{i,j}\} \sim \text{iid } N(0, \sigma^2)$$
(1)

$$\mu_1,\ldots,\mu_m\sim \mathrm{iid} N(\mu,\tau^2)$$
 (2)

Assumptions concerning within-group variation: Item (1) implies

- the $\epsilon_{i,j}$'s are independent;
- the $\epsilon_{i,j}$'s have the same variance in each group;
- the $\epsilon_{i,j}$'s are normally distributed.

- the μ_j's are independent;
- the μ_j 's are normally distributed.

Checking for heteroscedasticity

Hierarchy of micro-level assumptions

Some assumptions are more important than others. Statistical folklore (and theoretical results) suggest the order of importance of the assumptions is independence: the $\epsilon_{i,j}$'s are independent; constant variance: the $\epsilon_{i,j}$'s have the same variance in each group; normality: the $\epsilon_{i,j}$'s are normally distributed.

Cautions: Ignoring violations can lead to invalid inference dependence: can lead to inaccurate *p*-values and confidence intervals; nonconstant variance: can affect type I error rates and estimation efficiency; nonnormality: our procedures are somewhat robust to nonnormality (CLT).

Hierarchy of micro-level assumptions

Some assumptions are more important than others. Statistical folklore (and theoretical results) suggest the order of importance of the assumptions is independence: the $\epsilon_{i,j}$'s are independent; constant variance: the $\epsilon_{i,j}$'s have the same variance in each group;

normality: the $\epsilon_{i,j}$'s are normally distributed.

Cautions: Ignoring violations can lead to invalid inference dependence: can lead to inaccurate *p*-values and confidence intervals; nonconstant variance: can affect type I error rates and estimation efficiency; nonnormality: our procedures are somewhat robust to nonnormality (CLT).

Hierarchy of micro-level assumptions

Some assumptions are more important than others. Statistical folklore (and theoretical results) suggest the order of importance of the assumptions is independence: the $\epsilon_{i,j}$'s are independent;

constant variance: the $\epsilon_{i,j}$'s have the same variance in each group; normality: the $\epsilon_{i,j}$'s are normally distributed.

Cautions: Ignoring violations can lead to invalid inference dependence: can lead to inaccurate *p*-values and confidence intervals; nonconstant variance: can affect type I error rates and estimation efficiency; nonnormality: our procedures are somewhat robust to nonnormality (CLT).

Checking micro-level assumptions with residuals

We don't observe the $\epsilon_{i,j}$'s, so we can't check these assumptions directly. Standard practice is to evaluate the residuals:

 $y_{i,j} = \mu_j + \epsilon_{i,j}$ $\epsilon_{i,j} = y_{i,j} - \mu_j$

If $\hat{\mu}_j \approx \mu_j$, then

 $\epsilon_{i,j} = y_{i,j} - \mu_j \approx y_{i,j} - \hat{\mu}_j = \hat{\epsilon}_{i,j}$

Here, $\hat{\mu}_i$ could be either \bar{y}_i or the shrinkage estimator. Standard practice is to use \bar{y}_i .

Checking micro-level assumptions with residuals

We don't observe the $\epsilon_{i,j}$'s, so we can't check these assumptions directly. Standard practice is to evaluate the residuals:

$$y_{i,j} = \mu_j + \epsilon_{i,j}$$
$$\epsilon_{i,j} = y_{i,j} - \mu_j$$

If $\hat{\mu}_j \approx \mu_j$, then

$$\epsilon_{i,j} = \mathbf{y}_{i,j} - \mu_j \approx \mathbf{y}_{i,j} - \hat{\mu}_j = \hat{\epsilon}_{i,j}$$

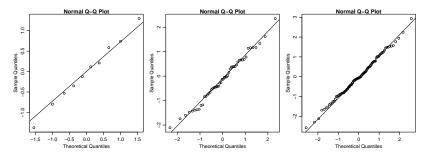
Here, $\hat{\mu}_j$ could be either \bar{y}_j or the shrinkage estimator. Standard practice is to use \bar{y}_j . Checking for heteroscedasticity

Checking normality

Q-Q plots: A useful visual tool for checking normality is the normal scores plot. This plots the sample quantiles versus those of the normal distribution.

```
y10<-rnorm(10) ; y50<-rnorm(50) ; y100<-rnorm(100)
```

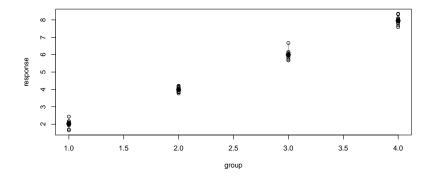
```
qqnorm(y10) ; qqline(y10)
qqnorm(y50) ; qqline(y50)
qqnorm(y100) ; qqline(y100)
```



Checking for heteroscedasticity

Macro-level assumptions

The wrong way to check normality

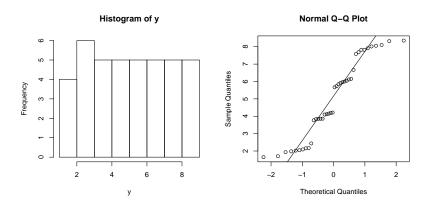


Checking for heteroscedasticity

Macro-level assumptions

The wrong way to check normality

par(mfrow=c(1,2))
hist(y)
qqnorm(y) ; qqline(y)



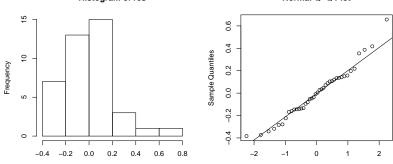
The right way to check normality


```
fit<-lm(y<sup>as.factor(g))</sup>
```

res<-fit\$res

hist(res)

qqnorm(res) ; qqline(res)



Histogram of res

res

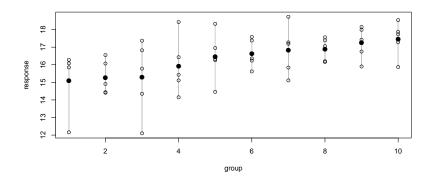
Normal Q-Q Plot

Theoretical Quantiles

Checking for heteroscedasticity

Macro-level assumptions

Example: Wheat yield



Checking for heteroscedasticity

Macro-level assumptions

Example: Wheat yield

```
par(mfrow=c(1,2))
```

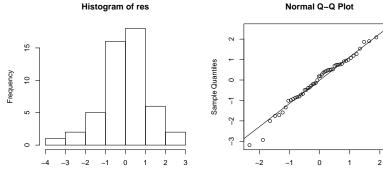
```
fit.wheat<-lm(y.wheat as.factor(g.wheat))</pre>
```

res

res<-fit.wheat\$res

hist(res)

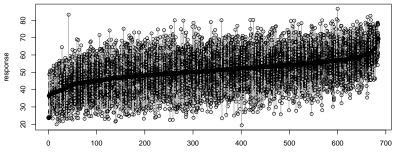
```
qqnorm(res) ; qqline(res)
```



Checking for heteroscedasticity

Macro-level assumptions

Example: Nels data



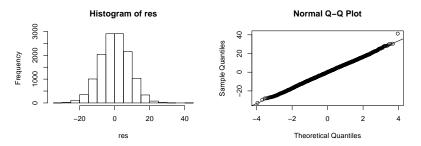
group

Checking for heteroscedasticity

Macro-level assumptions

Example: NELS data

```
par(mfrow=c(1,2))
fit.nels<-lm(y.nels~as.factor(g.nels))
res<-fit.nels$res
hist(res)
qqnorm(res) ; qqline(res)</pre>
```

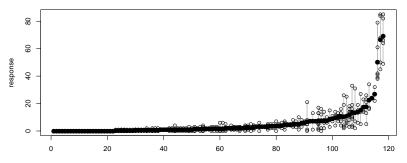


Question: Why do you think these data look so normal?

Example: Grouse ticks

grouseticks[1:5,]

##		INDEX	TICKS	BROOD	HEIGHT	YEAR	LOCATION	CHEIGHT
##	1	1	0	501	465	95	32	2.759305
##	2	2	0	501	465	95	32	2.759305
##	3	3	0	502	472	95	36	9.759305
##	4	4	0	503	475	95	37	12.759305
##	5	5	0	503	475	95	37	12.759305



group

Checking for heteroscedasticity

Macro-level assumptions

Example: Grouse ticks

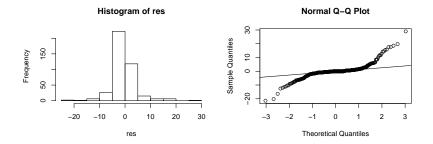
```
par(mfrow=c(1,2))
```

```
fit.grouse<-lm(y.grouse as.factor(g.grouse))</pre>
```

```
res<-fit.grouse$res
```

hist(res)

```
qqnorm(res) ; qqline(res)
```

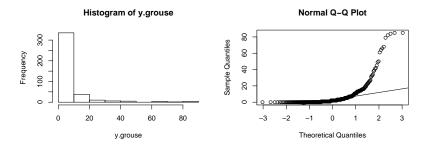


Example: Grouse ticks normality evaluation, the wrong way

par(mfrow=c(1,2))

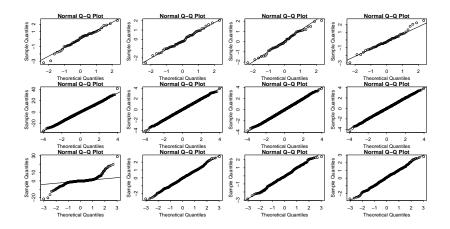
hist(y.grouse)

qqnorm(y.grouse) ; qqline(y.grouse)



Checking for heteroscedasticity

What should my residuals look like?



Macro-level assumptions

Within-group variance

$$\{\epsilon_{i,j}\} \sim N(0,\sigma^2)$$

This implies that not only are the errors normal, but their *variance is the same for all groups*.

How might we evaluate this assumption?

- $s_j^2 \approx \sigma_j^2$
- differences between σ_i^2 's can be evaluated by differences between s_i^2 's.

Macro-level assumptions

Within-group variance

$$\{\epsilon_{i,j}\} \sim N(0,\sigma^2)$$

This implies that not only are the errors normal, but their *variance is the same for all groups*.

How might we evaluate this assumption?

- $s_j^2 \approx \sigma_j^2$
- differences between σ_i^2 's can be evaluated by differences between s_i^2 's.

Macro-level assumptions

Within-group variance

$$\{\epsilon_{i,j}\} \sim N(0,\sigma^2)$$

This implies that not only are the errors normal, but their *variance is the same for all groups*.

How might we evaluate this assumption?

- $s_j^2 \approx \sigma_j^2$
- differences between σ_j^2 's can be evaluated by differences between s_j^2 's.

Macro-level assumptions

Within-group variance

$$\{\epsilon_{i,j}\} \sim N(0,\sigma^2)$$

This implies that not only are the errors normal, but their *variance is the same for all groups*.

How might we evaluate this assumption?

- $s_j^2 \approx \sigma_j^2$
- differences between σ_j^2 's can be evaluated by differences between s_j^2 's.

Macro-level assumptions

Within-group variance

$$\{\epsilon_{i,j}\} \sim N(0,\sigma^2)$$

This implies that not only are the errors normal, but their *variance is the same for all groups*.

How might we evaluate this assumption?

Idea: Suppose $\epsilon_{1,j}, \ldots, \epsilon_{n_j,j} \sim \text{iid } N(0, \sigma_j^2)$

- $s_j^2 \approx \sigma_j^2$
- differences between σ_j^2 's can be evaluated by differences between s_j^2 's.

Macro-level assumptions

Within-group variance

$$\{\epsilon_{i,j}\} \sim N(0,\sigma^2)$$

This implies that not only are the errors normal, but their *variance is the same for all groups*.

How might we evaluate this assumption?

Idea: Suppose $\epsilon_{1,j}, \ldots, \epsilon_{n_j,j} \sim \text{iid } N(0, \sigma_j^2)$

- $s_j^2 \approx \sigma_j^2$
- differences between σ_j^2 's can be evaluated by differences between s_j^2 's.

```
s2.wheat<-c(tapply(y.wheat,g.wheat,var))
s2.wheat
## 1 2 3 4 5 6 7 8 9
## 4.49173 0.43388 2.88970 0.99197 1.94843 0.95908 0.67748 0.86467 1.96792
## 10
## 2.64720
max(s2.wheat)/min(s2.wheat)
## [1] 10.35247</pre>
```

Is the heterogeneity large? Remember $n_j = 5$ for all groups.

Fmax test: A test of equality of variances - reject $H_0: \sigma_i^2 = \sigma^2$ if

 $s_{max}^2/s_{min}^2 > Fmax_{1-lpha,m,n}$

The critical value must be looked up on a table. It is *not* the same as the usual *F*-distribution.

```
s2.wheat<-c(tapply(y.wheat,g.wheat,var))
s2.wheat
## 1 2 3 4 5 6 7 8 9
## 4.49173 0.43388 2.88970 0.99197 1.94843 0.95908 0.67748 0.86467 1.96792
## 10
## 2.64720
max(s2.wheat)/min(s2.wheat)
## [1] 10.35247</pre>
```

Is the heterogeneity large? Remember $n_j = 5$ for all groups.

Fmax test: A test of equality of variances - reject $H_0: \sigma_i^2 = \sigma^2$ if

 $s_{max}^2/s_{min}^2 > Fmax_{1-\alpha,m,n}$

The critical value must be looked up on a table. It is *not* the same as the usual *F*-distribution.

```
s2.wheat<-c(tapply(y.wheat,g.wheat,var))
s2.wheat
## 1 2 3 4 5 6 7 8 9
## 4.49173 0.43388 2.88970 0.99197 1.94843 0.95908 0.67748 0.86467 1.96792
## 10
## 2.64720
max(s2.wheat)/min(s2.wheat)
## [1] 10.35247</pre>
```

Is the heterogeneity large? Remember $n_j = 5$ for all groups.

Fmax test: A test of equality of variances - reject $H_0: \sigma_i^2 = \sigma^2$ if

 $s_{max}^2/s_{min}^2 > Fmax_{1-lpha,m,n}$

The critical value must be looked up on a table. It is *not* the same as the usual *F*-distribution.

```
s2.wheat<-c(tapply(y.wheat,g.wheat,var))
s2.wheat
## 1 2 3 4 5 6 7 8 9
## 4.49173 0.43388 2.88970 0.99197 1.94843 0.95908 0.67748 0.86467 1.96792
## 10
## 2.64720
max(s2.wheat)/min(s2.wheat)
## [1] 10.35247</pre>
```

Is the heterogeneity large? Remember $n_j = 5$ for all groups.

Fmax test: A test of equality of variances - reject $H_0: \sigma_i^2 = \sigma^2$ if

$$s_{max}^2/s_{min}^2 > Fmax_{1-lpha,m,n}$$

The critical value must be looked up on a table. It is *not* the same as the usual *F*-distribution.

- Let $z_{i,j} = |\hat{\epsilon}_{i,j}|$
- Use the ANOVA F-test for across-group differences in the z_{i,j}'s

```
z.wheat<-abs( fit.wheat$res )
anova(lm(z.wheat`as.factor(g.wheat)) )
## Analysis of Variance Table
##
## Response: z.wheat
## Df Sum Sq Mean Sq F value Pr(>)
## as.factor(g.wheat) 9 4.8893 0.54325 1.0389 0.42
## Residuals 40 20.9174 0.52294
```

- Let $z_{i,j} = |\hat{\epsilon}_{i,j}|$
- Use the ANOVA F-test for across-group differences in the $z_{i,j}$'s

```
z.wheat<-abs( fit.wheat$res )
anova(lm(z.wheat~as.factor(g.wheat)) )
## Analysis of Variance Table
##
## Response: z.wheat
## Df Sum Sq Mean Sq F value Pr(>F
## as.factor(g.wheat) 9 4.8893 0.54325 1.0389 0.427
## Residuals 40 20.9174 0.52294
```

- Let $z_{i,j} = |\hat{\epsilon}_{i,j}|$
- Use the ANOVA F-test for across-group differences in the z_{i,j}'s

```
z.wheat<-abs( fit.wheat$res )
anova(lm(z.wheat~as.factor(g.wheat)) )
## Analysis of Variance Table
##
## Response: z.wheat
## Df Sum Sq Mean Sq F value Pr(>F
## as.factor(g.wheat) 9 4.8893 0.54325 1.0389 0.427
## Residuals 40 20.9174 0.52294
```

- Let $z_{i,j} = |\hat{\epsilon}_{i,j}|$
- Use the ANOVA F-test for across-group differences in the z_{i,j}'s

```
z.wheat<-abs(fit.wheat$res)
anova(lm(z.wheat^as.factor(g.wheat)))
## Analysis of Variance Table
##
## Response: z.wheat
## Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(g.wheat) 9 4.8893 0.54325 1.0389 0.4273
## Residuals 40 20.9174 0.52294
```

Checking for heteroscedasticity

Macro-level assumptions

Example: NELS data

```
s2.nels<-c(tapply(y.nels,g.nels,var))</pre>
max(s2.nels,na.rm=TRUE)
## [1] 187.082
min(s2.nels,na.rm=TRUE)
## [1] 3.20045
n.nels<-table(g.nels)
n.nels[ which.max(s2.nels)]
## 320
## 19
n.nels[ which.min(s2.nels)]
## 643
    2
##
```

Checking for heteroscedasticity

Macro-level assumptions

Example: NELS data

```
z.nels<-abs( fit.nels$res )
anova(lm(z.nels~as.factor(g.nels)) )
## Analysis of Variance Table
##
## Response: z.nels
## Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(g.nels) 683 27078 39.645 1.6092 < 2.2e-16 ***
## Residuals 12290 302776 24.636
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</pre>
```

Checking for heteroscedasticity

Macro-level assumptions

Example: Grouse tick data

```
s2.grouse<-c(tapply(y.grouse,g.grouse,var))</pre>
max(s2.grouse,na.rm=TRUE)
## [1] 346.3
min(s2.grouse,na.rm=TRUE)
## [1] 0
n.grouse<-table(g.grouse)</pre>
n.grouse[ which.max(s2.grouse)]
## 626
  5
##
n.grouse[ which.min(s2.grouse)]
## 501
## 2
```

Checking for heteroscedasticity

Macro-level assumptions

Example: Grouse tick data

```
z.grouse<-abs( fit.grouse$res )
anova(lm(z.grouse~as.factor(g.grouse)) )
## Analysis of Variance Table
##
## Response: z.grouse
## Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(g.grouse) 117 3954.0 33.795 4.8627 < 2.2e-16 ***
## Residuals 285 1980.7 6.950
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</pre>
```

NELS data:

- The evidence suggests the residual variance is not equal across schools.
- It seems plausible that some schools are more heterogeneous than others due to observable factors (SES, for example)
- Coming up, we will evaluate heteroscedasticity after including additional micro-level information. This generally reduces the across-group heteroscedasticity.

- The data are clearly nonnormal, and have nonconstant variance.
- One approach is to transform the data, which in some cases can remedy both problems.
- Alternatively, we can fit models that explicitly allow for the count-valued nature of the data (GLMEs).

NELS data:

- The evidence suggests the residual variance is not equal across schools.
- It seems plausible that some schools are more heterogeneous than others due to observable factors (SES, for example)
- Coming up, we will evaluate heteroscedasticity after including additional micro-level information. This generally reduces the across-group heteroscedasticity.

- The data are clearly nonnormal, and have nonconstant variance.
- One approach is to transform the data, which in some cases can remedy both problems.
- Alternatively, we can fit models that explicitly allow for the count-valued nature of the data (GLMEs).

NELS data:

- The evidence suggests the residual variance is not equal across schools.
- It seems plausible that some schools are more heterogeneous than others due to observable factors (SES, for example)
- Coming up, we will evaluate heteroscedasticity after including additional micro-level information. This generally reduces the across-group heteroscedasticity.

- The data are clearly nonnormal, and have nonconstant variance.
- One approach is to transform the data, which in some cases can remedy both problems.
- Alternatively, we can fit models that explicitly allow for the count-valued nature of the data (GLMEs).

NELS data:

- The evidence suggests the residual variance is not equal across schools.
- It seems plausible that some schools are more heterogeneous than others due to observable factors (SES, for example)
- Coming up, we will evaluate heteroscedasticity after including additional micro-level information. This generally reduces the across-group heteroscedasticity.

- The data are clearly nonnormal, and have nonconstant variance.
- One approach is to transform the data, which in some cases can remedy both problems.
- Alternatively, we can fit models that explicitly allow for the count-valued nature of the data (GLMEs).

NELS data:

- The evidence suggests the residual variance is not equal across schools.
- It seems plausible that some schools are more heterogeneous than others due to observable factors (SES, for example)
- Coming up, we will evaluate heteroscedasticity after including additional micro-level information. This generally reduces the across-group heteroscedasticity.

- The data are clearly nonnormal, and have nonconstant variance.
- One approach is to transform the data, which in some cases can remedy both problems.
- Alternatively, we can fit models that explicitly allow for the count-valued nature of the data (GLMEs).

NELS data:

- The evidence suggests the residual variance is not equal across schools.
- It seems plausible that some schools are more heterogeneous than others due to observable factors (SES, for example)
- Coming up, we will evaluate heteroscedasticity after including additional micro-level information. This generally reduces the across-group heteroscedasticity.

- The data are clearly nonnormal, and have nonconstant variance.
- One approach is to transform the data, which in some cases can remedy both problems.
- Alternatively, we can fit models that explicitly allow for the count-valued nature of the data (GLMEs).

NELS data:

- The evidence suggests the residual variance is not equal across schools.
- It seems plausible that some schools are more heterogeneous than others due to observable factors (SES, for example)
- Coming up, we will evaluate heteroscedasticity after including additional micro-level information. This generally reduces the across-group heteroscedasticity.

- The data are clearly nonnormal, and have nonconstant variance.
- One approach is to transform the data, which in some cases can remedy both problems.
- Alternatively, we can fit models that explicitly allow for the count-valued nature of the data (GLMEs).

NELS data:

- The evidence suggests the residual variance is not equal across schools.
- It seems plausible that some schools are more heterogeneous than others due to observable factors (SES, for example)
- Coming up, we will evaluate heteroscedasticity after including additional micro-level information. This generally reduces the across-group heteroscedasticity.

- The data are clearly nonnormal, and have nonconstant variance.
- One approach is to transform the data, which in some cases can remedy both problems.
- Alternatively, we can fit models that explicitly allow for the count-valued nature of the data (GLMEs).

NELS data:

- The evidence suggests the residual variance is not equal across schools.
- It seems plausible that some schools are more heterogeneous than others due to observable factors (SES, for example)
- Coming up, we will evaluate heteroscedasticity after including additional micro-level information. This generally reduces the across-group heteroscedasticity.

- The data are clearly nonnormal, and have nonconstant variance.
- One approach is to transform the data, which in some cases can remedy both problems.
- Alternatively, we can fit models that explicitly allow for the count-valued nature of the data (GLMEs).

Checking for heteroscedasticity

Macro-level assumptions

Why are data normal?

Additiive effects: Often, an outcome is the result of many additive effects:

$$y_{i,j} = \mu_j + \epsilon_{i,j}$$
$$= \mu_j + x_{i,j,1} + x_{i,j,2} + \dots + x_{i,j,p}$$

CLT:

In such cases, if the $x_{i,j,k}$'s vary somewhat independently across subjects, the distribution of the $y_{i,j}$'s should look normal (even if the $x_{i,j,k}$'s are not normal).

Checking for heteroscedasticity

Why are data normal?

Additiive effects: Often, an outcome is the result of many additive effects:

$$y_{i,j} = \mu_j + \epsilon_{i,j}$$
$$= \mu_j + x_{i,j,1} + x_{i,j,2} + \dots + x_{i,j,p}$$

CLT:

In such cases, if the $x_{i,j,k}$'s vary somewhat independently across subjects, the distribution of the $y_{i,j}$'s should look normal (even if the $x_{i,j,k}$'s are not normal).

Multiplicative effects

Multiplicative effects: Some outcomes are the result of *multiplicative* effects:

 $y_{i,j} = \mu_j \times x_{i,j,1} \times x_{i,j,2} \times \cdots \times x_{i,j,p}$

eg., the outcome when $x_{i,j,1} = 2$ is twice that when $x_{i,j,1} = 1$.

Mean-variance relationship: Let $\epsilon_{i,j} = \times x_{i,j,1} \times \cdots \times x_{i,j,p}$. Then

$$y_{i,j} = \mu_j \times \epsilon_{i,j}$$
$$Var[y_{i,j}|\mu_j] = Var[\mu_j \times \epsilon_{i,j}|\mu_j]$$
$$= \mu_j^2 \times Var[\epsilon_{i,j}|\mu_j]$$

- groups with large means will have large variances;
- groups with small means will have small variances.

Multiplicative effects

Multiplicative effects: Some outcomes are the result of *multiplicative* effects:

$$y_{i,j} = \mu_j \times x_{i,j,1} \times x_{i,j,2} \times \cdots \times x_{i,j,p}$$

eg., the outcome when $x_{i,j,1} = 2$ is twice that when $x_{i,j,1} = 1$.

Mean-variance relationship: Let $\epsilon_{i,j} = \times x_{i,j,1} \times \cdots \times x_{i,j,p}$. Then

$$y_{i,j} = \mu_j \times \epsilon_{i,j}$$
$$Var[y_{i,j}|\mu_j] = Var[\mu_j \times \epsilon_{i,j}|\mu_j]$$
$$= \mu_j^2 \times Var[\epsilon_{i,j}|\mu_j]$$

- groups with large means will have large variances;
- groups with small means will have small variances.

Multiplicative effects

Multiplicative effects: Some outcomes are the result of *multiplicative* effects:

 $y_{i,j} = \mu_j \times x_{i,j,1} \times x_{i,j,2} \times \cdots \times x_{i,j,p}$

eg., the outcome when $x_{i,j,1} = 2$ is twice that when $x_{i,j,1} = 1$.

Mean-variance relationship: Let $\epsilon_{i,j} = \times x_{i,j,1} \times \cdots \times x_{i,j,p}$. Then

$$y_{i,j} = \mu_j \times \epsilon_{i,j}$$
$$Var[y_{i,j}|\mu_j] = Var[\mu_j \times \epsilon_{i,j}|\mu_j]$$
$$= \mu_j^2 \times Var[\epsilon_{i,j}|\mu_j]$$

- groups with large means will have large variances;
- groups with small means will have small variances.

Multiplicative effects

Multiplicative effects: Some outcomes are the result of *multiplicative* effects:

$$y_{i,j} = \mu_j \times x_{i,j,1} \times x_{i,j,2} \times \cdots \times x_{i,j,p}$$

eg., the outcome when $x_{i,j,1} = 2$ is twice that when $x_{i,j,1} = 1$.

Mean-variance relationship: Let $\epsilon_{i,j} = \times x_{i,j,1} \times \cdots \times x_{i,j,p}$. Then

 $\begin{aligned} \mathbf{y}_{i,j} &= \boldsymbol{\mu}_j \times \boldsymbol{\epsilon}_{i,j} \\ \text{Var}[y_{i,j} | \boldsymbol{\mu}_j] &= \text{Var}[\boldsymbol{\mu}_j \times \boldsymbol{\epsilon}_{i,j} | \boldsymbol{\mu}_j] \\ &= \boldsymbol{\mu}_j^2 \times \text{Var}[\boldsymbol{\epsilon}_{i,j} | \boldsymbol{\mu}_j] \end{aligned}$

- groups with large means will have large variances;
- groups with small means will have small variances.

Multiplicative effects

Multiplicative effects: Some outcomes are the result of *multiplicative* effects:

$$y_{i,j} = \mu_j \times x_{i,j,1} \times x_{i,j,2} \times \cdots \times x_{i,j,p}$$

eg., the outcome when $x_{i,j,1} = 2$ is twice that when $x_{i,j,1} = 1$.

Mean-variance relationship: Let $\epsilon_{i,j} = \times x_{i,j,1} \times \cdots \times x_{i,j,p}$. Then

$$\begin{aligned} \mathbf{y}_{i,j} &= \boldsymbol{\mu}_j \times \boldsymbol{\epsilon}_{i,j} \\ \mathsf{Var}[\boldsymbol{y}_{i,j} | \boldsymbol{\mu}_j] &= \mathsf{Var}[\boldsymbol{\mu}_j \times \boldsymbol{\epsilon}_{i,j} | \boldsymbol{\mu}_j] \\ &= \boldsymbol{\mu}_j^2 \times \mathsf{Var}[\boldsymbol{\epsilon}_{i,j} | \boldsymbol{\mu}_j] \end{aligned}$$

- groups with large means will have large variances;
- groups with small means will have small variances.

Multiplicative effects

Multiplicative effects: Some outcomes are the result of *multiplicative* effects:

$$y_{i,j} = \mu_j \times x_{i,j,1} \times x_{i,j,2} \times \cdots \times x_{i,j,p}$$

eg., the outcome when $x_{i,j,1} = 2$ is twice that when $x_{i,j,1} = 1$.

Mean-variance relationship: Let $\epsilon_{i,j} = \times x_{i,j,1} \times \cdots \times x_{i,j,p}$. Then

$$egin{aligned} \mathbf{y}_{i,j} &= \mu_j imes \epsilon_{i,j} \ \mathsf{Var}[y_{i,j}|\mu_j] &= \mathsf{Var}[\mu_j imes \epsilon_{i,j}|\mu_j] \ &= \mu_j^2 imes \mathsf{Var}[\epsilon_{i,j}|\mu_j] \end{aligned}$$

- groups with large means will have large variances;
- groups with small means will have small variances.

Multiplicative effects

Multiplicative effects: Some outcomes are the result of *multiplicative* effects:

$$y_{i,j} = \mu_j \times x_{i,j,1} \times x_{i,j,2} \times \cdots \times x_{i,j,p}$$

eg., the outcome when $x_{i,j,1} = 2$ is twice that when $x_{i,j,1} = 1$.

Mean-variance relationship: Let $\epsilon_{i,j} = \times x_{i,j,1} \times \cdots \times x_{i,j,p}$. Then

$$egin{aligned} \mathbf{y}_{i,j} &= \mu_j imes \epsilon_{i,j} \ \mathsf{Var}[y_{i,j}|\mu_j] &= \mathsf{Var}[\mu_j imes \epsilon_{i,j}|\mu_j] \ &= \mu_j^2 imes \mathsf{Var}[\epsilon_{i,j}|\mu_j] \end{aligned}$$

- groups with large means will have large variances;
- groups with small means will have small variances.

Multiplicative effects

Multiplicative effects: Some outcomes are the result of *multiplicative* effects:

$$y_{i,j} = \mu_j \times x_{i,j,1} \times x_{i,j,2} \times \cdots \times x_{i,j,p}$$

eg., the outcome when $x_{i,j,1} = 2$ is twice that when $x_{i,j,1} = 1$.

Mean-variance relationship: Let $\epsilon_{i,j} = \times x_{i,j,1} \times \cdots \times x_{i,j,p}$. Then

$$egin{aligned} \mathbf{y}_{i,j} &= \mu_j imes \epsilon_{i,j} \ & \mathsf{Var}[y_{i,j}|\mu_j] &= \mathsf{Var}[\mu_j imes \epsilon_{i,j}|\mu_j] \ &= \mu_j^2 imes \mathsf{Var}[\epsilon_{i,j}|\mu_j] \end{aligned}$$

- groups with large means will have large variances;
- groups with small means will have small variances.

Multiplicative effects

Multiplicative effects: Some outcomes are the result of *multiplicative* effects:

$$y_{i,j} = \mu_j \times x_{i,j,1} \times x_{i,j,2} \times \cdots \times x_{i,j,p}$$

eg., the outcome when $x_{i,j,1} = 2$ is twice that when $x_{i,j,1} = 1$.

Mean-variance relationship: Let $\epsilon_{i,j} = \times x_{i,j,1} \times \cdots \times x_{i,j,p}$. Then

$$egin{aligned} \mathbf{y}_{i,j} &= \mu_j imes \epsilon_{i,j} \ \mathsf{Var}[y_{i,j}|\mu_j] &= \mathsf{Var}[\mu_j imes \epsilon_{i,j}|\mu_j] \ &= \mu_j^2 imes \mathsf{Var}[\epsilon_{i,j}|\mu_j] \end{aligned}$$

- groups with large means will have large variances;
- groups with small means will have small variances.

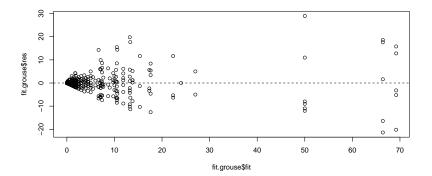
Checking for heteroscedasticity

Macro-level assumptions

Mean-variance relationships

A mean-variance relationship can be evaluated with a *fitted versus residual* plot.

```
plot( fit.grouse$fit, fit.grouse$res)
abline(h=0,lty=2)
```



Checking for heteroscedasticity

Variance stabilizing transformations

Log transformation: Suppose the multiplicative model is correct.

$$\begin{split} \tilde{y}_{i,j} &= \log y_{i,j} = \log(\mu_j \times x_{i,j,1} \times x_{i,j,2} \times \dots \times x_{i,j,p}) \\ &= \log \mu_j + \log x_{i,j,1} + \log x_{i,j,2} + \dots + \log x_{i,j,p} \\ &= \tilde{\mu}_j + \tilde{x}_{i,j,1} + \tilde{x}_{i,j,2} + \dots + \tilde{x}_{i,j,p} \end{split}$$

If the variances of the $\tilde{x}_{i,j,k}$'s is constant across groups, then

- the distribution of the $\tilde{y}_{i,j}$'s should be approximately normal, within groups.

Checking for heteroscedasticity

Variance stabilizing transformations

Log transformation: Suppose the multiplicative model is correct.

$$\begin{split} \tilde{y}_{i,j} &= \log y_{i,j} = \log(\mu_j \times x_{i,j,1} \times x_{i,j,2} \times \cdots \times x_{i,j,p}) \\ &= \log \mu_j + \log x_{i,j,1} + \log x_{i,j,2} + \cdots + \log x_{i,j,p} \\ &= \tilde{\mu}_j + \tilde{x}_{i,j,1} + \tilde{x}_{i,j,2} + \cdots + \tilde{x}_{i,j,p} \end{split}$$

- the distribution of the
 *y*_{i,j}'s should be approximately normal, within groups.

Log transformation: Suppose the multiplicative model is correct.

$$\begin{split} \tilde{y}_{i,j} &= \log y_{i,j} = \log(\mu_j \times x_{i,j,1} \times x_{i,j,2} \times \dots \times x_{i,j,p}) \\ &= \log \mu_j + \log x_{i,j,1} + \log x_{i,j,2} + \dots + \log x_{i,j,p} \\ &= \tilde{\mu}_j + \tilde{x}_{i,j,1} + \tilde{x}_{i,j,2} + \dots + \tilde{x}_{i,j,p} \end{split}$$

- the variance of the
 y i j 's should be constant across groups;
- the distribution of the
 *y*_{i,j}'s should be approximately normal, within groups.

Log transformation: Suppose the multiplicative model is correct.

$$\begin{split} \tilde{y}_{i,j} &= \log y_{i,j} = \log(\mu_j \times x_{i,j,1} \times x_{i,j,2} \times \dots \times x_{i,j,p}) \\ &= \log \mu_j + \log x_{i,j,1} + \log x_{i,j,2} + \dots + \log x_{i,j,p} \\ &= \tilde{\mu}_j + \tilde{x}_{i,j,1} + \tilde{x}_{i,j,2} + \dots + \tilde{x}_{i,j,p} \end{split}$$

- the variance of the
 y i j 's should be constant across groups;
- the distribution of the
 *y*_{i,j}'s should be approximately normal, within groups.

Log transformation: Suppose the multiplicative model is correct.

$$\begin{split} \tilde{y}_{i,j} &= \log y_{i,j} = \log \left(\mu_j \times x_{i,j,1} \times x_{i,j,2} \times \cdots \times x_{i,j,p} \right) \\ &= \log \mu_j + \log x_{i,j,1} + \log x_{i,j,2} + \cdots + \log x_{i,j,p} \\ &= \tilde{\mu}_j + \tilde{x}_{i,j,1} + \tilde{x}_{i,j,2} + \cdots + \tilde{x}_{i,j,p} \end{split}$$

- the variance of the y
 _{i,j}'s should be constant across groups;
- the distribution of the
 *y*_{i,j}'s should be approximately normal, within groups.

Log transformation: Suppose the multiplicative model is correct.

$$\begin{split} \tilde{y}_{i,j} &= \log y_{i,j} = \log (\mu_j \times x_{i,j,1} \times x_{i,j,2} \times \dots \times x_{i,j,p}) \\ &= \log \mu_j + \log x_{i,j,1} + \log x_{i,j,2} + \dots + \log x_{i,j,p} \\ &= \tilde{\mu}_j + \tilde{x}_{i,j,1} + \tilde{x}_{i,j,2} + \dots + \tilde{x}_{i,j,p} \end{split}$$

- the variance of the $\tilde{y}_{i,j}$'s should be constant across groups;
- the distribution of the $\tilde{y}_{i,j}$'s should be approximately normal, within groups.

Log transformation: Suppose the multiplicative model is correct.

$$\begin{split} \tilde{y}_{i,j} &= \log y_{i,j} = \log (\mu_j \times x_{i,j,1} \times x_{i,j,2} \times \dots \times x_{i,j,p}) \\ &= \log \mu_j + \log x_{i,j,1} + \log x_{i,j,2} + \dots + \log x_{i,j,p} \\ &= \tilde{\mu}_j + \tilde{x}_{i,j,1} + \tilde{x}_{i,j,2} + \dots + \tilde{x}_{i,j,p} \end{split}$$

- the variance of the $\tilde{y}_{i,j}$'s should be constant across groups;
- the distribution of the $\tilde{y}_{i,j}$'s should be approximately normal, within groups.

Log transformation: Suppose the multiplicative model is correct.

$$\begin{split} \tilde{y}_{i,j} &= \log y_{i,j} = \log (\mu_j \times x_{i,j,1} \times x_{i,j,2} \times \cdots \times x_{i,j,p}) \\ &= \log \mu_j + \log x_{i,j,1} + \log x_{i,j,2} + \cdots + \log x_{i,j,p} \\ &= \tilde{\mu}_j + \tilde{x}_{i,j,1} + \tilde{x}_{i,j,2} + \cdots + \tilde{x}_{i,j,p} \end{split}$$

- the variance of the $\tilde{y}_{i,j}$'s should be constant across groups;
- the distribution of the $\tilde{y}_{i,j}$'s should be approximately normal, within groups.

Log transformation: Suppose the multiplicative model is correct.

$$\begin{split} \tilde{y}_{i,j} &= \log y_{i,j} = \log (\mu_j \times x_{i,j,1} \times x_{i,j,2} \times \cdots \times x_{i,j,p}) \\ &= \log \mu_j + \log x_{i,j,1} + \log x_{i,j,2} + \cdots + \log x_{i,j,p} \\ &= \tilde{\mu}_j + \tilde{x}_{i,j,1} + \tilde{x}_{i,j,2} + \cdots + \tilde{x}_{i,j,p} \end{split}$$

- the variance of the $\tilde{y}_{i,j}$'s should be constant across groups;
- the distribution of the $\tilde{y}_{i,j}$'s should be approximately normal, within groups.

Checking for heteroscedasticity

Power transformations

In many cases, the effects are neither strictly additive or multiplicative.

In such cases, we might hope that there is some value p for which

$$\tilde{y}_{i,j} = y_{i,j}^p = \mu_j + \epsilon_{i,j}$$

holds approximately.

Common power transformations:

р	name
1	no transformation
1/2	square-root transformation
1/4	quarter-power transformation
	log transformation (in a limiting sense)

Power transformations

In many cases, the effects are neither strictly additive or multiplicative.

In such cases, we might hope that there is some value p for which

$$\tilde{y}_{i,j} = y_{i,j}^p = \mu_j + \epsilon_{i,j}$$

holds approximately.

Common power transformations:

1 no transformation

1/2 square-root transformation

1/4 quarter-power transformation

0 log transformation (in a limiting sense)

Power transformations

In many cases, the effects are neither strictly additive or multiplicative.

In such cases, we might hope that there is some value p for which

$$\tilde{y}_{i,j} = y_{i,j}^p = \mu_j + \epsilon_{i,j}$$

holds approximately.

Common power transformations:

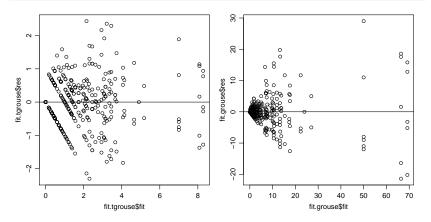
р	name
1	no transformation
1/2	square-root transformation
1/4	quarter-power transformation
0	log transformation (in a limiting sense)

Example: Tick data

```
ty.grouse<-sqrt(y.grouse)
fit.tgrouse<-lm(ty.grouse<sup>as.factor</sup>(g.grouse))
```

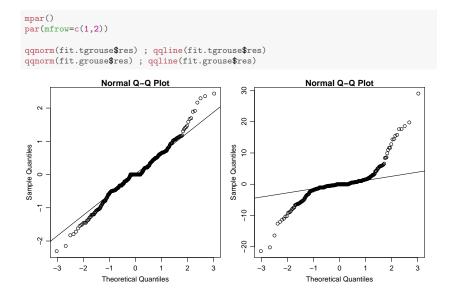
```
mpar()
par(mfrow=c(1,2))
```

```
plot(fit.tgrouse$fit, fit.tgrouse$res) ; abline(h=0)
plot(fit.grouse$fit, fit.grouse$res) ; abline(h=0)
```



Checking for heteroscedasticity

What about normality?



Checking for heteroscedasticity

Macro-level assumptions

Recommendations

Power transformations: Pros

If your data are non-normal and exhibit a mean variance relation, a transformation can

• stabilize the variance across groups;

• make the transformed data more normally distributed (within groups).

Power transformations: Cons

- changes the scale on which your parameters are estimated;
- makes results possibly more difficult to interpret;
- might be less preferable than using a different model (GLME vs LME).

Checking for heteroscedasticity

Macro-level assumptions

Recommendations

Power transformations: Pros

If your data are non-normal and exhibit a mean variance relation, a transformation can

- stabilize the variance across groups;
- make the transformed data more normally distributed (within groups).

Power transformations: Cons

- changes the scale on which your parameters are estimated;
- makes results possibly more difficult to interpret;
- might be less preferable than using a different model (GLME vs LME).

Checking for heteroscedasticity

Macro-level assumptions

Recommendations

Power transformations: Pros

If your data are non-normal and exhibit a mean variance relation, a transformation can

- stabilize the variance across groups;
- make the transformed data more normally distributed (within groups).

Power transformations: Cons

- changes the scale on which your parameters are estimated;
- makes results possibly more difficult to interpret;
- might be less preferable than using a different model (GLME vs LME).

Checking for heteroscedasticity

Macro-level assumptions

Recommendations

Power transformations: Pros

If your data are non-normal and exhibit a mean variance relation, a transformation can

- stabilize the variance across groups;
- make the transformed data more normally distributed (within groups).

Power transformations: Cons

- changes the scale on which your parameters are estimated;
- makes results possibly more difficult to interpret;
- might be less preferable than using a different model (GLME vs LME).

Checking for heteroscedasticity

Macro-level assumptions

Recommendations

Power transformations: Pros

If your data are non-normal and exhibit a mean variance relation, a transformation can

- stabilize the variance across groups;
- make the transformed data more normally distributed (within groups).

Power transformations: Cons

- changes the scale on which your parameters are estimated;
- makes results possibly more difficult to interpret;
- might be less preferable than using a different model (GLME vs LME).

Checking for heteroscedasticity

Macro-level assumptions

Recommendations

Power transformations: Pros

If your data are non-normal and exhibit a mean variance relation, a transformation can

- stabilize the variance across groups;
- make the transformed data more normally distributed (within groups).

Power transformations: Cons

- changes the scale on which your parameters are estimated;
- makes results possibly more difficult to interpret;
- might be less preferable than using a different model (GLME vs LME).

Checking for heteroscedasticity

Macro-level assumptions

Recommendations

Power transformations: Pros

If your data are non-normal and exhibit a mean variance relation, a transformation can

- stabilize the variance across groups;
- make the transformed data more normally distributed (within groups).

Power transformations: Cons

- changes the scale on which your parameters are estimated;
- makes results possibly more difficult to interpret;
- might be less preferable than using a different model (GLME vs LME).

Checking for heteroscedasticity

Macro-level assumptions

Recommendations

Power transformations: Pros

If your data are non-normal and exhibit a mean variance relation, a transformation can

- stabilize the variance across groups;
- make the transformed data more normally distributed (within groups).

Power transformations: Cons

- changes the scale on which your parameters are estimated;
- makes results possibly more difficult to interpret;
- might be less preferable than using a different model (GLME vs LME).

Checking for heteroscedasticity

Macro-level assumptions

Macro-level assumptions

$$y_{i,j} = \mu_i + \epsilon_{i,j}$$
$$\{\epsilon_{i,j}\} \sim \text{iid } N(0, \sigma^2)$$
$$\mu_1, \dots, \mu_m \sim \text{iid } N(\mu, \tau^2)$$

Assumptions concerning between-group variation:

- the μ_j 's are independent;
- the μ_j 's are normally distributed.

There is no heteroscedasticity to check.

Checking for heteroscedasticity

Macro-level assumptions

Macro-level assumptions

$$\begin{aligned} \mathbf{y}_{i,j} &= \boldsymbol{\mu}_i + \boldsymbol{\epsilon}_{i,j} \\ \{\boldsymbol{\epsilon}_{i,j}\} &\sim \text{iid } N(0,\sigma^2) \\ \boldsymbol{\mu}_1, \dots, \boldsymbol{\mu}_m &\sim \text{iid } N(\boldsymbol{\mu}, \tau^2) \end{aligned}$$

Assumptions concerning between-group variation:

- the μ_j 's are independent;
- the μ_j 's are normally distributed.

There is no heteroscedasticity to check.

Checking for heteroscedasticity

Macro-level assumptions

Macro-level assumptions

$$y_{i,j} = \mu_i + \epsilon_{i,j}$$

 $\{\epsilon_{i,j}\} \sim \text{iid } N(0, \sigma^2)$
 $\mu_1, \dots, \mu_m \sim \text{iid } N(\mu, \tau^2)$

Assumptions concerning between-group variation:

- the μ_j 's are independent;
- the μ_j 's are normally distributed.

There is no heteroscedasticity to check.

Checking for heteroscedasticity

Macro-level assumptions

Macro-level assumptions

$$\begin{aligned} y_{i,j} &= \mu_i + \epsilon_{i,j} \\ \{\epsilon_{i,j}\} &\sim \text{iid } N(0,\sigma^2) \\ \mu_1, \dots, \mu_m &\sim \text{iid } N(\mu, \tau^2) \end{aligned}$$

Assumptions concerning between-group variation:

- the μ_j 's are independent;
- the μ_j 's are normally distributed.

There is no heteroscedasticity to check.

Checking for heteroscedasticity

Macro-level assumptions

Macro-level assumptions

$$y_{i,j} = \mu_i + \epsilon_{i,j}$$
$$\{\epsilon_{i,j}\} \sim \text{iid } N(0,\sigma^2)$$
$$\mu_1, \dots, \mu_m \sim \text{iid } N(\mu, \tau^2)$$

Assumptions concerning between-group variation:

- the μ_j 's are independent;
- the μ_j 's are normally distributed.

There is no heteroscedasticity to check.

Checking for heteroscedasticity

Macro-level assumptions

Macro-level assumptions

$$y_{i,j} = \mu_i + \epsilon_{i,j}$$
$$\{\epsilon_{i,j}\} \sim \text{iid } N(0,\sigma^2)$$
$$\mu_1, \dots, \mu_m \sim \text{iid } N(\mu, \tau^2)$$

Assumptions concerning between-group variation:

- the μ_j 's are independent;
- the μ_j 's are normally distributed.

There is no heteroscedasticity to check.

Checking for heteroscedasticity

Macro-level assumptions

Macro-level assumptions

$$y_{i,j} = \mu_i + \epsilon_{i,j}$$
$$\{\epsilon_{i,j}\} \sim \text{iid } N(0,\sigma^2)$$
$$\mu_1, \dots, \mu_m \sim \text{iid } N(\mu, \tau^2)$$

Assumptions concerning between-group variation:

- the μ_j 's are independent;
- the μ_j 's are normally distributed.

There is no heteroscedasticity to check.

Checking for heteroscedasticity

Macro-level assumptions

Macro-level assumptions

$$y_{i,j} = \mu_i + \epsilon_{i,j}$$
$$\{\epsilon_{i,j}\} \sim \text{iid } N(0,\sigma^2)$$
$$\mu_1, \dots, \mu_m \sim \text{iid } N(\mu, \tau^2)$$

Assumptions concerning between-group variation:

- the μ_j's are independent;
- the μ_j 's are normally distributed.

There is no heteroscedasticity to check.

Checking for heteroscedasticity

Macro-level assumptions

Macro-level assumptions

$$y_{i,j} = \mu_i + \epsilon_{i,j}$$
$$\{\epsilon_{i,j}\} \sim \text{iid } N(0,\sigma^2)$$
$$\mu_1, \dots, \mu_m \sim \text{iid } N(\mu, \tau^2)$$

Assumptions concerning between-group variation:

- the μ_j's are independent;
- the μ_j 's are normally distributed.

There is no heteroscedasticity to check.

Checking for heteroscedasticity

Macro-level assumptions

Macro-level assumptions

$$y_{i,j} = \mu_i + \epsilon_{i,j}$$
$$\{\epsilon_{i,j}\} \sim \text{iid } N(0,\sigma^2)$$
$$\mu_1, \dots, \mu_m \sim \text{iid } N(\mu, \tau^2)$$

Assumptions concerning between-group variation:

- the μ_j's are independent;
- the μ_j 's are normally distributed.

There is no heteroscedasticity to check.

Checking for heteroscedasticity

Macro-level assumptions

Macro-level assumptions

$$y_{i,j} = \mu_i + \epsilon_{i,j}$$
$$\{\epsilon_{i,j}\} \sim \text{iid } N(0,\sigma^2)$$
$$\mu_1, \dots, \mu_m \sim \text{iid } N(\mu, \tau^2)$$

Assumptions concerning between-group variation:

- the μ_j 's are independent;
- the μ_j 's are normally distributed.

There is no heteroscedasticity to check.

Checking for heteroscedasticity

Macro-level assumptions

Checking the macro level distribution

$\mu_1,\ldots,\mu_m\sim$ iid $N(\mu,\sigma^2)$

Evaluation via group sample means:

$$ar{y}_j = rac{1}{n} \sum_i (\mu_j + \epsilon_{i,j})$$
 $= \mu_j + rac{1}{n_j} \sum \epsilon_{i,j}$
 $= \mu + ar{\epsilon}_j$

Checking for heteroscedasticity

Macro-level assumptions

Checking the macro level distribution

$$\mu_1,\ldots,\mu_m\sim$$
 iid $N(\mu,\sigma^2)$

Evaluation via group sample means:

$$ar{y}_j = rac{1}{n} \sum_i (\mu_j + \epsilon_{i,j})$$
 $= \mu_j + rac{1}{n_j} \sum \epsilon_{i,j}$
 $= \mu + ar{\epsilon}_j$

Checking for heteroscedasticity

Macro-level assumptions

Checking the macro level distribution

$$\mu_1,\ldots,\mu_m\sim$$
 iid $N(\mu,\sigma^2)$

Evaluation via group sample means:

$$\bar{y}_j = \frac{1}{n} \sum_i (\mu_j + \epsilon_{i,j})$$
$$= \mu_j + \frac{1}{n_j} \sum_i \epsilon_{i,j}$$
$$= \mu + \bar{\epsilon}_j$$

Checking for heteroscedasticity

Macro-level assumptions

Checking the macro level distribution

$$\mu_1,\ldots,\mu_m\sim$$
 iid $N(\mu,\sigma^2)$

Evaluation via group sample means:

$$\bar{y}_j = \frac{1}{n} \sum_i (\mu_j + \epsilon_{i,j})$$
$$= \mu_j + \frac{1}{n_j} \sum_i \epsilon_{i,j}$$
$$= \mu + \bar{\epsilon}_j$$

Checking for heteroscedasticity

Macro-level assumptions

Checking the macro level distribution

$$\mu_1,\ldots,\mu_m\sim$$
 iid $N(\mu,\sigma^2)$

Evaluation via group sample means:

$$ar{y}_j = rac{1}{n} \sum_i (\mu_j + \epsilon_{i,j})$$
 $= \mu_j + rac{1}{n_j} \sum \epsilon_{i,j}$
 $= \mu + ar{\epsilon}_j$

Checking for heteroscedasticity

Macro-level assumptions

Checking the macro level distribution

$$\mu_1,\ldots,\mu_m\sim$$
 iid $N(\mu,\sigma^2)$

Evaluation via group sample means:

$$ar{y}_j = rac{1}{n} \sum_i (\mu_j + \epsilon_{i,j})$$
 $= \mu_j + rac{1}{n_j} \sum \epsilon_{i,j}$
 $= \mu + ar{\epsilon}_j$

Checking for heteroscedasticity

Macro-level assumptions

Checking the macro level distribution

$$\mu_1,\ldots,\mu_m\sim$$
 iid $N(\mu,\sigma^2)$

Evaluation via group sample means:

$$ar{y}_j = rac{1}{n} \sum_i (\mu_j + \epsilon_{i,j})$$
 $= \mu_j + rac{1}{n_j} \sum \epsilon_{i,j}$
 $= \mu + ar{\epsilon}_j$

Checking for heteroscedasticity

Macro-level assumptions

Checking the macro level distribution

$$\mu_1,\ldots,\mu_m\sim$$
 iid $N(\mu,\sigma^2)$

Evaluation via group sample means:

$$ar{y}_j = rac{1}{n} \sum_i (\mu_j + \epsilon_{i,j})$$
 $= \mu_j + rac{1}{n_j} \sum \epsilon_{i,j}$
 $= \mu + ar{\epsilon}_j$

Distribution of group sample means

Assume for the moment that the sample sizes are constant.

Expectation of \bar{y}_j : Under the assumptions,

 $E[\bar{y}_j] = E[\mu_j + \bar{\epsilon}_j]$ $= E[\mu_j] + E[\bar{\epsilon}_j]$ $= \mu$

Variance of \bar{y}_j : Under the assumptions,

$$\begin{aligned} \mathsf{Var}[\bar{y}_j] &= \mathsf{Var}[\mu_j + \bar{\epsilon}_j] \\ &= \mathsf{Var}[\mu_j] + \mathsf{Var}[\bar{\epsilon}_j] \\ &= \tau^2 + \sigma^2/n \end{aligned}$$

Distribution of \bar{y}_j : If $\epsilon_{i,j}$'s are iid normal and, independently, μ_j 's are iid normal, then

 $\bar{y}_1,\ldots,\bar{y}_m\sim$ iid $N(\mu,\tau^2+\sigma^2/n)$

Distribution of group sample means

Assume for the moment that the sample sizes are constant.

Expectation of \bar{y}_j : Under the assumptions,

$$E[\bar{y}_j] = E[\mu_j + \bar{\epsilon}_j]$$
$$= E[\mu_j] + E[\bar{\epsilon}_j]$$
$$= \mu$$

Variance of \bar{y}_j : Under the assumptions,

$$\begin{aligned} \mathsf{Var}[\bar{y}_j] &= \mathsf{Var}[\mu_j + \bar{\epsilon}_j] \\ &= \mathsf{Var}[\mu_j] + \mathsf{Var}[\bar{\epsilon}_j] \\ &= \tau^2 + \sigma^2/n \end{aligned}$$

Distribution of \bar{y}_{j} : If $\epsilon_{i,j}$'s are iid normal and, independently, μ_{j} 's are iid normal, then

 $\bar{y}_1,\ldots,\bar{y}_m\sim$ iid $N(\mu,\tau^2+\sigma^2/n)$

Distribution of group sample means

Assume for the moment that the sample sizes are constant.

Expectation of \bar{y}_i : Under the assumptions,

$$E[\bar{y}_j] = E[\mu_j + \bar{\epsilon}_j]$$
$$= E[\mu_j] + E[\bar{\epsilon}_j]$$
$$= \mu$$

Variance of \bar{y}_j : Under the assumptions,

$$egin{aligned} & \mathsf{Var}[ar{y}_j] = \mathsf{Var}[\mu_j + ar{\epsilon}_j] \ &= \mathsf{Var}[\mu_j] + \mathsf{Var}[ar{\epsilon}_j] \ &= au^2 + \sigma^2/n \end{aligned}$$

Distribution of \bar{y}_{j} : If $\epsilon_{i,j}$'s are iid normal and, independently, μ_{j} 's are iid normal, then

$$\bar{y}_1,\ldots,\bar{y}_m\sim$$
 iid $N(\mu,\tau^2+\sigma^2/n)$

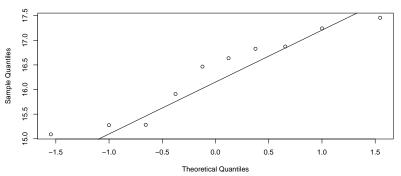
Checking for heteroscedasticity

Macro-level assumptions

Example: Wheat yield

```
ybar.wheat<-c(tapply(y.wheat,g.wheat,mean))</pre>
```

```
qqnorm(ybar.wheat) ; qqline(ybar.wheat)
```



No cause for alarm.

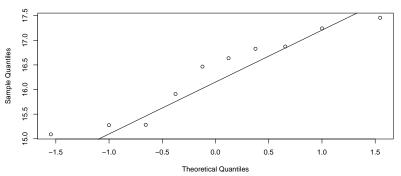
Checking for heteroscedasticity

Macro-level assumptions

Example: Wheat yield

```
ybar.wheat<-c(tapply(y.wheat,g.wheat,mean))</pre>
```

```
qqnorm(ybar.wheat) ; qqline(ybar.wheat)
```



Normal Q-Q Plot

No cause for alarm.

Checking for heteroscedasticity

Macro-level assumptions

Unequal sample sizes

$$\mathsf{Var}[\bar{y}_j] = \tau^2 + \sigma^2 / n_j$$

If sample sizes are unequal, then

- $\bar{y}_1, \ldots, \bar{y}_m$'s are not identically distributed.
- the variance of \bar{y}_j depends on its sample size.

The distribution of $\bar{y}_1, \ldots, \bar{y}_m$ will be a scale mixture of normals.

- If σ^2/n_j is small compared to τ^2 , $\{\bar{y}_1, \ldots, \bar{y}_m\}$ should look normal.
- If σ²/n_j is large compared to τ², {y
 ₁,...,y
 _m} might not look normal, even if the assumptions are correct.

Checking for heteroscedasticity

Macro-level assumptions

Unequal sample sizes

$$\mathsf{Var}[\bar{y}_j] = \tau^2 + \sigma^2 / n_j$$

If sample sizes are unequal, then

- $\bar{y}_1, \ldots, \bar{y}_m$'s are not identically distributed.
- the variance of \bar{y}_j depends on its sample size.

The distribution of $\overline{y}_1, \ldots, \overline{y}_m$ will be a scale mixture of normals.

- If σ^2/n_j is small compared to au^2 , $\{ar y_1,\ldots,ar y_m\}$ should look normal.
- If σ^2/n_j is large compared to τ^2 , $\{\bar{y}_1, \dots, \bar{y}_m\}$ might not look normal, even if the assumptions are correct.

Checking for heteroscedasticity

Macro-level assumptions

Unequal sample sizes

$$\mathsf{Var}[\bar{y}_j] = \tau^2 + \sigma^2 / n_j$$

If sample sizes are unequal, then

- $\bar{y}_1, \ldots, \bar{y}_m$'s are not identically distributed.
- the variance of \bar{y}_j depends on its sample size.

The distribution of $\bar{y}_1, \ldots, \bar{y}_m$ will be a scale mixture of normals.

- If σ^2/n_j is small compared to τ^2 , $\{\bar{y}_1, \ldots, \bar{y}_m\}$ should look normal.
- If σ^2/n_j is large compared to τ^2 , $\{\bar{y}_1, \dots, \bar{y}_m\}$ might not look normal, even if the assumptions are correct.

Checking for heteroscedasticity

Macro-level assumptions

Unequal sample sizes

$$\mathsf{Var}[\bar{y}_j] = \tau^2 + \sigma^2 / n_j$$

If sample sizes are unequal, then

- $\bar{y}_1, \ldots, \bar{y}_m$'s are not identically distributed.
- the variance of \bar{y}_j depends on its sample size.

The distribution of $\bar{y}_1, \ldots, \bar{y}_m$ will be a scale mixture of normals.

- If σ^2/n_j is small compared to τ^2 , $\{\bar{y}_1, \ldots, \bar{y}_m\}$ should look normal.
- If σ^2/n_j is large compared to τ^2 , $\{\bar{y}_1, \ldots, \bar{y}_m\}$ might not look normal, even if the assumptions are correct.

Checking for heteroscedasticity

Macro-level assumptions

Unequal sample sizes

$$\mathsf{Var}[\bar{y}_j] = \tau^2 + \sigma^2 / n_j$$

If sample sizes are unequal, then

- $\bar{y}_1, \ldots, \bar{y}_m$'s are not identically distributed.
- the variance of \bar{y}_j depends on its sample size.

The distribution of $\bar{y}_1, \ldots, \bar{y}_m$ will be a scale mixture of normals.

- If σ^2/n_j is small compared to τ^2 , $\{\bar{y}_1, \ldots, \bar{y}_m\}$ should look normal.
- If σ^2/n_j is large compared to τ^2 , $\{\bar{y}_1, \ldots, \bar{y}_m\}$ might not look normal, even if the assumptions are correct.

Checking for heteroscedasticity

Macro-level assumptions

Unequal sample sizes

$$\mathsf{Var}[\bar{y}_j] = \tau^2 + \sigma^2 / n_j$$

If sample sizes are unequal, then

- $\bar{y}_1, \ldots, \bar{y}_m$'s are not identically distributed.
- the variance of \bar{y}_j depends on its sample size.

The distribution of $\bar{y}_1, \ldots, \bar{y}_m$ will be a scale mixture of normals.

- If σ^2/n_j is small compared to τ^2 , $\{\bar{y}_1, \ldots, \bar{y}_m\}$ should look normal.
- If σ^2/n_j is large compared to τ^2 , $\{\bar{y}_1, \ldots, \bar{y}_m\}$ might not look normal, *even if the assumptions are correct*.

Checking for heteroscedasticity

Macro-level assumptions

Unequal sample sizes

$$\mathsf{Var}[\bar{y}_j] = \tau^2 + \sigma^2 / n_j$$

If sample sizes are unequal, then

- $\bar{y}_1, \ldots, \bar{y}_m$'s are not identically distributed.
- the variance of \bar{y}_j depends on its sample size.

The distribution of $\bar{y}_1, \ldots, \bar{y}_m$ will be a scale mixture of normals.

- If σ^2/n_j is small compared to τ^2 , $\{\bar{y}_1, \ldots, \bar{y}_m\}$ should look normal.
- If σ^2/n_j is large compared to τ^2 , $\{\bar{y}_1, \ldots, \bar{y}_m\}$ might not look normal, *even if the assumptions are correct*.

Checking for heteroscedasticity

Macro-level assumptions

A fabricated example

```
t2<-1 ; s2<-5 ; mu<-60
m<-100
mu.group<-rnorm(m,mu,sqrt(t2))
n.sim<-y.sim<-g.sim<-NULL
for(j in 1:m)
{
    n.j<-round(1+49*rbeta(1,.1,.1))
    y.j<-rnorm(n.j,mu.group[j],sqrt(s2))
    y.sim<-c(y.sim,y.j)
    g.sim<-c(g.sim,rep(j,n.j))
    n.sim<-c(n.sim,n.j)
}</pre>
```

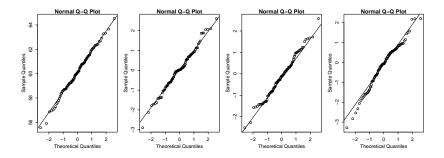
table(n.sim)
n.sim
1 2 3 7 8 10 11 14 17 23 25 26 33 36 44 45 49 50
36 2 1 2 1 1 3 2 3 2 1 1 1 1 2 2 6 33

Checking for heteroscedasticity

Macro-level assumptions

A fabricated example

```
ybar.sim<-c(tapply(y.sim,g.sim,mean))
mpar()
par(mfrow=c(1,4))
qqnorm(ybar.sim); qqline(ybar.sim)
z<-rnorm(length(ybar.sim)) ; qqnorm(z); qqline(z)
z<-rnorm(length(ybar.sim)) ; qqnorm(z); qqline(z)
z<-rnorm(length(ybar.sim)) ; qqnorm(z); qqline(z)</pre>
```



Checking for heteroscedasticity

Macro-level assumptions

Standardized effects

If we knew μ, σ^2, τ^2 , we could standardize the \bar{y}_i 's appropriately:

$$rac{ar{y}_j-\mu}{\sqrt{ au^2+\sigma^2/n_j}}\sim {\sf N}(0,1)$$

zbar.sim<- (ybar.sim -mu)/sqrt(t2+ s2/n.sim)</pre>

Checking for heteroscedasticity

Macro-level assumptions

Standardized effects

If we knew μ, σ^2, τ^2 , we could standardize the \bar{y}_i 's appropriately:

$$rac{ar{y}_j-\mu}{\sqrt{ au^2+\sigma^2/n_j}}\sim {\sf N}(0,1)$$

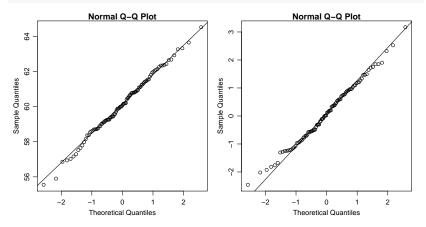
zbar.sim<- (ybar.sim -mu)/sqrt(t2+ s2/n.sim)</pre>

Checking for heteroscedasticity

Macro-level assumptions

Standardized effects

mpar()
par(mfrow=c(1,2))
qqnorm(ybar.sim); qqline(ybar.sim)
qqnorm(zbar.sim); qqline(zbar.sim)



Checking for heteroscedasticity

Standardized effects

An ad-hoc approach is to replace μ, σ^2, τ^2 with their estimates:

$$rac{ar{y}_j - \hat{\mu}}{\sqrt{\hat{ au}^2 + \hat{\sigma}^2/n_j}} \stackrel{.}{\sim} \mathsf{N}(0,1)$$

```
## fit mixed effects model and extract coefficients
fit.lme<-lmer(y.sim~1+(1|g.sim))
mu.mle<-fixef(fit.lme)
s2.mle<- sigma(fit.lme)^2
t2.mle <- as.numeric(VarCorr(fit.lme)$g)</pre>
```

```
## compute standardized group means
zbar.sim<- (ybar.sim -mu.mle)/sqrt( t2.mle+ s2.mle/n.sim)</pre>
```

Checking for heteroscedasticity

Standardized effects

An ad-hoc approach is to replace μ, σ^2, τ^2 with their estimates:

$$rac{ar{y}_j - \hat{\mu}}{\sqrt{\hat{ au}^2 + \hat{\sigma}^2/n_j}} \stackrel{.}{\sim} {\sf N}(0,1)$$

```
## fit mixed effects model and extract coefficients
fit.lme<-lmer(y.sim~1+(1|g.sim))
mu.mle<-fixef(fit.lme)
s2.mle<- sigma(fit.lme)^2
t2.mle <- as.numeric(VarCorr(fit.lme)$g)</pre>
```

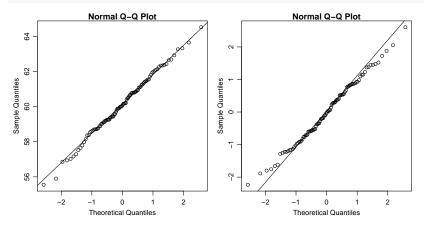
```
## compute standardized group means
zbar.sim<- (ybar.sim -mu.mle)/sqrt( t2.mle+ s2.mle/n.sim)</pre>
```

Checking for heteroscedasticity

Macro-level assumptions

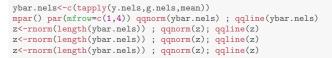
Standardized effects

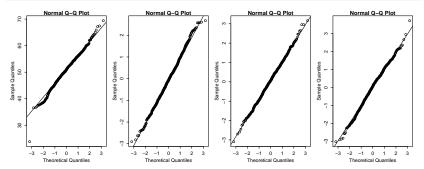
mpar()
par(mfrow=c(1,2))
qqnorm(ybar.sim); qqline(ybar.sim)
qqnorm(zbar.sim); qqline(zbar.sim)



Macro-level assumptions

Example: NELS data





Checking for heteroscedasticity

Macro-level assumptions

Standardized effects

```
## fit mixed effects model and extract coefficients
fit.lme<-lmer(y.nels<sup>1+</sup>(1|g.nels))
mu.mle<-fixef(fit.lme)
s2.mle<- sigma(fit.lme)<sup>2</sup>
t2.mle <- as.numeric(VarCorr(fit.lme)$g)</pre>
```

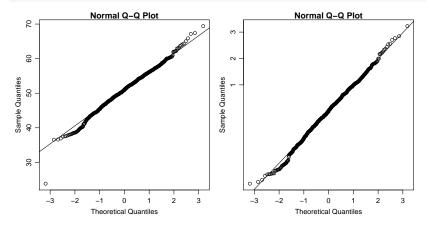
```
## compute standardized group means
zbar.nels<- (ybar.nels -mu.mle)/sqrt( t2.mle+ s2.mle/n.nels)</pre>
```

Checking for heteroscedasticity

Macro-level assumptions

Standardized effects

```
## compare qqplots
mpar()
par(mfrow=c(1,2))
qqnorm(ybar.nels); qqline(ybar.nels)
qqnorm(zbar.nels); qqline(zbar.nels)
```



Checking for heteroscedasticity

Macro-level assumptions

Comments

QQplots of sample means should be sufficient:

It is hard to imagine erroneously rejecting normality because of a sample size difference.

Nonnormality may be due to observable group-level factors:

$$y_{i,j} = \mu_j + \epsilon_{i,j}$$
$$\mu_j = \beta_0 + \beta_1 x_j + \gamma_j$$
$$y_1, \dots, \gamma_m \sim \text{ iid } N(0, \tau^2)$$

We will consider such models next.

Checking for heteroscedasticity

Macro-level assumptions

Comments

QQplots of sample means should be sufficient:

It is hard to imagine erroneously rejecting normality because of a sample size difference.

Nonnormality may be due to observable group-level factors:

$$y_{i,j} = \mu_j + \epsilon_{i,j}$$
$$\mu_j = \beta_0 + \beta_1 x_j + \gamma_j$$
$$\gamma_1, \dots, \gamma_m \sim \text{ iid } N(0, \tau^2)$$

We will consider such models next.