
Testing hypotheses
560 Hierarchical modeling

Peter Hoff

Statistics, University of Washington

1/84



NELS data

nels[1:10,]

## school enroll flp public urbanicity hwh ses mscore
## 1 1011 5 3 1 urban 2 -0.23 52.11
## 2 1011 5 3 1 urban 0 0.69 57.65
## 3 1011 5 3 1 urban 4 -0.68 66.44
## 4 1011 5 3 1 urban 5 -0.89 44.68
## 5 1011 5 3 1 urban 3 -1.28 40.57
## 6 1011 5 3 1 urban 5 -0.93 35.04
## 7 1011 5 3 1 urban 1 0.36 50.71
## 8 1011 5 3 1 urban 4 -0.24 66.17
## 10 1011 5 3 1 urban 8 -1.07 46.17
## 11 1011 5 3 1 urban 2 -0.10 58.76
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Macro predictors

flp: percent category of students on the flp
flp=1 0-5% students on flp;

flp=2 5-30% students on flp;

flp=3 > 30% students on flp.

table(tapply(nels$flp,nels$school,mean))

##
## 1 2 3
## 226 257 201

enroll: roughly the number of grade-10, in hundreds.

table(tapply(nels$enroll,nels$school,mean))

##
## 0 1 2 3 4 5
## 149 112 118 98 108 99
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Macro predictors

public: public or private school.

table(tapply(nels$public,nels$school,mean))

##
## 0 1
## 168 516

urbanicity: rural, suburban or urban.

table(tapply(nels$urbanicity,nels$school,function(x){x[1]} ))

##
## 1 2 3
## 125 324 235
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Macro effects on mscore
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What is wrong with the following?
Heterogeneity due to enroll:

anova(lm(mscore~as.factor(enroll),data=nels))

## Analysis of Variance Table
##
## Response: mscore
## Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(enroll) 5 8660 1732.02 18.14 < 2.2e-16 ***
## Residuals 12968 1238175 95.48
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Heterogeneity due to urbanicity:

anova(lm(mscore~as.factor(urbanicity),data=nels))

## Analysis of Variance Table
##
## Response: mscore
## Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(urbanicity) 2 2652 1325.87 13.823 1.008e-06 ***
## Residuals 12971 1244184 95.92
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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What is wrong with the following?

Problem 1: The analyses ignore grouping/assume independence.

Problem 2: Variables are not balanced across predictors:

table(nels$urbanicity,nels$enroll)

##
## 0 1 2 3 4 5
## rural 959 449 369 264 215 93
## suburban 922 1046 1215 1054 991 886
## urban 790 659 772 590 782 918
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“Controlling” for covariates:

anova(lm(mscore~as.factor(enroll) +
as.factor(flp) +
as.factor(public) +
as.factor(urbanicity) ,data=nels) )

## Analysis of Variance Table
##
## Response: mscore
## Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(enroll) 5 8660 1732 20.054 < 2.2e-16 ***
## as.factor(flp) 2 111662 55831 646.433 < 2.2e-16 ***
## as.factor(public) 1 3455 3455 39.998 2.626e-10 ***
## as.factor(urbanicity) 2 3471 1735 20.093 1.937e-09 ***
## Residuals 12963 1119588 86
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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anova(lm(mscore~as.factor(urbanicity) +
as.factor(public) +
as.factor(flp) +
as.factor(enroll) ,data=nels) )

## Analysis of Variance Table
##
## Response: mscore
## Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(urbanicity) 2 2652 1326 15.3514 2.192e-07 ***
## as.factor(public) 1 61162 61162 708.1572 < 2.2e-16 ***
## as.factor(flp) 2 61253 30627 354.6062 < 2.2e-16 ***
## as.factor(enroll) 5 2181 436 5.0493 0.0001261 ***
## Residuals 12963 1119588 86
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Model comparison:
Often we are interested in evaluating the effects of a variable after accounting
for effects of others.

### model fits
fit.add<-lm(mscore~as.factor(enroll) +

as.factor(flp) +
as.factor(public) +
as.factor(urbanicity) ,data=nels)

fit.menroll<-lm(mscore~as.factor(flp) +
as.factor(public) +
as.factor(urbanicity) ,data=nels)

### evaluating enroll - not controlling for other effects
anova(fit.add)

## Analysis of Variance Table
##
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## Df Sum Sq Mean Sq F value Pr(>F)
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Type III sums of squares

To evlaute effects after controlling for others,

• put in the term of interest last, or

• use type III sums of squares tests.

library(car)
Anova(fit.add,type=3)

## Anova Table (Type III tests)
##
## Response: mscore
## Sum Sq Df F value Pr(>F)
## (Intercept) 3206322 1 37123.9724 < 2.2e-16 ***
## as.factor(enroll) 2181 5 5.0493 0.0001261 ***
## as.factor(flp) 57424 2 332.4354 < 2.2e-16 ***
## as.factor(public) 5121 1 59.2872 1.461e-14 ***
## as.factor(urbanicity) 3471 2 20.0932 1.937e-09 ***
## Residuals 1119588 12963
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Model comparison:

Alternatively, without the car package, you can use drop1:

drop1(fit.add,test="F")

## Single term deletions
##
## Model:
## mscore ~ as.factor(enroll) + as.factor(flp) + as.factor(public) +
## as.factor(urbanicity)
## Df Sum of Sq RSS AIC F value Pr(>F)
## <none> 1119588 57857
## as.factor(enroll) 5 2181 1121768 57872 5.0493 0.0001261 ***
## as.factor(flp) 2 57424 1177012 58502 332.4354 < 2.2e-16 ***
## as.factor(public) 1 5121 1124708 57914 59.2872 1.461e-14 ***
## as.factor(urbanicity) 2 3471 1123059 57893 20.0932 1.937e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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HLM accounting for within-school dependence

The ANOVA model above can be expressed as

yi,j = µ+ ae(j) + bf (j) + cp(j) + du(j) + εi,j

ae(j) ∈ {a1, . . . , a5}, e(j) is enrollment category of j

bf (j) ∈ {b1, b2, b3}, f (j) is flp category of j

etc.

The previous tests all assumed {εi,j} ∼ iid N(0, σ2), and specifically,

Cov


ε1,j

...
εn,j


 =


σ2 0 · · · 0
0 σ2 · · · 0
...

...
0 0 · · · σ2


Why, in general, might we question this assumption?

Why might responses within a school be more similar than across schools?

14/84



HLM accounting for within-school dependence

The ANOVA model above can be expressed as

yi,j = µ+ ae(j) + bf (j) + cp(j) + du(j) + εi,j

ae(j) ∈ {a1, . . . , a5}, e(j) is enrollment category of j

bf (j) ∈ {b1, b2, b3}, f (j) is flp category of j

etc.

The previous tests all assumed {εi,j} ∼ iid N(0, σ2), and specifically,

Cov


ε1,j

...
εn,j


 =


σ2 0 · · · 0
0 σ2 · · · 0
...

...
0 0 · · · σ2


Why, in general, might we question this assumption?

Why might responses within a school be more similar than across schools?

14/84



HLM accounting for within-school dependence

The ANOVA model above can be expressed as

yi,j = µ+ ae(j) + bf (j) + cp(j) + du(j) + εi,j

ae(j) ∈ {a1, . . . , a5}, e(j) is enrollment category of j

bf (j) ∈ {b1, b2, b3}, f (j) is flp category of j

etc.

The previous tests all assumed {εi,j} ∼ iid N(0, σ2), and specifically,

Cov


ε1,j

...
εn,j


 =


σ2 0 · · · 0
0 σ2 · · · 0
...

...
0 0 · · · σ2


Why, in general, might we question this assumption?

Why might responses within a school be more similar than across schools?

14/84



HLM accounting for within-school dependence

The ANOVA model above can be expressed as

yi,j = µ+ ae(j) + bf (j) + cp(j) + du(j) + εi,j

ae(j) ∈ {a1, . . . , a5}, e(j) is enrollment category of j

bf (j) ∈ {b1, b2, b3}, f (j) is flp category of j

etc.

The previous tests all assumed {εi,j} ∼ iid N(0, σ2), and specifically,

Cov


ε1,j

...
εn,j


 =


σ2 0 · · · 0
0 σ2 · · · 0
...

...
0 0 · · · σ2


Why, in general, might we question this assumption?

Why might responses within a school be more similar than across schools?

14/84



HLM accounting for within-school dependence

The ANOVA model above can be expressed as

yi,j = µ+ ae(j) + bf (j) + cp(j) + du(j) + εi,j

ae(j) ∈ {a1, . . . , a5}, e(j) is enrollment category of j

bf (j) ∈ {b1, b2, b3}, f (j) is flp category of j

etc.

The previous tests all assumed {εi,j} ∼ iid N(0, σ2), and specifically,

Cov


ε1,j

...
εn,j


 =


σ2 0 · · · 0
0 σ2 · · · 0
...

...
0 0 · · · σ2


Why, in general, might we question this assumption?

Why might responses within a school be more similar than across schools?

14/84



Attempted solution with fixed effects

To account for school heterogeneity, we could fit a school-specific intercept:

yi,j = (µ+ aj) + ae(j) + bf (j) + cp(j) + du(j) + εi,j

In the absence of macro effects, OLS/ANOVA was a reasonable approach:

yi,j = µ+ aj + εi,j

• ȳj provides an unbiased estimate of µj = µ+ aj

• F -test from ANOVA is a valid test of heterogeneity across groups.

Could we use OLS/ANOVA in the presence of macro effects?
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Attempted solution with fixed effects

fit_ols<-lm(mscore~as.factor(school) +
as.factor(enroll) +
as.factor(flp) +
as.factor(public) +
as.factor(urbanicity) ,data=nels)

anova(fit_ols)

## Analysis of Variance Table
##
## Response: mscore
## Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(school) 683 342385 501.30 6.8118 < 2.2e-16 ***
## Residuals 12290 904450 73.59
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

School-specific fixed effects explain all heterogeneity in means across schools.

There is nothing left for the other factors to explain.
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HLM solution

yi,j = (µ+ aj) + ae(j) + bf (j) + cp(j) + du(j) + εi,j

a1, . . . , am ∼ iid N(0, τ 2)

As we’ve discussed, the random intercept induces a covariance within schools,
and the above model is equivalent to

yi,j = µ+ ae(j) + bf (j) + cp(j) + du(j) + εi,j

where

Cov


ε1,j

...
εn,j


 =


σ2 + τ 2 τ 2 · · · τ 2

τ 2 σ2 + τ 2 · · · τ 2

...
...

τ 2 τ 2 · · · σ2 + τ 2



Cor[yi,j , yi,k ] =
τ 2

τ 2 + σ2
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Across school heterogeneity
fit0<-lmer( mscore ~ 1 + (1|school),data=nels)

fit0

## Linear mixed model fit by REML ['lmerMod']

## Formula: mscore ~ 1 + (1 | school)

## Data: nels

## REML criterion at convergence: 93914.62

## Random effects:

## Groups Name Std.Dev.

## school (Intercept) 4.866

## Residual 8.585

## Number of obs: 12974, groups: school, 684

## Fixed Effects:

## (Intercept)

## 50.94

s2.hat<-sigma(fit0)^2

t2.hat<-as.numeric(VarCorr(fit0)$school)

s2.hat

## [1] 73.70822

t2.hat

## [1] 23.6768

### ICC

t2.hat/(t2.hat+s2.hat)

## [1] 0.2431257
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Across school heterogeneity

fit1<-lmer( mscore ~ as.factor(enroll) + (1|school),data=nels)

s2.hat<-sigma(fit1)^2
t2.hat<-as.numeric(VarCorr(fit1)$school)

s2.hat

## [1] 73.71874

t2.hat

## [1] 23.34929

### ICC
t2.hat/(t2.hat+s2.hat)

## [1] 0.2405456
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Across school heterogeneity

fit2<-lmer( mscore ~ as.factor(enroll) +as.factor(flp) + (1|school),data=nels)

s2.hat<-sigma(fit2)^2
t2.hat<-as.numeric(VarCorr(fit2)$school)

s2.hat

## [1] 73.76314

t2.hat

## [1] 13.73192

### ICC
t2.hat/(t2.hat+s2.hat)

## [1] 0.1569451
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Across school heterogeneity

fit3<-lmer( mscore ~ as.factor(enroll) +as.factor(flp) + as.factor(public) +
(1|school),data=nels)

s2.hat<-sigma(fit3)^2
t2.hat<-as.numeric(VarCorr(fit3)$school)

s2.hat

## [1] 73.77205

t2.hat

## [1] 13.4839

### ICC
t2.hat/(t2.hat+s2.hat)

## [1] 0.1545328
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Across school heterogeneity

fit4<-lmer( mscore ~ as.factor(enroll) +as.factor(flp) + as.factor(public) +
as.factor(urbanicity) + (1|school),data=nels)

s2.hat<-sigma(fit4)^2
t2.hat<-as.numeric(VarCorr(fit4)$school)

s2.hat

## [1] 73.77562

t2.hat

## [1] 13.20577

### ICC
t2.hat/(t2.hat+s2.hat)

## [1] 0.151823
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Model selection and testing

Notice: As we add macro predictors,

• τ̂ 2 decreases, σ̂2 remains roughly the same;

• the within-group correlation decreases.

Questions: For a given set of macro variables,

• Is there evidence of (strong) within class correlation?
• If not, we can test for macro variables with ANOVA.
• If so, how do we evaluate the effects of the macro variables?

Goals:

1. Develop tests of within-class correlation in the presence of macro variables
equivalently, test of excess across-school heterogeneity

2. Develop tests of macro effects in the presence of within-class correlation

3. More generally, select appropriate model from among LMs and HLMs.
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Testing for excess heterogeneity

Consier two competeing models:

M0: No excess heterogeneity

yi,j = βTxi,j + εi,j

{εi,j} ∼ iid N(0, σ2)

M1: Excess heterogeneity

yi,j = βTxi,j + aj + εi,j

{εi,j} ∼ iid N(0, σ2)

{aj} ∼ iid N(0, τ 2)
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Model comparisons via tests

Suppose you would like a model selection procedure such that

if model M0 were true,

you have a 95% chance of saying it is true.

If this is what you want, then a level .05 hypothesis test is for you.

H0: No excess heterogeneity - model M0 is true.

H1: Excess heterogeneity - model M1 is true.

Objective: A level α test of H0 versus H1.
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Likelihood ratio tests

A popular tool for comparing nested models is the likelihood ratio test (LRT):

Reject H0 if Λ(y) =
p(y|θ̂1)

p(y|θ̂0)
is large.

• p(y|θ̂1) is the maximized prob of data under H1

• p(y|θ̂0) is the maximized prob of data under H0

• Λ(y) is the likelihood ratio statistic.

For a variety of reasons, the LRT is often expressed as

Reject H0 if λ(y) = 2×
(

log p(y|θ̂1)− log p(y|θ̂0)
)

is large.

• log p(y|θ̂1) is the maximized log likelihood for M1

• p(y|θ̂0) is the maximized log likelhiood for M0

• λ(y) is the log-likelihood ratio statistic.
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Example: NELS data

### model 0
fit0<-lm(mscore ~ as.factor(flp) , data=nels)
logLik(fit0)

## 'log Lik.' -47375.64 (df=4)

### model 1
fit1<-lmer(mscore ~ as.factor(flp) + (1|school), data=nels)
logLik(fit1)

## 'log Lik.' -46812.38 (df=5)

### log liklihood statistic
lrt.stat<- 2*( logLik(fit1) - logLik(fit0) )
lrt.stat

## 'log Lik.' 1126.509 (df=5)

The LRT statistic seems pretty big!
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Example: NELS data

### model 0
fit0<-lm(mscore ~ as.factor(flp) +

as.factor(enroll) +
as.factor(public) +
as.factor(urbanicity) , data=nels)

logLik(fit0)

## 'log Lik.' -47326.85 (df=12)

### model 1
fit1<-lmer(mscore ~ as.factor(flp) +

as.factor(enroll) +
as.factor(public) +
as.factor(urbanicity) + (1|school) , data=nels)

logLik(fit1)

## 'log Lik.' -46797.45 (df=13)

### log liklihood statistic
lrt.stat<- 2*( logLik(fit1) - logLik(fit0) )
lrt.stat

## 'log Lik.' 1058.799 (df=13)

Still pretty big!
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Null distributions

How big is big? A level α test is one where we

reject H0 if λ(y) = 2×
(

log p(y|θ̂1)− log p(y|θ̂0)
)

is bigger than λα

where λα is a critical value, determined by

• the distribution of λ(y) under H0,

• the desired type I error rate α.
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Null distribution example: t-test
If

y1,A, . . . , ynA,A ∼ iid N(µ, σ2)

y1,B , . . . , ynB ,B ∼ iid N(µ, σ2)

then the distribution of the t-statistic

t(yA, yB) =
ȳB − ȳA

sp
√

1/nA + 1/nB

has a t-distribution.
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Null distribution example: t-test

A typical t-test rejects if |t(yA, yB)| > 2.
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Pr(|t(yA, yB)| > 2) ≈ 0.05

• 2 is the critical value of the test;

• 0.05 is the (approximate) level of the test.
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Null distribution example: t-test empirical validation

n<-20 ; ATSTAT<-NULL

for(i in 1:S)
{
yA<-rnorm(n)
yB<-rnorm(n)
ATSTAT<-c(ATSTAT, abs(t.test(yA,yB,pooled=TRUE)$stat))
}
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Null distribution example: t-test empirical validation

absolute value of t statistic

D
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quantile(ATSTAT,probs=.95)

## 95%
## 2.051569

qt(.975,2*(n-1))

## [1] 2.024394
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Null distribution for LRT

LRT:

Reject H0 if λ(y) = 2×
(

log p(y|θ̂1)− log p(y|θ̂0)
)

is greater than c,

where c is the value such that

Pr(λ(y) > c|H0) = 0.05.

To figure out what c is, we need the distribution of λ(y) when H0 is true.
That is, we need to know the null distribution.

34/84



Null distribution for LRT

LRT:

Reject H0 if λ(y) = 2×
(

log p(y|θ̂1)− log p(y|θ̂0)
)

is greater than c,

where c is the value such that

Pr(λ(y) > c|H0) = 0.05.

To figure out what c is, we need the distribution of λ(y) when H0 is true.
That is, we need to know the null distribution.

34/84



Null distribution for LRT

LRT:

Reject H0 if λ(y) = 2×
(

log p(y|θ̂1)− log p(y|θ̂0)
)

is greater than c,

where c is the value such that

Pr(λ(y) > c|H0) = 0.05.

To figure out what c is, we need the distribution of λ(y) when H0 is true.
That is, we need to know the null distribution.

34/84



Null distribution for LRT

LRT:

Reject H0 if λ(y) = 2×
(

log p(y|θ̂1)− log p(y|θ̂0)
)

is greater than c,

where c is the value such that

Pr(λ(y) > c|H0) = 0.05.

To figure out what c is, we need the distribution of λ(y) when H0 is true.
That is, we need to know the null distribution.

34/84



Null distribution for LRT
Statistical folklore says the following: If

• M0 is nested in M1 (M0 is a special case of M1), and

• M0 is true, then

λ(y)
·∼ χ2

d

where d is the difference in the number of parameters between M1 and M0.
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qchisq(.95,1)

## [1] 3.841459
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Null distribution for LRT: Fixed effects

M0: No fixed effect of xi,j

yi,j = β0 + aj + εi,j

aj ∼ N(0, τ 2)

M1: Yes fixed effect of xi,j

yi,j = β0 + β1xi,j + aj + εi,j

aj ∼ N(0, τ 2)

Distribution of LRT: The change in the number of parameters is d = 1.

Presumably,
λ(y)

·∼ χ2
1

The
·∼ means “approximately distributed as.”

The approximation improves as sample size increases.
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Null distribution for LRT: Empirical evaluation

m<-20 ; n<-10
beta0<-1 ; beta1<-0

g<-rep(1:m,times=rep(n,m))

LAMBDA.H0<-NULL
for(s in 1:S)
{
a<-rnorm(m)
x<-rnorm(m*n)

y<-a[g] + beta0 + beta1*x + rnorm(m*n)

fit0<-lmer(y ~ 1 + (1|g), REML=FALSE )
fit1<-lmer(y ~ x + (1|g), REML=FALSE )

lambda<-2*( logLik(fit1) - logLik(fit0) )

LAMBDA.H0<-c(LAMBDA.H0,lambda)
}
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Null distribution for LRT: Empirical evaluation

llrt statistic
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quantile(LAMBDA.H0,.95)

## 95%
## 3.763375

qchisq(.95,1)

## [1] 3.841459
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LRT for HLM

M0:

yj = Xjβ + εj , Cov


ε1,j

...
εn,j


 =


σ2 0 · · · 0
0 σ2 · · · 0
...

...
0 0 · · · σ2


M1:

yj = Xjβ + εj , Cov


ε1,j

...
εn,j


 =


σ2 + τ 2 τ 2 · · · τ 2

τ 2 σ2 + τ 2 · · · τ 2

...
...

τ 2 τ 2 · · · σ2 + τ 2


Q: What is the difference in the number of parameters?

A: d = 1
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Simulation study

m<-20 ; n<-10
beta0<-1 ; beta1<-1

g<-rep(1:m,times=rep(n,m))

LAMBDA.H0<-NULL
for(s in 1:S)
{
x<-rnorm(m*n)

y<-beta0 + beta1*x + rnorm(m*n)

fit0<-lm(y ~ x )

fit1<-lmer(y ~ x + (1|g), REML=FALSE)

lambda<-2*( logLik(fit1) - logLik(fit0) )

LAMBDA.H0<-c(LAMBDA.H0,lambda)
}

## Warning in optwrap(optimizer, devfun, getStart(start, rho$lower, rho$pp), :
convergence code 3 from bobyqa: bobyqa -- a trust region step failed to reduce q
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Simulation study

λ

de
ns

ity
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mean( LAMBDA.H0>= qchisq(.95,1) )

## [1] 0.0156
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Simulation study

zapsmall(LAMBDA.H0[1:20])

## [1] 0.000000 0.009238 0.047630 3.756427 0.011849 0.029303 0.710021
## [8] 0.002148 0.410014 0.000000 0.000000 0.000000 0.000000 0.000000
## [15] 0.759983 0.000000 0.000000 0.000000 0.000000 0.308136

mean( zapsmall(LAMBDA.H0[1:20]) == 0 )

## [1] 0.5
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Mixture null distributions

What is going on? Suppose we are fitting M1 in the simple HNM:

yi,j = µ+ aj + εi,j

aj ∼ N(0, τ 2)

Recall,

E[MSE ] = σ2

E[MSG ] = σ2 + n × τ 2

τ̂ 2 = (MSG −MSE)/n
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Mixture null distributions

If M0 is in fact true, then τ 2 = 0 and

E[MSE ] = σ2

E[MSG ] = σ2.

If we are fitting M1, then sometimes (due to sampling variability)

MSE > MSG

(MSG −MSE)/n < 0 ⇒ use τ̂ 2 = 0 in practice.

In these cases (roughly speaking),

• the MLE τ̂ 2 is zero.

• the best M0 fit is the same as the best M1 fit.

max
µ,σ2,τ2

log p(y|µ, σ2, τ 2) = max
µ,σ2

log p(y|µ, σ2, τ 2 = 0)
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Example dataset

set.seed(2)
y<-1 + rnorm(m*n)

anova(lm(y~as.factor(g)) )

## Analysis of Variance Table
##
## Response: y
## Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(g) 19 14.745 0.77606 0.6503 0.8629
## Residuals 180 214.812 1.19340

MSE<-anova(lm(y~as.factor(g)) )[2,3]
MSG<-anova(lm(y~as.factor(g)) )[1,3]

MSE

## [1] 1.193401

MSG

## [1] 0.7760613

MSG-MSE

## [1] -0.4173393
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Example dataset
fit0<-lm(y ~ 1 )

fit1<-lmer(y ~ 1 + (1|g), REML=FALSE)

fit0

##

## Call:

## lm(formula = y ~ 1)

##

## Coefficients:

## (Intercept)

## 0.9993

fit1

## Linear mixed model fit by maximum likelihood ['lmerMod']

## Formula: y ~ 1 + (1 | g)

## AIC BIC logLik deviance df.resid

## 601.1424 611.0374 -297.5712 595.1424 197

## Random effects:

## Groups Name Std.Dev.

## g (Intercept) 5.614e-08

## Residual 1.071e+00

## Number of obs: 200, groups: g, 20

## Fixed Effects:

## (Intercept)

## 0.9993

2*( logLik(fit1) - logLik(fit0) )

## 'log Lik.' -1.136868e-13 (df=3)
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fit1

## Linear mixed model fit by maximum likelihood ['lmerMod']

## Formula: y ~ 1 + (1 | g)

## AIC BIC logLik deviance df.resid

## 601.1424 611.0374 -297.5712 595.1424 197

## Random effects:

## Groups Name Std.Dev.

## g (Intercept) 5.614e-08

## Residual 1.071e+00

## Number of obs: 200, groups: g, 20
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The (asymptotic) null distribution

It turns out that under M0,

Pr(λ(y) = 0) =
1

2

The values that are not equal to zero are distributed as χ2
1:

λ(y)|{λ(y) 6= 0} ·∼ χ2
1

This means that under M0, λ(y) has a mixture distribution
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The empirical null distribution

LAMBDA.H0<-zapsmall(LAMBDA.H0)
mean(LAMBDA.H0==0)

## [1] 0.5898

hist(LAMBDA.H0[LAMBDA.H0>0],col="lightblue",prob=TRUE,main="")
lines(xs,dchisq(xs,1),type="l")

LAMBDA.H0[LAMBDA.H0 > 0]
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Mixture distributions

We can represent the distribution of λ(y) as follows:

λ(y) =

{
X0 with probabilty 1/2
X1 with probabilty 1/2

where

• X0 = 0

• X1 has a χ2
1 distribution.
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Computing a p-value

Recall, a p-value is the probability under the null of getting a test statistic
equal to or larger than the observed test statistic.

For a given observed value λobs ,

p − value = Pr(λ(y) ≥ λobs |H0)

How do we compute this for a given value λobs?
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Computing a p-value

Case 1: λobs = 0.

Pr(λ(y) ≥ 0) = 1

as X0 and X1 are ≥ 0.

Case 2: λobs > 0.

Pr(λ(y) ≥ λobs) = Pr(λ(y) = X0 and X0 ≥ λobs) + Pr(λ(y) = X1 and X1 ≥ λobs)

= 1
2
0 + 1

2
Pr(X1 ≥ λobs)

= 1
2

Pr(χ2
1 ≥ λobs),

which is 1/2 the p-value that would be obtained using the χ2
1 null distribution.

Folklore: “The p-value for testing . . . the random intercept variance is half this
[χ2

1] tail value.”

(true if λobs 6= 0).
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Example: NELS
Recall one of our original questions:
Can the heterogeneity across schools be ascribed to known macro covariates?

Model fits:

fit0<-lm(mscore ~ as.factor(enroll) + as.factor(flp) + as.factor(urbanicity) +

ses + hwh, data=nels)

fit1<-lmer(mscore ~ as.factor(enroll) + as.factor(flp) + as.factor(urbanicity) +

ses + hwh + (1|school) , data=nels,REML=FALSE)

Hypothesis test:

### LRT statistic

lambda<-2*(logLik(fit1)-logLik(fit0))

lambda

## 'log Lik.' 696.8672 (df=14)

### p-value

.5*(1-pchisq(c(lambda),1) )

## [1] 0

• pchisq(lambda,1) is the probability of being smaller than lambda

• 1-pchisq(lambda,1) is the probability of being larger than lambda

The null hypothesis of no excess heterogeneity is strongly rejected.
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Summary of testing

yi,j = βT xi,j + aj + εi,j

aj ∼ N(0, τ 2)

For models consisting of

• fixed effects, and

• a single random intercept,

Tests involving β : Testing components of β equal zero can be obtained with
the usual LRT .

• Null distribution: λ0 ∼ χ2
d ,

• p-value: 1-pchisq(lambda,d).

Tests involving τ 2 : Testing τ 2 = 0 can be obtained with the modified LRT .

• Null distribution: λ0 ∼ 1
2
({0}+ χ2

d),

• p-value: .5*(1-pchisq(lambda,d)) if lambda > 0.
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Testing examples
fit.full<-lmer(mscore~

as.factor(enroll) + as.factor(flp) + as.factor(urbanicity) +

hwh + ses +

(1|school) , data=nels,REML=FALSE)

fit.full

## Linear mixed model fit by maximum likelihood ['lmerMod']

## Formula:

## mscore ~ as.factor(enroll) + as.factor(flp) + as.factor(urbanicity) +

## hwh + ses + (1 | school)

## Data: nels

## AIC BIC logLik deviance df.resid

## 92408.36 92512.95 -46190.18 92380.36 12960

## Random effects:

## Groups Name Std.Dev.

## school (Intercept) 2.969

## Residual 8.243

## Number of obs: 12974, groups: school, 684

## Fixed Effects:

## (Intercept) as.factor(enroll)1

## 52.82676 0.54442

## as.factor(enroll)2 as.factor(enroll)3

## 0.61973 0.61739

## as.factor(enroll)4 as.factor(enroll)5

## 0.52867 0.16135

## as.factor(flp)2 as.factor(flp)3

## -2.09257 -4.84231

## as.factor(urbanicity)suburban as.factor(urbanicity)urban

## -0.05113 -0.86587

## hwh ses

## 0.01354 4.13467
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Testing examples

fit.menr<-lmer(mscore~

as.factor(flp) + as.factor(urbanicity) +

hwh + ses +

(1|school) , data=nels,REML=FALSE)

fit.mflp<-lmer(mscore~

as.factor(enroll) + as.factor(urbanicity) +

hwh + ses +

(1|school) , data=nels,REML=FALSE)

fit.murb<-lmer(mscore~

as.factor(enroll) + as.factor(flp) +

hwh + ses +

(1|school) , data=nels,REML=FALSE)
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Testing examples
Compute the LRT statistic:

lambda<-2*(logLik(fit.full) - logLik(fit.menr))

lambda

## 'log Lik.' 3.204099 (df=14)

Calculate d :

table(nels$enroll)

##
## 0 1 2 3 4 5
## 2671 2154 2356 1908 1988 1897

attr( logLik(fit.full),"df")

## [1] 14

attr( logLik(fit.menr),"df")

## [1] 9

d<- attr( logLik(fit.full),"df") - attr( logLik(fit.menr),"df")

d

## [1] 5
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Testing examples

Compute the p-value:

(1-pchisq(c(lambda),d))

## [1] 0.668553

This is mostly automated in R:

anova(fit.full,fit.menr)

## Data: nels
## Models:
## fit.menr: mscore ~ as.factor(flp) + as.factor(urbanicity) + hwh + ses +
## fit.menr: (1 | school)
## fit.full: mscore ~ as.factor(enroll) + as.factor(flp) + as.factor(urbanicity) +
## fit.full: hwh + ses + (1 | school)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## fit.menr 9 92402 92469 -46192 92384
## fit.full 14 92408 92513 -46190 92380 3.2041 5 0.6686
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Testing other factors

anova(fit.full,fit.mflp)

## Data: nels
## Models:
## fit.mflp: mscore ~ as.factor(enroll) + as.factor(urbanicity) + hwh + ses +
## fit.mflp: (1 | school)
## fit.full: mscore ~ as.factor(enroll) + as.factor(flp) + as.factor(urbanicity) +
## fit.full: hwh + ses + (1 | school)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## fit.mflp 12 92564 92654 -46270 92540
## fit.full 14 92408 92513 -46190 92380 159.58 2 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

anova(fit.full,fit.murb)

## Data: nels
## Models:
## fit.murb: mscore ~ as.factor(enroll) + as.factor(flp) + hwh + ses + (1 |
## fit.murb: school)
## fit.full: mscore ~ as.factor(enroll) + as.factor(flp) + as.factor(urbanicity) +
## fit.full: hwh + ses + (1 | school)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## fit.murb 12 92412 92502 -46194 92388
## fit.full 14 92408 92513 -46190 92380 7.7808 2 0.02044 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Testing examples

fit.mhwh<-lmer(mscore~
as.factor(enroll) + as.factor(flp) + as.factor(urbanicity) +
ses +
(1|school) , data=nels,REML=FALSE)

fit.mses<-lmer(mscore~
as.factor(enroll) + as.factor(flp) + as.factor(urbanicity) +
hwh +
(1|school) , data=nels,REML=FALSE)
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Testing examples

anova(fit.full,fit.mhwh)

## Data: nels
## Models:
## fit.mhwh: mscore ~ as.factor(enroll) + as.factor(flp) + as.factor(urbanicity) +
## fit.mhwh: ses + (1 | school)
## fit.full: mscore ~ as.factor(enroll) + as.factor(flp) + as.factor(urbanicity) +
## fit.full: hwh + ses + (1 | school)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## fit.mhwh 13 92407 92504 -46190 92381
## fit.full 14 92408 92513 -46190 92380 0.3107 1 0.5772

anova(fit.full,fit.mses)

## Data: nels
## Models:
## fit.mses: mscore ~ as.factor(enroll) + as.factor(flp) + as.factor(urbanicity) +
## fit.mses: hwh + (1 | school)
## fit.full: mscore ~ as.factor(enroll) + as.factor(flp) + as.factor(urbanicity) +
## fit.full: hwh + ses + (1 | school)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## fit.mses 13 93634 93731 -46804 93608
## fit.full 14 92408 92513 -46190 92380 1228 1 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Testing examples

summary(fit.full)$coef

## Estimate Std. Error t value
## (Intercept) 52.82676162 0.4309192 122.5908829
## as.factor(enroll)1 0.54442470 0.4569472 1.1914390
## as.factor(enroll)2 0.61973123 0.4541605 1.3645642
## as.factor(enroll)3 0.61738848 0.4828518 1.2786293
## as.factor(enroll)4 0.52866611 0.4891502 1.0807849
## as.factor(enroll)5 0.16135352 0.4932025 0.3271547
## as.factor(flp)2 -2.09257386 0.3497278 -5.9834363
## as.factor(flp)3 -4.84231159 0.3677904 -13.1659535
## as.factor(urbanicity)suburban -0.05113111 0.3932499 -0.1300219
## as.factor(urbanicity)urban -0.86587407 0.4204571 -2.0593635
## hwh 0.01353902 0.0242850 0.5575056
## ses 4.13466986 0.1142795 36.1803312

2*(1-pnorm(.5575))

## [1] 0.5771859

2*(1-pnorm(36.1803))

## [1] 0
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Testing examples

Now that you know where the numbers come from,

drop1(fit.full,test="Chisq")

## Single term deletions
##
## Model:
## mscore ~ as.factor(enroll) + as.factor(flp) + as.factor(urbanicity) +
## hwh + ses + (1 | school)
## Df AIC LRT Pr(Chi)
## <none> 92408
## as.factor(enroll) 5 92402 3.20 0.66855
## as.factor(flp) 2 92564 159.58 < 2e-16 ***
## as.factor(urbanicity) 2 92412 7.78 0.02044 *
## hwh 1 92407 0.31 0.57725
## ses 1 93634 1228.01 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Summary of tests so far

yi,j = βT xi,j + aj + εi,j

aj ∼ N(0, τ 2)

Fixed effects:

enrollment : No strong evidence of effect

flp : decreasing scores with increasing flp

urban : urban schools have lower scores than others

hwh : no strong evidence of an effect on average across schools

ses : strong evidence of a positive effect on average across schools

Random effects: Strong evidence of excess across-school heterogeneity in
mean score.
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ANOVA comparison

Compare to tests that don’t account for across-group heterogeneity:

### model fit
fit.afull<-lm(mscore~

as.factor(enroll) + as.factor(flp) + as.factor(urbanicity) +
hwh + ses,
data=nels )

### factor evaluation
drop1(fit.afull,test="F")

## Single term deletions
##
## Model:
## mscore ~ as.factor(enroll) + as.factor(flp) + as.factor(urbanicity) +
## hwh + ses
## Df Sum of Sq RSS AIC F value Pr(>F)
## <none> 991486 56283
## as.factor(enroll) 5 377 991863 56278 0.9863 0.4243
## as.factor(flp) 2 28135 1019621 56642 183.9096 < 2.2e-16 ***
## as.factor(urbanicity) 2 1516 993002 56298 9.9107 5.002e-05 ***
## hwh 1 167 991653 56283 2.1819 0.1397
## ses 1 132644 1124130 57910 1734.0918 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Testing for heterogeneous slopes

General two-level HLM:

yi,j = βT xi,j + bT
j zi,j + εi,j

bj ∼ N(0,Ψ)

For example, maybe(
zi,j,1
zi,j,2

)
=

(
1

sesi,j

)
Ψ =

(
ψ2

1 ψ1,2

ψ2,1 ψ2
2

)

We would like to be able to test

H0 : ψ2
2 = 0 (no heterogeneity in slope with ses),

in the presence of heterogeneity in intercept.
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Testing for heterogeneous slopes

H0 : ψ2
2 = 0 (no heterogeneity in slope with ses)

If the variance of something is zero, its covariance with anything else is zero.

This means that under H0 : ψ2
2 = 0,

Ψ =
(
ψ2

1

)
while under H1 : ψ2

2 6= 0,

Ψ =

(
ψ2

1 ψ1,2

ψ2,1 ψ2
2

)
The difference in the number of parameters is d = 2.
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NELS data

fit.r1<-lmer(
mscore~

as.factor(flp) + as.factor(urbanicity) +
ses +
(ses | school) , data=nels,REML=FALSE)

summary(fit.r1)$coef

## Estimate Std. Error t value
## (Intercept) 53.13668614 0.3943086 134.7591320
## as.factor(flp)2 -2.02135580 0.3342747 -6.0469903
## as.factor(flp)3 -4.81780545 0.3612682 -13.3358122
## as.factor(urbanicity)suburban 0.05675065 0.3803290 0.1492146
## as.factor(urbanicity)urban -0.80937542 0.4049595 -1.9986575
## ses 4.12877673 0.1255088 32.8963069

VarCorr(fit.r1)

## Groups Name Std.Dev. Corr
## school (Intercept) 2.9673
## ses 1.2712 -0.005
## Residual 8.2008
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NELS data

fit.r0<-lmer(
mscore~

as.factor(flp) + as.factor(urbanicity) +
ses +
(1 | school) , data=nels,REML=FALSE)

summary(fit.r0)$coef

## Estimate Std. Error t value
## (Intercept) 53.12042203 0.3928411 135.2211525
## as.factor(flp)2 -2.00043931 0.3324308 -6.0176105
## as.factor(flp)3 -4.77163283 0.3596303 -13.2681603
## as.factor(urbanicity)suburban 0.06620706 0.3792811 0.1745593
## as.factor(urbanicity)urban -0.78129077 0.4032055 -1.9376989
## ses 4.13800012 0.1141748 36.2426727

VarCorr(fit.r0)

## Groups Name Std.Dev.
## school (Intercept) 2.9760
## Residual 8.2437
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NELS data

logLik(fit.r1)

## 'log Lik.' -46185.14 (df=10)

logLik(fit.r0)

## 'log Lik.' -46191.93 (df=8)

lambda<-2*c( logLik(fit.r1) - logLik(fit.r0) )

lambda

## [1] 13.58696

What do we compare lambda to?

What types of values would we expect under H0?
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Null distribution

Speculation 1: Maybe under H0, λ ∼ 1
2
({0}+ χ2

1).

Speculation 2: Maybe under H0, λ ∼ χ2
2, as d = 2.

Let’s investigate with a simulation study
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Null distribution
m<-30 ; n<-10
beta0<-1 ; beta1<-1
g<-rep(1:m,times=rep(n,m))

LAMBDA.H0<-NULL
for(s in 1:S)
{
a<-rnorm(m) # random effects

x<-rnorm(m*n) # covariates

y<-beta0 + a[g] + beta1*x + rnorm(m*n) #simulated under null

fit0<-lmer(y ~ x + (1|g), REML=FALSE )

fit1<-lmer(y ~ x + (x|g), REML=FALSE)

lambda<-2*( logLik(fit1) - logLik(fit0) )

LAMBDA.H0<-c(LAMBDA.H0,lambda)
}

## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
unable to evaluate scaled gradient
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
Model failed to converge: degenerate Hessian with 1 negative eigenvalues
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
unable to evaluate scaled gradient
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
Model failed to converge: degenerate Hessian with 1 negative eigenvalues

# look at some values
LAMBDA.H0[1:20]

## [1] 3.553277051 0.011173836 1.177934564 1.120158942 0.038633360
## [6] 0.073340882 1.344673995 0.572525000 1.424303689 1.911031052
## [11] 0.652988960 0.053906174 2.329281528 2.698399646 0.161149978
## [16] 0.003236895 2.536958478 1.710562152 0.037362267 3.039130025

No zeros, unlike in the test for a random intercept only.
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Null distribution

Compare to a χ2
2 distribution:
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Null distribution

Compare to a χ2
1 distribution:
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Null distribution

Here is the theoretical, asymptotic null distribution: λ ∼ 1
2
(χ2

1 + χ2
2)
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Mixture distributions

We can represent the distribution of λ(y) as follows:

λ(y) =

{
X1 with probabilty 1/2
X2 with probabilty 1/2

where

• X1 has a χ2
1 distribution;

• X2 has a χ2
2 distribution.
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Computing the p-value

Pr(λ(y) ≥ λobs) = Pr(λ(y) = X1 and X1 ≥ λobs) + Pr(λ(y) = X2 and X2 ≥ λobs)

= 1
2

Pr(X1 ≥ λobs) + 1
2

Pr(X1 ≥ λobs)

= 1
2

(
Pr(χ2

1 ≥ λobs) + Pr(χ2
2 ≥ λobs)

)
which is a 50-50 average between the naive p-value (based on a χ2

2

distribution), and one based on a reduced degrees of freedom.

p-value: The p-value can be obtained with pchisq as before:

• Pr(χ2
1 ≥ λ) = 1-pchisq(lambda,1)

• Pr(χ2
2 ≥ λ) = 1-pchisq(lambda,2)
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The general result

yi,j = βTxi,j + bT
j zi,j + εi,j

If bj ∈ Rp, then

Cov[bj ] = Ψ =


ψ2

1 ψ12 · · · ψ1p

ψ21 ψ2
2 · · · ψ2p

...
...

ψp1 ψp2 · · · ψ2
p


Consider testing to compare the following models:

M1: Full model

M1: Reduced model with ψ2
p = 0 (and ψpk = 0 also)

Question: What is the change in number of parameters?

Answer: d = p
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The null distribution in the general case

M1 p random effects coefficients

M0 p − 1 random effects coefficients

Null distribution: Under M0, the LRT statistic has is distributed as

λ(y) =

{
Xp−1 with probabilty 1/2
Xp with probabilty 1/2

where

• Xp−1 has a χ2
p−1 distribution;

• Xp has a χ2
p distribution.

78/84



The null distribution in the general case

M1 p random effects coefficients

M0 p − 1 random effects coefficients

Null distribution: Under M0, the LRT statistic has is distributed as

λ(y) =

{
Xp−1 with probabilty 1/2
Xp with probabilty 1/2

where

• Xp−1 has a χ2
p−1 distribution;

• Xp has a χ2
p distribution.

78/84



The null distribution in the general case

M1 p random effects coefficients

M0 p − 1 random effects coefficients

Null distribution: Under M0, the LRT statistic has is distributed as

λ(y) =

{
Xp−1 with probabilty 1/2
Xp with probabilty 1/2

where

• Xp−1 has a χ2
p−1 distribution;

• Xp has a χ2
p distribution.

78/84



The null distribution in the general case

M1 p random effects coefficients

M0 p − 1 random effects coefficients

Null distribution: Under M0, the LRT statistic has is distributed as

λ(y) =

{
Xp−1 with probabilty 1/2
Xp with probabilty 1/2

where

• Xp−1 has a χ2
p−1 distribution;

• Xp has a χ2
p distribution.

78/84



The null distribution in the general case

Shorthand for this is
λ|M0 ∼ 1

2
(χ2

p−1 + χ2
p).

• This does not mean that λ is the average of two χ2 random variables,

• this does mean that the density of λ is the average of two χ2 densities.

CAREFUL: Some authors say λ|M0 ∼ 1
2
(χ2

p + χ2
p+1).

This is because they are not counting the intercept.
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Check with previous results:

Single random effect:

M0 : yi,j = βTxi,j + εi,j

M1 : yi,j = βTxi,j + b1,j + εi,j

λ|M0 ∼ 1
2
({0}+ χ2

1)

Two random effects:

M0 : yi,j = βTxi,j + b1,jεi,j

M1 : yi,j = βTxi,j + b1,j + b2,jwi,j + εi,j

λ|M0 ∼ 1
2
(χ2

1 + χ2
2)
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Effects on p-values and critical values

Naive critical value:

• p random effects implies d = p.

• The naive 0.05 critical value is λc=qchisq(.95,p)

Actual p-value: Suppose you observed a test statistic equal to λc :

• Your “naive” p-value is 0.05.

• Your actual p-value is lower.
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Effects on p-values and critical values

p<-1:20
lc.naive<-qchisq(.95,p)
pval<-.5*( (1-pchisq(lc.naive,p-1)) + (1-pchisq(lc.naive,p)) )
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Summary of testing

LRT: The LRT can be used to compare nested models:

• models with and without various fixed effects;

• models with and without various random effects.

LRT: The LRT statistic can be compared to a null distribution:

• χ2
d for testing if d fixed effects are zero.

• 1
2
(χ2

p−1 + χ2
p) for testing if a single random effect is zero, in the presence

of p − 1 other random effects.
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Cautions

Consequences of ignoring the mixture null distribution:

• The naive p-value will be larger than the actual p-value.

• The naive p-value will underrepresent evidence against the null.

• From a decision-theory perspective, if your naive p-value is lower than your
type I error, then it doesn’t matter.

Caution: null distributions and p-values are based on asymptotic results.

If you are concerned about the validity for your sample size, then simulate!
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