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## [1] 3.589398
sd(csum(Y))
## [1] 1.984451
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Model selection

fit.0<-glm( y ~ 1, family=binomial)

fit.r<-glm( y ~ C(factor(ridx),sum) , family=binomial)

fit.c<-glm( y ~ C(factor(cidx),sum) , family=binomial)

fit.re<-glm( y ~ C(factor(ridx),sum)+C(factor(cidx),sum), family=binomial)
AIC(fit.0)

## [1] 2197.674

AIC(fit.r)

## [1] 1947.604

AIC(fit.c)

## [1] 2176.021

AIC(fit.rc)

## [1] 1897.398

For these data, the full RCE model is best among these four.
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Evaluating the RCE model

H:logodds(Yij =1) =pu+ ai+ bj, Yij'sindependent
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Evaluating the RCE model

H:logodds(Yij =1) =pu+ ai+ bj, Yij'sindependent
Let's evaluate H with the following test statistics: s(Y) = {s1(Y), s2(Y), s3(Y)}
e 51(Y) = sd(outdegree) ;

e 5(Y) = sd(indegree) ;
e s3(Y) = reciprocated dyads

s5(Y) =D yiiyii

i<j

If H is true, then
e Y should look like Y ~ RCE(,a, b) for some (1, a,b), but

e we can't simulate from this distribution as we don't know (u, a, b).

We will first use the ad-hoc “best-case” approach.
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Best case comparison

mu.hat<-fit.rc$coef [1]
a.hat<- fit.rc$coef[1+1: (nrow(Y)-1)] ; a.hat<-c(a.hat,-sum(a.hat) )
b.hat<- fit.rc$coef [nrow(Y)+1: (nrow(Y)-1)] ; b.hat<-c(b.hat,-sum(b.hat) )

theta.mle<- mu.hat+ outer(a.hat,b.hat,"+")
p-mle<-exp(theta.mle)/(1+exp(theta.mle))

s.H<-NULL
for(s in 1:8)

Ys<-matrix(rbinom(nrow(Y)~2,1,p.mle) ,nrow(Y) ,nrow(Y)) ; diag(¥Ys)<-NA
s.H<-rbind(s.H,c(sd(rsum(Ys)),sd(csum(Ys)),sum(Ys*t(Ys)/2,na.rm=TRUE)))

}
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Best case comparison
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Conditional testing

Recall the “best case scenario” evaluation is somewhat ad-hoc.
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Conditioning in exponential families

Return to the SRG:

el‘«
PI’(Y[,‘J] = 1|0) =0= 1+er
eMid
Pr(Yin = yiil0) = 1.

Pr(Y[6) = ¢ g(n)

This is a very simple exponential family model, or
exponentially parameterized random graph model (ERGM).

8/43



Conditioning in exponential families

Return to the SRG:

eM
PF(Y[,"J'] = 1|9) =0= 1+er
eMii
Pr(Yin = yiil0) = 1.

Pr(Y[0) = " g(u)

This is a very simple exponential family model, or
exponentially parameterized random graph model (ERGM).

More generally, an ERGM is of the form
Pr(Y[0) = ™ g(6),
where

o t(Y) = (t(Y),...,t,(Y)) is a vector of statistics;

8/43



8/43

Conditioning in exponential families

Return to the SRG:

eM
PF(Y[,"J'] = 1|9) =0= 1+er
eMii
Pr(Yin = yiil0) = 1.

Pr(Y[0) = " g(u)

This is a very simple exponential family model, or
exponentially parameterized random graph model (ERGM).

More generally, an ERGM is of the form

Pr(Y|0) = eV g(0),

where
o t(Y) = (tr(Y),..., t:(Y)) is a vector of statistics;
e 0 =(61,...,0,) is a vector of parameters;



8/43

Conditioning in exponential families

Return to the SRG:

eM
PF(Y[,"J'] = 1|9) =0= 1+er
eMii
Pr(Yin = yiil0) = 1.

Pr(Y[0) = " g(u)

This is a very simple exponential family model, or
exponentially parameterized random graph model (ERGM).

More generally, an ERGM is of the form

Pr(Y|0) = eV g(0),

where
o t(Y) = (tr(Y),..., t:(Y)) is a vector of statistics;
e 0 =(61,...,0,) is a vector of parameters;

. t(Y)-0= Y t(Y)8,



8/43

Conditioning in exponential families

Return to the SRG:

eM
PF(Y[,"J'] = 1|9) =0= 1+er
eMii
Pr(Yin = yiil0) = 1.

Pr(Y[0) = " g(u)

This is a very simple exponential family model, or
exponentially parameterized random graph model (ERGM).

More generally, an ERGM is of the form

Pr(Y|0) = eV g(0),

where
o t(Y) = (tr(Y),..., t:(Y)) is a vector of statistics;
e 0 =(61,...,0,) is a vector of parameters;

. t(Y)-0= Y t(Y)s,



8/43

Conditioning in exponential families

Return to the SRG:

eM
PF(Y[,"J'] = 1|9) =0= 1+er
eMii
Pr(Yin = yiil0) = 1.

Pr(Y[0) = " g(u)

This is a very simple exponential family model, or
exponentially parameterized random graph model (ERGM).

More generally, an ERGM is of the form

Pr(Y|0) = eV g(0),

where
o t(Y) = (tr(Y),..., t:(Y)) is a vector of statistics;
e 0 =(61,...,0,) is a vector of parameters;

. t(Y)-0= Y t(Y)s,



RCE as ERGM
Can the RCE model be expressed as an ERGM?

(u+aj+b;j)yi j
e J o
Pr(Y|u,a,b) = | | A
T ptaith;
i 1+ e j
= exp(py.. + E aiyi. + E bjy.;) I |(1 + e‘”af“’j)*1
i#j
= exp(t(Y) - 0)g(6)
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Suppose you want to evaluate the adequacy of an ERGM:
H:Pr(Y|9) = e ?g(8) , for some 6 € ©.

Consider evaluation of H based on the statistics s(Y)
(where s is not a function of t).

How can we reject or accept H based on s, without knowing 67
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Conditional tests for ERGMs

Recall our principle for testing:
If Y ~ ERGM(t,0) for some 6 € ©, then
Y should “look like” another sample from ERGM(t, )

o (but we can't generate these).
Y should “look like” samples Y from ERGM(t,0) for which t(Y) = t(¥)

e (can we generate these?)
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Conditional tests for ERGMs

Let t(Y) = tobs.

Pr(Y Nt(Y) = tos|0)
Pr(t(Y) = tobs|6)
exp(t(\?) 0)2(0) x 1(t(¥) = tons)

Pr(Y|0, t(Y) = toss) =

N Sy exp(t(¥) - 0)g(6) x 1(t(¥) = tas)
1Y) = tow)
ZV 1(t( ): obS)

This is the uniform distribution over graphs ¥ for which t(Y) = tops ( = t(Y)).



Conditional tests for ERGMs

Conditional testing procedure
1. Compute sops = s(Y);
2. For ke {l,...,K}:
2.1 Simulate Y uniformly from graphs with t(Y) = t(Y);
2.2 Compute s, = s(Y).

3. Compare sebs tO si, .. ., Sk.
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Conditionally uniform distributions

t(Y) = {}/"ay1~: ey Yy Y1, .. ,y.n} = tobs
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t(Y)={y.s Y1, -, Yy Y1y -+, Yon} = tobs

How can we simulate Y uniformly from the set of graphs with t(?) = tops ?

Rejection sampling:. Given a current set of simulations {¥Y®) ... Y}
1. Simulate Y ~ SRG(n, y°)
2. If t(Y) = tobs, then set YD) = Y. Otherwise, return to step 1.

As you can imagine, this algorithm is not practical for large n.
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Random perturbations

Given Y how can we construct a perturbation Y+ so t(Y6)) = ¢(Y*))?
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3 2 4 2 3 1 3 18

Suppose we randomly switch a tie with a non-tie, within a row:
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Suppose we randomly switch a tie with a non-tie, within a column:

NA 0 1 0 1 0 1 3
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Iteration of this algorithm generates a random sequence ?(1), cee Y
o the value of t(?(s)) is constant throughout the sequence;
o the sequence visits a subset of Y-values for which t(¥) = t(Y®) = tops.

This means the algorithm samples uniformly from a subset of
{Y : t(Y) = tobs}
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An MCMC sampler

To sample uniformly from all of {Y : t(Y) = tops} we need to be able to make
larger perturbations to Y.
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2. Perturb the triad:

o Ifi—j— k—i thenset i< j<+ k<1,
o Ifi<j< k< i thenseti—j— k—i.

Exercise: Show that such perturbations leave in and outdegrees unchanged.
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A single iteration

rY.Yrc<-function(Y)
n<-nrow(Y)

##t#
i<-sample(1:n,4)

Yi<-Y[ i[1:2], i[3:4] ]

if ( abs(Yil[1,1]+Yi[2,2]-Yi[1,2]-Yi[2,1])==2)
{ Y[ i[1:2], i[3:4] ] <- 1-Yi }

##t#

s

i<-sample(1:n,3)

idx<- rbind( c(i[1],i[2]) , c(il1],i[3]) , c(il2],i[3]) ,
c(if2],il11) , c(il31,i[1]) , c(il31,il1]) )

y<-Y[idx]

if( all( y[2*%(1:3)-1]1== 1 - y[2%(1:3) 1)) { Y[idxl<- 1-y }

fiza

Y
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A more efficient sampler

rY.Yrc<-function(Y)

##t#

n<-nrow(Y)

il<-resample( (1:n)[apply(Y,1,sum,na.rm=TRUE)>0 1 ,1)
jl<-resample(which(Y[i1,]==1),1) ; j2<- resample(which(Y[i1,]==0),1)
¥i1j2<-Y[,c(31,32) ]

if (length(c(j1,3j2))==2)

nnodes<- which( yj1j2[,1]1==0 & yj1j2[,2]==1 )
if (length(nnodes)>0)

i2<-resample(nnodes,1)
if (length(i2)==1){ VY[c(i1,i2),c(j1,j2)] <- 1 - Y[c(il1,i2),c(j1,j2)]1 }

###

##t#

Yi<-Y ; diag(Y1)<- 0

Y2<-Y1%*%Y1

ikt<-which( Y2*t(Y1)*(1-Y1) > 0,arr.ind=TRUE )

ik<-ikt[ resample(1:nrow(ikt),1) ,]

j<- resample(which(Y1[ik[1],]==1 & Y1[,ik[111==0 &
Y1[,ik[2] 1==1 & Y1[ik[2], 1==0 ), 1)

if (length(j)>0)

ijk<-c(ik[1],j,ik[2] )
Y[ijk,ijk]<-1-Y[ijk,ijk]

#Ht
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Evaluating the RCE model

H:logodds(Yij =1)=pu+ ai+ bj, Yi,j'sindependent
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o s3(Y) = reciprocated dyads

s5(Y) =D yiiyii

i<j
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MCMC approximation

s.H<- c(sd(rsum(Y)),sd(csum(Y)),sum(Y*t(Y),na.rm=TRUE)/2)

Ys<-Y
for(s in 1:S)

Ys<-rY.Yrc(Ys)

s.H<-rbind(s.H,c(sd(rsum(Ys)),sd(csum(Ys)),sum(Ys*t(Ys)/2,na.rm=TRUE)))

}
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MCMC approximation

s.H<-matrix(0,nrow=Sbig/Sout,ncol=3)

Ys<-Y
for(s in 1:Sbig)

Ys<-rY.Yrc(Ys)
if (s%hSout==0)

s.H[s/Sout,]<-c(sd(rsum(Y¥s)),sd(csum(Ys)),sum(Ys*t(Ys)/2,na.rm=TRUE))

< 7
E
£, £31 =2
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The RCE model fails to capture the number of reciprocal dyads:

e There are more reciprocal dyads than expected under any RCE model;
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e i+ j(01)
o i+ j(11)
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| He !ya! census

Let
e M= the number of mutual dyads;
o A= the number of asymmetric dyads;
e N= the number of null dyads.

Then M 4+ A+ N = the number of dyads = (5).

Computing M: Recall, y; jy;i = 1 only if both y;; and y;; are 1.

M=>"yijyi

i<j
Computing A: A equals the number of links minus the number of reciprocated
links.

A=y.—2M

Computing N: Recall M + A+ N = the number of dyads = (g)

N:@_M_A

Other formula are available.
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Dyad census in R

M<-sum (Y*t (Y) ,na.rm=TRUE) /2
A<-sum(Y,na.rm=TRUE) - 2%M
N<- choose(nrow(Y),2) - M - A
M

## [1] 43

A

## [1] 117

N

## [1] 8225

### check
sum( (1-Y)*t ((1-Y)) ,na.rm=TRUE)/2

## [1] 8225
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For what types of networks will
e M be large?
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Evaluating M

For what types of networks will
o M be large?
e M be small?

How do we evaluate M? What should it be compared to?
e Its distribution under some null model (RCE via MCMC);

e lts expected value under some simple conditions (direct calculation).

In the latter case, we
1. posit some simple conditions H on tie selection;
2. calculate E[M|H];
3. compare M to E[M|H].

This is less informative than comparing to a conditional distribution, but can
be done without simulation in some cases.
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H : Individuals make d nominations uniformly at random.

To say “this network has more mutuality than expected under randomness”, we
need to calculate E[M|H]

E[MIH] = E[> _ yijy;.ilH]

i<j

= Elyiy;ilH]

i<j

n
= <2> Elyiy5,il H]

= <,27> Pr(y,-,j =1 and Yii = 1|H)

35/43



Mutuality under fixed choice
H : Individuals make d nominations uniformly at random.

To say “this network has more mutuality than expected under randomness”, we
need to calculate E[M|H]

E[MIH] = E[> _ yijy;.ilH]

i<j

= Elyiy;ilH]

i<j

n
= <2> Elyiy5,il H]

= <,27> Pr(y,-,j =1 and Yii = 1|H)

Pr(yij =1 and y;,i = 1|H) = Pr(yij = 1|H) x Pr(y;,i = 1|H)
d d d?
n—1"n-1 (n—-1)2
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Mutuality under fixed choice

E[M|H] = <'2’> (niilf
n(n—1) d° nd?

2 (n—12 2(n—-1)
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Mutuality under free choice

H : Individuals make y;. nominations uniformly at random.
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It can be shown that

E[M|H] — yi= (X y)

2(n—1)2

This allows us to evaluate mutuality, controlling for heterogeneity in outdegree.
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Mutuality under free choice

H : Individuals make y;. nominations uniformly at random.
It can be shown that
2 2
y. = (2yi)
E[M|H] = —/—F—=—+
K] = Y5

This allows us to evaluate mutuality, controlling for heterogeneity in outdegree.

yod<-rsum(Y)
( sum(yod)~2 - sum(yod~2) ) / ( 2x(nrow(Y)-1)"2)

## [1] 1.178715
mean(s.H[,3] )

## [1] 9.21

sum(Y*t (Y) ,na.rm=TRUE)/2
## [1] 43

For these data, there is more reciprocity than expected, controlling for either
outdegrees or both in and outdegrees.
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How should we measure reciprocity?

e reciprocity reflects dependence between Y;; and Y ;;

e a reciprocity metric should measure “the effect” of Y;; on Y},

Pr(Y;; =1) under independence
Pr(Y;i=1lYi;=1) = 0 under complete antireciprocity
1 under complete reciprocity

Katz and Powell (1955) propose a reciprocity measure p:
Pr(Yji =1[Yi; =1) =Pr(Yji =1) + pPr(Y},; = 0)

e p =0 implies independence;
e p < 0 implies antireciprocity;
e p > 0 implies reciprocity.

WF goes through a few ways to estimate this assuming various models.
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Log odds ratio

An arguably more natural way to measure reciprocity is with a log-odds ratio:

Pr(Yji=1lYi,; =1)
Pr(Y;i =0l =1)

odds(Yj,i=1:Y;;=1)=
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Log odds ratio

An arguably more natural way to measure reciprocity is with a log-odds ratio:

Pr(Y;; = 1|Vi; = 1)
odds(Yj,i=1:Y;;=1)= Pr(YJ,—O\Y,le)
Pr(Y;i =1|Yi, =0)
odds(Y;,i=1:Y;;=0)= Pr(Y, = 0]V, —0)
1—

odds ratio( Y = 1: iy =1, Vi, = 0) = P (1= Pio)

(1=pip)  Pipo
Where

Pwix = Pr(Yj,i = wl|Yi; = x)



Log odds ratio
Empirical estimates of these probabilities can be obtained from (M, A, N).
Pr(Yij=1,Y.i=1)

Pr(Y,-,j = 1)
PF(Y;J = 1, Y'7,' = 1)

Pr(Yii=1lYij=1) =

Pr(Yij=1Y5i =1)+Pr(Yi; =1,Y;=0)
. MJT  2M
T M/T+A/(2T)  2M+ A
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Empirical estimates of these probabilities can be obtained from (M, A, N).
Pr(Yij=1,Y.i=1)

Pr(Y,-,j = 1)
PF(Y;J = 1, Y'7,' = 1)

Pr(Yii=1lYij=1) =

Pr(Yij=1Y5i =1)+Pr(Yi; =1,Y;=0)
. MJT  2M
T M/T+A/(2T)  2M+ A

Similarly,

Pr(Yi, =1,Y,;=0)
Pr(Yi,; =0)
Pr(Y;,j = 1, Y'7,' = 0)

Pr(Yii=1|Yi;=0) =

Pr(Yij =0,V =0)+Pr(Yi; =1Yj;=0)
ATy A
T A/RT)+N/T ~ A+2N
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Reciprocity measure for 90s conflict data
M<-sum(Y*t (Y) ,na.rm=TRUE) /2
A<-sum(Y,na.rm=TRUE) - 2*M
N<- choose(nrow(Y),2) - M - A
M
## [1] 43
A
## [1] 117
N
## [1] 8225

Pp11<-2%M/ (2%M+A)
P10<-A/ (A+2%N)

pil

## [1] 0.4236453

p10

## [1] 0.007062232

log( pi1 * (1-p10) /( (1-p11) * p10) )

## [1] 4.63808
41/43 (1]



Reciprocity measure in 90s conflict data

y<—c(¥) ; x<-c(t(Y))
mean(y [x==1] ,na.rm=TRUE)

## [1] 0.4236453
mean (y [x==0] ,na.rm=TRUE)
## [1]1 0.007062232

fit<-glm(y~x,family=binomial)

fit

##

## Call: glm(formula =y ~ x, family = binomial)
##

## Coefficients:

## (Intercept) x

## -4.946 4.638

##

## Degrees of Freedom: 16769 Total (i.e. Null); 16768 Residual
## (130 observations deleted due to missingness)

## Null Deviance: 2196

## Residual Deviance: 1669 AIC: 1673

table(fit$fitted)

##

## 0.00706223230891567  0.423645320196599
## 16567 203

42/43



Reciprocity via logistic regression

Exercise: Show that the log-odds ratio is the logistic regression coefficient.

Note: This use of glm is not really fitting a model - the outcome is on both
sides of the regression equation.
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