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Heterogeneity of Bj's

B = (X X)) X[y,

hist (BETA.OLS[,1]) hist(BETA.OLS[,2])
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Heterogeneity of ﬁj’s

plot (BETA.OLS)
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Heterogeneity as a function of sample size
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Modeling heterogeneity

In the hierarchical normal model:
01 = {:u/h 02}
yij =+ 0% {e;} ~ iid normal(y;, o?)

W1y e oy fbm ~ i.i.d. normal (u, 72)

What should we do for a hierarchical regression model?
0] = { 3 02}
Yij= ,BJ-TX,'J + €ij, {E,‘J} ~ i.id. normal(O,aQ)



HLM

MVN model for across-group heterogeneity:
B, ..., B, ~ iid. multivariate normal(3, X3)
The parameters in this model include

3, an across-group mean regression vector

23, a covariance matrix describing the variability of the 3;’

s around 3.



Ad-hoc estimates

apply (BETA.OLS,2,mean,na.rm=TRUE)

## (Intercept) xj
## 50.618228 3.672483

This estimator of 3 equally weights all schools.
Generally, we want to assign a lower weight to schools with less data.

cov(BETA.OLS,use="complete.obs")

## (Intercept) xj
## (Intercept) 26.795851 1.001585
## xj 1.001585 15.818939

This is a very rough estimate of X3:
o |t ignores sample size differences;
e It ignores the variability of 3; around 3.

Var[,éj’s around 3 |

Sample covariance of 3;'s

Var[B;'s around 3 ] + Var[,C'A]j's around B;'s |
P + Estimation error

Q
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Fixed and random effects

Recall the following:
Hj~ N(/J,,7'2) < pj=p+aj, aj~ N(O7T2)
Analogously,
B; ~ N(B,Zs) < B; =B+ b;, bj ~N(0,%s)
Therefore, our hierarchical model says that
Y = XBj+e

= X(B+b)+e

X_,'B + ijj + €;

e (3 is sometimes called a fixed effect, as it is fixed across all groups.
e b; is sometimes called a random effect

“random” as it varies across groups, or

“random” if the groups were randomly sampled.

A model with fixed and random effects is called a mixed-effects model.



Within-group covariance

Recall the HNM:
Yij=ptajteij

What was the within-group covariance?

Covlyi.js Yol = E[(¥ij — 1) (Vi — )]
= E[(aj + €ij)(a + €5,5)]
=E[2]+0+0+0

2
=T



Within-group covariance, matrix form

More generally, we might want the within-group covariance matrix:

i Var[y,] Covlyr,y2,;] -+ Covly, yn,l
" Covlyij y2jl  Varlej -+ Covlyaj,yz,]
yi=| : Covly;] = : :
i Covlyrj, ynjl Covlyaj,ynj] - Varys,j]

Our calculations have shown that for the HNM

242 72 2

Covly] =
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Within-group covariance, matrix form

In general,
;
Covly;] = E[(y; — E[y;])(y; — Ely;])']
For the HLM,
yi — Elyjl =y, — X;8 = Xb; + ¢,
so

Covly;] = E[(X;b; + €/)(X;b; + €)]
= E[(ijjbijjT] + E[ejejT]
=X ZsX] +0°l
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Dependence and conditional independence

Thus p(y;|3, Xs,0°), unconditional on by, is

y; ~ multivariate normal(X;3, XngXjT +a°l).

On the other hand, conditional on b,

y; ~ multivariate normal(X;3 + X;b;, o°1).
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Dependence and conditional independence

Marginal dependence: If | don't know 3, (or bj), then knowing y; ; gives me
a bit of information about 3;, which in turn gives me information about y; j,
and so the observations are dependent: My information about y;, ; depends on
the value of y; ; if | don’t know (3;.

Conditional independence: If | know 3;, then knowing y; ; doesn’t give me
any information about y;, ;, and so they are independent. My information

about yj,,; does not depend on the value of y; ; if | know ;.

Note: Within-group covariance can be positive or negative, depending on X; .



Within-group covariance

Consider the case that x;; = {1, x;,;} and B; = {5o,, B1,j}-
e Xjisn; x2

o X;XX] is nj x nj, the covariances between observations within a group.

Covlyrj,yo)] = x{;Txa;
Y14 Xio(x + xe,j) + Tooxijxe )
= Var[Bo,] + Var[B1,]x1,j%x,; + Cov[Bo,, B1,](x1, + x2.)

o Intercept variance positivly correlates the observations within a group.

e Slope variance can lead to positive or negative correlation, depending on
how close x1,; and x ; are.
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Sources of variation and correlation
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Fitting a HLM

Assuming data are independent across groups, the likelihood at a value
(B,Xp,0%) can be computed as follows:

0. Set 11= 0.
1. Set 11= 11 + ldmvnorm(y: , Xi8 , XiXsXi +o°l).
2. Set 11= 11 + ldmvnorm(y, , X2 , XoXgXo + o?l).

m. Set 11= 11 + ldmvnorm( ym , XmB , XmZgXml + o2l).

We can then numerically optimize the likelihood to find the MLEs.
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Fitting the HLM with Imer
library(1lme4)
fit.lme<-lmer( y.nels ~ ses.nels + (ses.nels | g.nels),REML=FALSE)
summary (fit.1lme)

## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula: y.nels ~ ses.nels + (ses.nels | g.nels)

##

## AIC BIC logLik deviance df.resid
## 92553.1 92597.9 -46270.5 92541.1 12968
##

## Scaled residuals:

## Min 1Q Median 3Q Max

## -3.8910 -0.6382 0.0179 0.6669 4.4613

##

## Random effects:

## Groups Name Variance Std.Dev. Corr
## g.nels (Intercept) 12.223  3.496

## ses.nels 1.515 1.231 0.11
## Residual 67.345 8.206

## Number of obs: 12974, groups: g.nels, 684
##

## Fixed effects:

## Estimate Std. Error t value

## (Intercept) 50.6767 0.1651  326.7

## ses.nels 4.3594 0.1231 35.4

##

## Correlation of Fixed Effects:

## (Intr)

## ses.nels 0.007
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Extracting results - fixed effects

### fized effects
beta.hat<-fixef (fit.lme)
beta.hat

## (Intercept) ses.nels
##  50.676704 4.359399

### variance-covariance of fized effects estimates
VBETA<-vcov(fit.lme)
VBETA

## 2 x 2 Matrix of class "dpoMatrix"

## (Intercept) ses.nels
## (Intercept) 0.0240606603 0.0001309645
## ses.nels 0.0001309645 0.0151610507

### standard errors
sqrt (diag(VBETA))
## [1] 0.1551150 0.1231302

### t-values
beta.hat/sqrt(diag(VBETA))

## (Intercept) ses.nels
## 326.70410 35.40479



Extracting results - variance components

### within-group variance
s2.hat<-sigma(fit.lme)"2

### across-group variance
VarCorr(fit.lme)$g.nels

## (Intercept) ses.nels
## (Intercept) 12.2231940 0.4887692
## ses.nels 0.4887692 1.5148005
## attr(,"stddev")

## (Intercept) ses.nels

## 3.496168 1.230772

## attr(,"correlation")

## (Intercept) ses.nels
## (Intercept) 1.0000000 0.1135884
## ses.nels 0.1135884 1.0000000

### remove the S ugliness
VB<-matrix(VarCorr(fit.lme)$g.nels,2,2)

VB
## [,1] [,21

## [1,] 12.2231940 0.4887692
## [2,] 0.4887692 1.5148005
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Random effects estimates

B.LME<-as.matrix(ranef (fit.lme)$g.nels)

BETA.LME<-sweep( B.LME , 2 , beta.hat, "+" )

math score

OLS regression lines

HLM shrinkage estimates

math score
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Formula for shrinkage estimates

Intuitively: B R .
Bj = wiB; + (1 —w)pB

where w; depends on ¥ and o?(X] X;)":
o w; is big if o°(X/ X;)" small compared to ¥,;

o w; is small if 0*(X/X;)" large compared to %,.

This is almost right. The averaging has to be done using matrices:
~ -1
= (Xx/0*+55") (Xiwi/o® + £4'8)

In practice, 0’2,25,,3 are usually replaced with 62,f5,,§

Quiz: How does ,éj vary with X;, 0% and ¥3?
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Macro-level effects

LME regression estimates:
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Questions:

e What kind of schools have big intercepts?
e What kind of schools have big slopes?

Can we relate macro-level parameters to macro-level effects ?




24/1

Macro-level effects

### FLP variable
flp.school<-tapply( flp.nels , g.nels, mean)
table(flp.school)

## flp.school
# 1 2 3
## 226 257 201

### RE and FLP assoctation

mpar ()

par (mfrow=c(1,2))

boxplot (BETA.LME[,1]~flp.school,col="lightblue")
boxplot (BETA.LME[,2] “f1lp.school,col="lightblue")
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Macro-level effects
It seems that fo,; and possibly (1 ,; are associated with flp;.
o Testing: Is there evidence for the association?
e Estimation: What is the association?

These questions can be addressed by expanding the model:

Old model:

Yij = Poj+ B, X sesij+ €i;
= (Bo + bo,j) + (B1 + b1,j) x sesij + €i;

New model:
Yij = Poj+ Prj X sesij+e€ij
= (ﬁo —+ ap X flpj + bo,j) + (ﬂl + a1 X flpj + bl,j) X sesjj + €

Note that under this model,
e The intercept for school j is Bo; = (Bo + o X flp; + bo ;)
e The slope for school j is 81; = (81 + a1 X flpj + b1 j)

(Alternatively, we could treat flp; as a categorical variable)
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Macro-level fixed effects

Yij = Bo,j + B, X sesij + €i
= (Bo + ao x flpj + bo ;) + (B1 + c1 X flp; + by ;) x sesi; + €i;

e «p represents the macro effect of flp; on the intercept/mean in group j

e oy represents the macro effect of flp; on the slope with ses; ; in group j

Note: ap and a1 do not vary across groups. If they did, they would be
confouned with b ; and by ;.

Note: As they are fixed across groups, they are in fact fixed effects:
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Macro-level fixed effects

yij = (Bo+ a0 x flpj + boj) + (B1 + cu X flpj + b1 ;) x sesij + i

Rearranging, we get
yij =Bo + ao x flp; + B1 X ses;j + a1 x flp; x ses;; +
bo,j + b1 X ses;; +
€ij
Fixed effects regression: [y + ao X flpj + S1 X ses;j + aq X flp; X ses; j

Random effects regression: by ; + b1 X ses; ;

Note:
e The covariates for the two regressions are different.

e Macro-effects do not appear in the random effects regression.
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Mixed-effects model

Yij =Po + ao X flpj + B1 X ses;j + a1 X flp; X ses;; +
bo,j + b1 X ses;; +
€ij
We see the distinction between a's and [3’s is meaningless.
We rewrite the model as
Yij = Bo+ B X flpj + B2 x sesjj + B3 X flp; x sesj +
bo,j =4 bl.j X ses;j; +

€ij
T T
=B xij+bj zij+€ij

* xij = (1, flpj, sesi ;)

e z;; = (1,ses;;)
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Group-level representation

Micro-level representation:
T T
Yij=B"xij+bjzij+e
Combining observations within a group:

Y1 x1,j =\ [Br 21—\ (b €1,
= : N e : N B

Vi, Xnj =/ \Bp zp; =) \bp,; €n,j

Two-level HLM: General form

Yi =X;B+Zbj+¢

Note: This formulation allows the fixed effects predictors to be different from
the random effects predictors.
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Two-level HLM: General form

This is the general form of a two-level hierarchical linear model

Y = X8+ Z;b; + ¢

where b; and €; are multivariate normal.

e (3 are the fixed effects coefficients,

e X; is the design matrix for the fixed effects.

o b; are the random effects coefficients for group j;

e Z; is the design matrix for the fixed effects.
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Variance components

Yi =XiB+2Zb;+¢

[o)=lomel )7 2]

Across-group heterogeneity: V is the variance-covariance in by, ...

Within-group heterogeneity: X is the variance-covariance of yi j, ..

Note: We should write ¥ instead of ¥, as

Cov[y;] = Cov[ej] = X is an nj X nj matrix.

Note: In the examples so far,

Y =01,.

J

Question: What other forms for ¥; might be useful?

. aynjaj'



Example: One-way random effects model, aka the HNM

Yij=p+ajt+e
{a;} ~ iid N(0,7°)
{ei } ~ iid N(0,0”)
Exercise: Express this model as'y; = X;3 + Z;b; + €;

o Regression parameters:

B=p, bj=a
e Design matrices:
1
X;=2;=| : for each j € {1,...,m}
1

e Covariance terms:
2 2
VY =Varag]=7", T=0"l

Exercise: Check your work by going in reverse.
32/1
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Example: One-way random effects model, aka the HNM
fit.0<-1lmer(y.nels” 1 + (1|g.nels), REML=FALSE)

summary (£it.0)

## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula: y.nels ~ 1 + (1 | g.nels)

##

## AIC BIC logLik deviance df.resid
## 93919.3 93941.7 -46956.6 93913.3 12971
##

## Scaled residuals:

## Min 1Q Median 3Q Max

## -3.8112 -0.6534 0.0093 0.6732 4.6999

##

## Random effects:

## Groups Name Variance Std.Dev.

## g.nels (Intercept) 23.63 4.861

## Residual 73.71 8.585

## Number of obs: 12974, groups: g.nels, 684
##

## Fixed effects:

## Estimate Std. Error t value

## (Intercept) 50.9391 0.2026  251.4



Group-specific linear regression

yig =B+ b xij +eij
{b;} ~ iid N(0, W)
{eij} ~ iid N(0,0°)

Exercise: Express this model as'y; = X;3 4+ Z;b; + ¢€;

e Design matrices:

X1,j —
X;=2Z; = for each j € {1,...
)(,U,J' —
o Regression parameters:
B=p8, bj=b;

e Covariance terms:
V¥ = Covlb], £ =o°l

This is just a special case where X; = Z;.
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Group-specific linear regression

fit.1<-lmer(y.nels” ses.nels + (ses.nels|g.nels), REML=FALSE)

summary (fit.1)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: y.nels ~ ses.nels + (ses.nels | g.nels)

AIC BIC logLik deviance df.resid
925563.1 92597.9 -46270.5 92541.1 12968

Scaled residuals:
Min 1Q Median 3Q Max
-3.8910 -0.6382 0.0179 0.6669 4.4613

Random effects:
Groups  Name Variance Std.Dev. Corr
g.nels  (Intercept) 12.223  3.496
ses.nels 1.515 1.231 0.11
Residual 67.345 8.206
Number of obs: 12974, groups: g.nels, 684

Fixed effects:

Estimate Std. Error t value
(Intercept) 50.6767 0.1551  326.7
ses.nels 4.3594 0.1231 35.4

Correlation of Fixed Effects:
(Intr)
ses.nels 0.007



General LME

vij = B"xi;j+bjzi; + e,
{bj} ~ iid N(0,V¥)
{€j} ~ iid N(0,X)"
* modulo different sample sizes.

Review of benefits of model extension:

o Group-specific regressors should appear in X; but not Z;;

o If {bi1,...,bk,m} shows little variability (¢« small), we may want to
remove X; j x from the random effects model, and include it as a fixed
effect only.

o Within-group covariances other than ¥ = ol might be useful:

e Y with temporal correlation for longitudinal/panel data;
e Unrestricted X for correlation but unordered outcomes (teeth, eg.)
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General LME

fit.2<-lmer(y.nels” flp.nels + ses.nels + flp.nels*ses.nels + (ses.nels | g.nels), REML=FALSE)
summary (fit.2)

## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula: y.nels ~ flp.nels + ses.nels + flp.nels * ses.nels + (ses.nels |

## g.nels)

##

## AIC BIC logLik deviance df.resid
## 92396.3 92456.0 -46190.1 92380.3 12966
##

## Scaled residuals:

#4# Min 1Q Median 3Q Max

## -3.9773 -0.6417 0.0201 0.6659 4.5202

##

## Random effects:

## Groups Name Variance Std.Dev. Corr
## g.nels (Intercept) 9.012 3.002

## ses.nels 1.572 1.254 0.06
## Residual 67.260 8.201

## Number of obs: 12974, groups: g.nels, 684

##

## Fixed effects:

## Estimate Std. Error t value
## (Intercept) 55.3975 0.3860 143.52
## flp.nels -2.4062 0.1819 -13.23
## ses.nels 4.4909 0.3327 13.50
## flp.nels:ses.nels -0.1931 0.1587 =il 22
##

## Correlation of Fixed Effects:

## (Intr) flp.nl ss.nls

## flp.nels -0.930

## ses.nels -0.158 0.088

## flp.nls:ss. 0.086 -0.007 -0.926
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