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Heterogeneity of β̂j ’s

β̂j = (XT
j Xj)

−1XT
j yj

hist(BETA.OLS[,1]) hist(BETA.OLS[,2])

intercept

20 30 40 50 60 70 80 90

0
50

10
0

15
0

20
0

25
0

30
0

slope

−10 0 10 20

0
50

10
0

15
0

20
0

25
0

30
0

2/1



Heterogeneity of β̂j ’s

plot(BETA.OLS)
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Heterogeneity as a function of sample size
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Modeling heterogeneity

In the hierarchical normal model:

θj = {µj , σ
2}

yi,j = µj + σ2, {εi,j} ∼ i.i.d normal(µj , σ
2)

µ1, . . . , µm ∼ i.i.d. normal (µ, τ 2)

What should we do for a hierarchical regression model?

θj = {βj , σ
2}

yi,j = βT
j xi,j + εi,j , {εi,j} ∼ i.i.d. normal(0, σ2)

β1, . . . ,βm ∼ i.i.d. p(βj)
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HLM

MVN model for across-group heterogeneity:

β1, . . . ,βm ∼ i.i.d. multivariate normal(β,Σβ)

The parameters in this model include

β, an across-group mean regression vector

Σβ , a covariance matrix describing the variability of the βj ’s around β.
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Ad-hoc estimates

## rough estimate of beta
apply(BETA.OLS,2,mean,na.rm=TRUE)

## (Intercept) xj
## 50.618228 3.672483

This estimator of β equally weights all schools.
Generally, we want to assign a lower weight to schools with less data.

## rough estimate of Sigma_beta
cov(BETA.OLS,use="complete.obs")

## (Intercept) xj
## (Intercept) 26.795851 1.001585
## xj 1.001585 15.818939

This is a very rough estimate of Σβ :

• It ignores sample size differences;
• It ignores the variability of β̂j around βj .

Var[β̂j ’s around β̂ ] ≈ Var[βj ’s around β ] + Var[β̂j ’s around βj ’s ]

Sample covariance of β̂j ’s ≈ Σβ + Estimation error
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Fixed and random effects

Recall the following:

µj ∼ N(µ, τ 2)⇔ µj = µ+ aj , aj ∼ N(0, τ 2)

Analogously,

βj ∼ N(β,Σβ)⇔ βj = β + bj , bj ∼ N(0,Σβ)

Therefore, our hierarchical model says that

yj = Xjβj + εj

= Xj(β + bj) + εj

= Xjβ + Xjbj + εj

• β is sometimes called a fixed effect, as it is fixed across all groups.

• bj is sometimes called a random effect
“random” as it varies across groups, or
“random” if the groups were randomly sampled.

A model with fixed and random effects is called a mixed-effects model.
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Within-group covariance

Recall the HNM:
yi,j = µ+ aj + εi,j

What was the within-group covariance?

Cov[yi1,j , yi2,j ] = E[(yi,j − µ)(yi2,j − µ)]

= E[(aj + εi1,j)(aj + εi2,j)]

= E[a2
j ] + 0 + 0 + 0

= τ 2
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Within-group covariance, matrix form

More generally, we might want the within-group covariance matrix:

yj =

y1,j

...
yn,j

 Cov[yj ] =


Var[y1,j ] Cov[y1,j , y2,j ] · · · Cov[y1,j , yn,j ]

Cov[y1,j , y2,j ] Var[y2,j ] · · · Cov[y2,j , y2,j ]
...

...
Cov[y1,j , yn,j ] Cov[y2,j , yn,j ] · · · Var[yn,j ]


Our calculations have shown that for the HNM

Cov[yj ] =

σ
2 + τ 2 τ 2 · · · τ 2

...
...

τ 2 τ 2 · · · σ2 + τ 2


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Within-group covariance, matrix form

In general,
Cov[yj ] = E[(yj − E[yj ])(yj − E[yj ])

T ]

For the HLM,
yj − E[yj ] = yj − Xjβ = Xjbj + εj ,

so

Cov[yj ] = E[(Xjbj + εj)(Xjbj + εj)
T ]

= E[(Xjbjb
T
j XT

j ] + E[εjε
T
j ]

= XjΣβXT
j + σ2I
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Dependence and conditional independence

Thus p(yj |β,Σβ , σ2), unconditional on bj , is

yj ∼ multivariate normal(Xjβ,XjΣβXT
j + σ2I).

On the other hand, conditional on bj ,

yj ∼ multivariate normal(Xjβ + Xjbj , σ
2I).
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Dependence and conditional independence

Marginal dependence: If I don’t know βj (or bj), then knowing yi1,j gives me
a bit of information about βj , which in turn gives me information about yi2,j ,
and so the observations are dependent: My information about yi2,j depends on
the value of yi1,j if I don’t know βj .

Conditional independence: If I know βj , then knowing yi1,j doesn’t give me
any information about yi2,j , and so they are independent. My information
about yi2,j does not depend on the value of yi1,j if I know βj .

Note: Within-group covariance can be positive or negative, depending on Xj .
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Within-group covariance

Consider the case that xi,j = {1, xi,j} and βj = {β0,j , β1,j}.
• Xj is nj × 2

• XjΣXT
j is nj × nj , the covariances between observations within a group.

Cov[y1,j , y2,j ] = xT
1,jΣx2,j

= Σ1,1 + Σ1,2(x1,j + x2,j) + Σ2,2x1,jx2,j

= Var[β0,j ] + Var[β1,j ]x1,jx2,j + Cov[β0,j , β1,j ](x1,j + x2,j)

• Intercept variance positivly correlates the observations within a group.

• Slope variance can lead to positive or negative correlation, depending on
how close x1,j and x2,j are.
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Sources of variation and correlation
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Fitting a HLM

Assuming data are independent across groups, the likelihood at a value
(β,Σβ , σ

2) can be computed as follows:

0. Set ll= 0.

1. Set ll= ll + ldmvnorm( y1 , X1β , X1ΣβX1 + σ2I).

2. Set ll= ll + ldmvnorm( y2 , X2β , X2ΣβX2 + σ2I).

...

m. Set ll= ll + ldmvnorm( ym , Xmβ , XmΣβXm1 + σ2I).

We can then numerically optimize the likelihood to find the MLEs.
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Fitting the HLM with lmer

library(lme4)
fit.lme<-lmer( y.nels ~ ses.nels + (ses.nels | g.nels),REML=FALSE)

summary(fit.lme)

## Linear mixed model fit by maximum likelihood ['lmerMod']

## Formula: y.nels ~ ses.nels + (ses.nels | g.nels)

##

## AIC BIC logLik deviance df.resid

## 92553.1 92597.9 -46270.5 92541.1 12968

##

## Scaled residuals:

## Min 1Q Median 3Q Max

## -3.8910 -0.6382 0.0179 0.6669 4.4613

##

## Random effects:

## Groups Name Variance Std.Dev. Corr

## g.nels (Intercept) 12.223 3.496

## ses.nels 1.515 1.231 0.11

## Residual 67.345 8.206

## Number of obs: 12974, groups: g.nels, 684

##

## Fixed effects:

## Estimate Std. Error t value

## (Intercept) 50.6767 0.1551 326.7

## ses.nels 4.3594 0.1231 35.4

##

## Correlation of Fixed Effects:

## (Intr)

## ses.nels 0.007
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Extracting results - fixed effects

### fixed effects
beta.hat<-fixef(fit.lme)
beta.hat

## (Intercept) ses.nels
## 50.676704 4.359399

### variance-covariance of fixed effects estimates
VBETA<-vcov(fit.lme)
VBETA

## 2 x 2 Matrix of class "dpoMatrix"
## (Intercept) ses.nels
## (Intercept) 0.0240606603 0.0001309645
## ses.nels 0.0001309645 0.0151610507

### standard errors
sqrt(diag(VBETA))

## [1] 0.1551150 0.1231302

### t-values
beta.hat/sqrt(diag(VBETA))

## (Intercept) ses.nels
## 326.70410 35.40479
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Extracting results - variance components

### within-group variance
s2.hat<-sigma(fit.lme)^2

### across-group variance
VarCorr(fit.lme)$g.nels

## (Intercept) ses.nels
## (Intercept) 12.2231940 0.4887692
## ses.nels 0.4887692 1.5148005
## attr(,"stddev")
## (Intercept) ses.nels
## 3.496168 1.230772
## attr(,"correlation")
## (Intercept) ses.nels
## (Intercept) 1.0000000 0.1135884
## ses.nels 0.1135884 1.0000000

### remove the S4 ugliness
VB<-matrix(VarCorr(fit.lme)$g.nels,2,2)

VB

## [,1] [,2]
## [1,] 12.2231940 0.4887692
## [2,] 0.4887692 1.5148005
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Random effects estimates

B.LME<-as.matrix(ranef(fit.lme)$g.nels)
BETA.LME<-sweep( B.LME , 2 , beta.hat, "+" )
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Range of shrinkage estimates
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Formula for shrinkage estimates

Intuitively:
β̃j = wj β̂j + (1− wj)β̂

where wj depends on Σb and σ2(XT
j Xj)

1:

• wj is big if σ2(XT
j Xj)

1 small compared to Σb;

• wj is small if σ2(XT
j Xj)

1 large compared to Σb.

This is almost right. The averaging has to be done using matrices:

β̃j =
(

XT
j Xj/σ

2 + Σ−1
β

)−1 (
Xjyj/σ

2 + Σ−1
β β

)
In practice, σ2,Σβ ,β are usually replaced with σ̂2, Σ̂β , β̂.

Quiz: How does β̃j vary with Xj , σ
2 and Σβ?
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Macro-level effects
LME regression estimates:
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Questions:

• What kind of schools have big intercepts?

• What kind of schools have big slopes?

Can we relate macro-level parameters to macro-level effects ?

23/1



Macro-level effects
### FLP variable
flp.school<-tapply( flp.nels , g.nels, mean)
table(flp.school)

## flp.school
## 1 2 3
## 226 257 201

### RE and FLP association
mpar()
par(mfrow=c(1,2))
boxplot(BETA.LME[,1]~flp.school,col="lightblue")
boxplot(BETA.LME[,2]~flp.school,col="lightblue")
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Macro-level effects

It seems that β0,j and possibly β1,j are associated with flpj .

• Testing: Is there evidence for the association?

• Estimation: What is the association?

These questions can be addressed by expanding the model:

Old model:

yi,j = β0,j + β1,j × sesi,j + εi,j

= (β0 + b0,j) + (β1 + b1,j)× sesi,j + εi,j

New model:

yi,j = β0,j + β1,j × sesi,j + εi,j

= (β0 + α0 × flpj + b0,j) + (β1 + α1 × flpj + b1,j)× sesi,j + εi,j

Note that under this model,

• The intercept for school j is β0,j = (β0 + α0 × flpj + b0,j)

• The slope for school j is β1,j = (β1 + α1 × flpj + b1,j)

(Alternatively, we could treat flpj as a categorical variable)
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Macro-level fixed effects

yi,j = β0,j + β1,j × sesi,j + εi,j

= (β0 + α0 × flpj + b0,j) + (β1 + α1 × flpj + b1,j)× sesi,j + εi,j

• α0 represents the macro effect of flpj on the intercept/mean in group j

• α1 represents the macro effect of flpj on the slope with sesi,j in group j

Note: α0 and α1 do not vary across groups. If they did, they would be
confouned with b0,j and b1,j .

Note: As they are fixed across groups, they are in fact fixed effects:
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Macro-level fixed effects

yi,j = (β0 + α0 × flpj + b0,j) + (β1 + α1 × flpj + b1,j)× sesi,j + εi,j

Rearranging, we get

yi,j =β0 + α0 × flpj + β1 × sesi,j + α1 × flpj × sesi,j +

b0,j + b1,j × sesi,j +

εi,j

Fixed effects regression: β0 + α0 × flpj + β1 × sesi,j + α1 × flpj × sesi,j

Random effects regression: b0,j + b1,j × sesi,j

Note:

• The covariates for the two regressions are different.

• Macro-effects do not appear in the random effects regression.
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Mixed-effects model

yi,j =β0 + α0 × flpj + β1 × sesi,j + α1 × flpj × sesi,j +

b0,j + b1,j × sesi,j +

εi,j

We see the distinction between α’s and β’s is meaningless.

We rewrite the model as

yi,j = β0 + β1 × flpj + β2 × sesi,j + β3 × flpj × sesi,j +

b0,j + b1,j × sesi,j +

εi,j

=βTxi,j + bj
T zi,j + εi,j

• xi,j = (1, flpj , sesi,j)

• zi,j = (1, sesi,j)
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Group-level representation

Micro-level representation:

yi,j = βTxi,j + bT
j zi,j + εi,j

Combining observations within a group:y1,j

...
yn,j

 =

x1,j →
...

xn,j →


β1

...
βp

+

z1,j →
...

zn,j →


b1,j

...
bp,j

+

ε1,j

...
εn,j


Two-level HLM: General form

yj = Xjβ + Zjbj + εj

Note: This formulation allows the fixed effects predictors to be different from
the random effects predictors.
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Two-level HLM: General form

This is the general form of a two-level hierarchical linear model

yj = Xjβ + Zjbj + εj

where bj and εj are multivariate normal.

• β are the fixed effects coefficients;

• Xj is the design matrix for the fixed effects.

• bj are the random effects coefficients for group j ;

• Zj is the design matrix for the fixed effects.
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Variance components

yj = Xjβ + Zjbj + εj

E

[
bj

εj

]
=

[
0
0

]
and Cov

[
bj

εj

]
=

[
Ψ 0
0 Σ

]
.

Across-group heterogeneity: Ψ is the variance-covariance in b1, . . . , bm.

Within-group heterogeneity: Σ is the variance-covariance of y1,j , . . . , ynj ,j .

Note: We should write Σj instead of Σ, as

Cov[yj ] = Cov[εj ] = Σj is an nj × nj matrix.

Note: In the examples so far,

Σj = σ2Inj .

Question: What other forms for Σj might be useful?
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Example: One-way random effects model, aka the HNM

yi,j = µ+ aj + εi,j

{aj} ∼ iid N(0, τ 2)

{εi,j} ∼ iid N(0, σ2)

Exercise: Express this model as yj = Xjβ + Zjbj + εj

• Regression parameters:
β = µ , bj = aj

• Design matrices:

Xj = Zj =

 1
...
1

 for each j ∈ {1, . . . ,m}

• Covariance terms:
Ψ = Var[aj ] = τ 2 , Σ = σ2I

Exercise: Check your work by going in reverse.
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Example: One-way random effects model, aka the HNM

fit.0<-lmer(y.nels~ 1 + (1|g.nels), REML=FALSE)

summary(fit.0)

## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula: y.nels ~ 1 + (1 | g.nels)
##
## AIC BIC logLik deviance df.resid
## 93919.3 93941.7 -46956.6 93913.3 12971
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.8112 -0.6534 0.0093 0.6732 4.6999
##
## Random effects:
## Groups Name Variance Std.Dev.
## g.nels (Intercept) 23.63 4.861
## Residual 73.71 8.585
## Number of obs: 12974, groups: g.nels, 684
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 50.9391 0.2026 251.4
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Group-specific linear regression

yi,j = βTxi,j + bT
j xi,j + εi,j

{bj} ∼ iid N(0,Ψ)

{εi,j} ∼ iid N(0, σ2)

Exercise: Express this model as yj = Xjβ + Zjbj + εj

• Design matrices:

Xj = Zj =

 x1,j →
...

xnj ,j →

 for each j ∈ {1, . . . ,m}

• Regression parameters:
β = β , bj = bj

• Covariance terms:
Ψ = Cov[bj ], Σ = σ2I

This is just a special case where Xj = Zj .
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Group-specific linear regression

fit.1<-lmer(y.nels~ ses.nels + (ses.nels|g.nels), REML=FALSE)

summary(fit.1)

## Linear mixed model fit by maximum likelihood ['lmerMod']

## Formula: y.nels ~ ses.nels + (ses.nels | g.nels)

##

## AIC BIC logLik deviance df.resid

## 92553.1 92597.9 -46270.5 92541.1 12968

##

## Scaled residuals:

## Min 1Q Median 3Q Max

## -3.8910 -0.6382 0.0179 0.6669 4.4613

##

## Random effects:

## Groups Name Variance Std.Dev. Corr

## g.nels (Intercept) 12.223 3.496

## ses.nels 1.515 1.231 0.11

## Residual 67.345 8.206

## Number of obs: 12974, groups: g.nels, 684

##

## Fixed effects:

## Estimate Std. Error t value

## (Intercept) 50.6767 0.1551 326.7

## ses.nels 4.3594 0.1231 35.4

##

## Correlation of Fixed Effects:

## (Intr)

## ses.nels 0.007
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General LME

yi,j = βTxi,j + bT
j zi,j + εi,j

{bj} ∼ iid N(0,Ψ)

{εj} ∼ iid N(0,Σ)∗

* modulo different sample sizes.

Review of benefits of model extension:

• Group-specific regressors should appear in Xj but not Zj ;

• If {bk,1, . . . , bk,m} shows little variability (ψk,k small), we may want to
remove xi,j,k from the random effects model, and include it as a fixed
effect only.

• Within-group covariances other than Σ = σ2I might be useful:
• Σ with temporal correlation for longitudinal/panel data;
• Unrestricted Σ for correlation but unordered outcomes (teeth, eg.)
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General LME
fit.2<-lmer(y.nels~ flp.nels + ses.nels + flp.nels*ses.nels + (ses.nels | g.nels), REML=FALSE)

summary(fit.2)

## Linear mixed model fit by maximum likelihood ['lmerMod']

## Formula: y.nels ~ flp.nels + ses.nels + flp.nels * ses.nels + (ses.nels |

## g.nels)

##

## AIC BIC logLik deviance df.resid

## 92396.3 92456.0 -46190.1 92380.3 12966

##

## Scaled residuals:

## Min 1Q Median 3Q Max

## -3.9773 -0.6417 0.0201 0.6659 4.5202

##

## Random effects:

## Groups Name Variance Std.Dev. Corr

## g.nels (Intercept) 9.012 3.002

## ses.nels 1.572 1.254 0.06

## Residual 67.260 8.201

## Number of obs: 12974, groups: g.nels, 684

##

## Fixed effects:

## Estimate Std. Error t value

## (Intercept) 55.3975 0.3860 143.52

## flp.nels -2.4062 0.1819 -13.23

## ses.nels 4.4909 0.3327 13.50

## flp.nels:ses.nels -0.1931 0.1587 -1.22

##

## Correlation of Fixed Effects:

## (Intr) flp.nl ss.nls

## flp.nels -0.930

## ses.nels -0.158 0.088

## flp.nls:ss. 0.086 -0.007 -0.926
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