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Conflict in the 90s
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sd(rsum(Y))

## [1] 3.589398

sd(csum(Y))

## [1] 1.984451
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Model selection

fit.0<-glm( y ~ 1, family=binomial)
fit.r<-glm( y ~ C(factor(ridx),sum) , family=binomial)
fit.c<-glm( y ~ C(factor(cidx),sum) , family=binomial)
fit.rc<-glm( y ~ C(factor(ridx),sum)+C(factor(cidx),sum), family=binomial)

AIC(fit.0)

## [1] 2197.674

AIC(fit.r)

## [1] 1947.604

AIC(fit.c)

## [1] 2176.021

AIC(fit.rc)

## [1] 1897.398

For these data, the full RCE model is best among these four.
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Evaluating the RCE model

H : log odds(Yi,j = 1) = µ+ ai + bj , Yi,j ’s independent

Let’s evaluate H with the following test statistics: s(Y) = {s1(Y), s2(Y), s3(Y)}

• s1(Y) = sd(outdegree) ;

• s2(Y) = sd(indegree) ;

• s3(Y) = reciprocated dyads

s3(Y) =
∑
i<j

yi,jyj,i

If H is true, then

• Y should look like Ỹ ∼ RCE(µ, a, b) for some (µ, a, b), but

• we can’t simulate from this distribution as we don’t know (µ, a, b).

We will first use the ad-hoc “best-case” approach.
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• Y should look like Ỹ ∼ RCE(µ, a, b) for some (µ, a, b), but

• we can’t simulate from this distribution as we don’t know (µ, a, b).

We will first use the ad-hoc “best-case” approach.

4/43



Evaluating the RCE model

H : log odds(Yi,j = 1) = µ+ ai + bj , Yi,j ’s independent

Let’s evaluate H with the following test statistics: s(Y) = {s1(Y), s2(Y), s3(Y)}

• s1(Y) = sd(outdegree) ;

• s2(Y) = sd(indegree) ;

• s3(Y) = reciprocated dyads

s3(Y) =
∑
i<j

yi,jyj,i

If H is true, then
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• Y should look like Ỹ ∼ RCE(µ, a, b) for some (µ, a, b), but

• we can’t simulate from this distribution as we don’t know (µ, a, b).

We will first use the ad-hoc “best-case” approach.

4/43



Evaluating the RCE model

H : log odds(Yi,j = 1) = µ+ ai + bj , Yi,j ’s independent

Let’s evaluate H with the following test statistics: s(Y) = {s1(Y), s2(Y), s3(Y)}

• s1(Y) = sd(outdegree) ;

• s2(Y) = sd(indegree) ;

• s3(Y) = reciprocated dyads

s3(Y) =
∑
i<j

yi,jyj,i

If H is true, then
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Best case comparison

mu.hat<-fit.rc$coef[1]
a.hat<- fit.rc$coef[1+1:(nrow(Y)-1)] ; a.hat<-c(a.hat,-sum(a.hat) )
b.hat<- fit.rc$coef[nrow(Y)+1:(nrow(Y)-1)] ; b.hat<-c(b.hat,-sum(b.hat) )

theta.mle<- mu.hat+ outer(a.hat,b.hat,"+")
p.mle<-exp(theta.mle)/(1+exp(theta.mle))

s.H<-NULL
for(s in 1:S)
{

Ys<-matrix(rbinom(nrow(Y)^2,1,p.mle),nrow(Y),nrow(Y)) ; diag(Ys)<-NA
s.H<-rbind(s.H,c(sd(rsum(Ys)),sd(csum(Ys)),sum(Ys*t(Ys)/2,na.rm=TRUE)))
}
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Best case comparison
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Conditional testing

Recall the “best case scenario” evaluation is somewhat ad-hoc.

Compare to the conditional evaluation:

Suppose Y ∼ SRG(n, θ):

• {Y|y··} 6∼ SRG(n, θ);

• {Y|y··} ∼ SRG(n, y··).

Similarly, suppose Y ∼ RCE(µ, a, b) :

• {Y|y··, {yi·}, {y·i}} 6∼ RCE(µ̂, â, b̂).

• {Y|y··{yi·}, {y·i}} ∼?
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Conditioning in exponential families

Return to the SRG:

Pr(Y[i,j] = 1|θ) = θ =
eµ

1 + eµ

Pr(Y[i,j] = yi,j |θ) =
eµyi,j

1 + eµ

Pr(Y|θ) = eµy··g(µ)

This is a very simple exponential family model, or
exponentially parameterized random graph model (ERGM).

More generally, an ERGM is of the form

Pr(Y|θ) = et(Y)·θg(θ),

where

• t(Y) = (t1(Y), . . . , tp(Y)) is a vector of statistics;

• θ = (θ1, . . . , θp) is a vector of parameters;

• t(Y) · θ =
∑

tj(Y)θj .
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RCE as ERGM
Can the RCE model be expressed as an ERGM?

Pr(Y|µ, a, b) =
∏
i 6=j

e(µ+ai+bj )yi,j

1 + eµ+ai+bj

= exp(µy·· +
∑

aiyi· +
∑

bjy·j)
∏
i 6=j

(1 + eµ+ai+bj )−1

= exp(t(Y) · θ)g(θ)

where

t(Y) = (y··, y1·, . . . , yn·, y·1, . . . , y·n)

θ = (µ, a1, . . . , an, b1, . . . , bn)

So yes, the RCE model is an ERGM. The sufficient statistics that generate the
model are the out and indegrees.

• the sum y·· can be computed from the degrees;

• the term “sufficient” means sufficient for inferring the parameters,
assuming the model is correct.
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Conditional tests for ERGMs

Suppose you want to evaluate the adequacy of an ERGM:

H : Pr(Y|θ) = et(Y)·θg(θ) , for some θ ∈ Θ.

Consider evaluation of H based on the statistics s(Y)
(where s is not a function of t).

How can we reject or accept H based on s, without knowing θ?
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Y should “look like” samples Ỹ from ERGM(t, θ) for which t(Y) = t(Ỹ)
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Conditional tests for ERGMs

Let t(Y) = tobs .

Pr(Ỹ|θ, t(Ỹ) = tobs) =
Pr(Ỹ ∩ t(Ỹ) = tobs |θ)

Pr(t(Ỹ) = tobs |θ)

=
exp(t(Ỹ) · θ)g(θ)× 1(t(Ỹ) = tobs)∑
Y̌ exp(t(Y̌) · θ)g(θ)× 1(t(Y̌) = tobs)

=
1(t(Ỹ) = tobs)∑
Y̌ 1(t(Y̌) = tobs)

This is the uniform distribution over graphs Ỹ for which t(Ỹ) = tobs ( = t(Y)).
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Conditional tests for ERGMs

Conditional testing procedure

1. Compute sobs = s(Y);

2. For k ∈ {1, . . . ,K}:
2.1 Simulate Ỹk uniformly from graphs with t(Ỹ) = t(Y);

2.2 Compute sk = s(Ỹ).

3. Compare sobs to s1, . . . , sK .
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Conditionally uniform distributions

t(Y) = {y··, y1·, . . . , yn·, y·1, . . . , y·n} = tobs

How can we simulate Ỹ uniformly from the set of graphs with t(Ỹ) = tobs ?

Rejection sampling:. Given a current set of simulations {Ỹ(1), . . . , Ỹ(s)} ,

1. Simulate Ỹ ∼ SRG(n, y obs
·· )

2. If t(Ỹ) = tobs , then set Ỹ(s+1) = Ỹ. Otherwise, return to step 1.

As you can imagine, this algorithm is not practical for large n.
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MCMC sampling

MCMC sampling: Given a current set of simulations {Ỹ(1), . . . , Ỹ(s)} ,

1. Make a random perturbation Ỹ of Ỹ(s) so that t(Ỹ) = t(Ỹ(s)) = tobs ;

2. Set Ỹ(s+1) = Ỹ.

This generates a random dependent sequence from Pr(Ỹ|t(Ỹ) = tobs).

• dependent, because Ỹ(s+1) depends on Ỹ(s).

• contrast this with sampling Ỹ(1), . . . , Ỹ(s) i.i.d. from SRG(n, y··).
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Random perturbations

Given Ỹ(s), how can we construct a perturbation Ỹ(s+1) so t(Ỹ(s+1)) = t(Ỹ(s))?

NA 0 1 0 1 0 1 3
1 NA 0 1 1 0 0 3
0 1 NA 0 0 0 0 1
0 1 1 NA 0 1 1 4
1 0 0 0 NA 0 0 1
0 0 1 1 1 NA 1 4
1 0 1 0 0 0 NA 2
3 2 4 2 3 1 3 18

Suppose we randomly switch a tie with a non-tie, within a row:
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Random perturbations

Suppose we randomly switch a tie with a non-tie, within a row:

NA 0 1 0 1 0 1 3
1 NA 0 1 1 → 0 0 → 1 0 3 → 3
0 1 NA 0 0 0 0 1
0 1 1 NA 0 1 1 4
1 0 0 0 NA 0 0 1
0 0 1 1 1 NA 1 4
1 0 1 0 0 0 NA 2
3 2 4 2 3 → 2 1 → 2 3 18

The outdegrees are maintained, but the indegrees change.
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Random perturbations

Suppose we randomly switch a tie with a non-tie, within a column:

NA 0 1 0 1 0 1 3
1 NA 0 1 1 → 0 0 0 3→ 2
0 1 NA 0 0 0 0 1
0 1 1 NA 0 1 1 4
1 0 0 0 NA 0 0 1
0 0 1 1 1 NA 1 4
1 0 1 0 0 → 1 0 NA 2→ 3
3 2 4 2 3 → 3 1 3 18

The indegrees are maintained, but the outdegrees change.
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Random perturbations

To perturb while maintaining both in and outdegrees, we must update at least
four cells at once:

NA 0 1 0 1 0 1 3
1 NA 0→ 1 1 1 → 0 0 0 3 → 3
0 1 NA 0 0 0 0 1
0 1 1 NA 0 1 1 4
1 0 0 0 NA 0 0 1
0 0 1 1 1 NA 1 4
1 0 1 → 0 0 0 → 1 0 NA 3 → 3
3 2 3 → 3 2 3 → 3 1 3 18

The in and outdegrees are maintained.
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Random perturbations
To perturb while maintaining both in and outdegrees, we must update at least
four cells at once:

Algorithm:

1. Set Ỹ(s+1) = Ỹ(s).

2. Randomly select two rows i = (i1, i2) and two columns j = (j1, j2)

3. Obtain the submatrix Ỹ(s+1)
ij = Ỹ(s+1)

[(i1,i2),(j1,j2)].

4. Perturb Ỹ(s+1)
ij as follows:

• If Ỹ
(s+1)
ij =

(
1 0
0 1

)
, set Ỹ

(s+1)
ij =

(
0 1
1 0

)
• If Ỹ

(s+1)
ij =

(
0 1
1 0

)
, set Ỹ

(s+1)
ij =

(
1 0
0 1

)
Iteration of this algorithm generates a random sequence Ỹ(1), . . . , Ỹ(S)

• the value of t(Ỹ(s)) is constant throughout the sequence;

• the sequence visits a subset of Ỹ-values for which t(Ỹ) = t(Ỹ(1)) = tobs .

This means the algorithm samples uniformly from a subset of

{Ỹ : t(Ỹ) = tobs}.
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ij = Ỹ(s+1)
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This means the algorithm samples uniformly from a subset of
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ij = Ỹ(s+1)

[(i1,i2),(j1,j2)].

4. Perturb Ỹ(s+1)
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(s+1)
ij =

(
0 1
1 0

)
, set Ỹ
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ij = Ỹ(s+1)
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(s+1)
ij =

(
1 0
0 1

)
, set Ỹ
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ij = Ỹ(s+1)
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• the sequence visits a subset of Ỹ-values for which t(Ỹ) = t(Ỹ(1)) = tobs .

This means the algorithm samples uniformly from a subset of

{Ỹ : t(Ỹ) = tobs}.
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Random perturbations
To perturb while maintaining both in and outdegrees, we must update at least
four cells at once:

Algorithm:

1. Set Ỹ(s+1) = Ỹ(s).

2. Randomly select two rows i = (i1, i2) and two columns j = (j1, j2)

3. Obtain the submatrix Ỹ(s+1)
ij = Ỹ(s+1)

[(i1,i2),(j1,j2)].
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ij as follows:
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An MCMC sampler

To sample uniformly from all of {Ỹ : t(Ỹ) = tobs} we need to be able to make
larger perturbations to Ỹ.

Here is an outline of an algorithm that works properly:

Given a sequence {Ỹ(1), . . . , Ỹ(s)}, generate Ỹ(s+1) as follows:

1. Construct Ỹ1 by perturbing a random subsquare of Ỹ(s) as before;

2. Construct Ỹ2 by perturbing a random triad of Ỹ1;

3. Set Ỹ(s+1) = Ỹ2.

How is the perturbation of a triad done?

1. Randomly select a triad (i , j , k);

2. Perturb the triad:
• If i → j → k → i , then set i ← j ← k ← i ;
• If i ← j ← k ← i , then set i → j → k → i .

Exercise: Show that such perturbations leave in and outdegrees unchanged.
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Here is an outline of an algorithm that works properly:

Given a sequence {Ỹ(1), . . . , Ỹ(s)}, generate Ỹ(s+1) as follows:
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larger perturbations to Ỹ.
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2. Construct Ỹ2 by perturbing a random triad of Ỹ1;

3. Set Ỹ(s+1) = Ỹ2.

How is the perturbation of a triad done?

1. Randomly select a triad (i , j , k);

2. Perturb the triad:
• If i → j → k → i , then set i ← j ← k ← i ;
• If i ← j ← k ← i , then set i → j → k → i .

Exercise: Show that such perturbations leave in and outdegrees unchanged.

21/43



An MCMC sampler
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A single iteration

rY.Yrc<-function(Y)
{

n<-nrow(Y)

###
i<-sample(1:n,4)
Yi<-Y[ i[1:2], i[3:4] ]
if( abs(Yi[1,1]+Yi[2,2]-Yi[1,2]-Yi[2,1])==2)
{ Y[ i[1:2], i[3:4] ] <- 1-Yi }
###

###
i<-sample(1:n,3)
idx<- rbind( c(i[1],i[2]) , c(i[1],i[3]) , c(i[2],i[3]) ,

c(i[2],i[1]) , c(i[3],i[1]) , c(i[3],i[1]) )
y<-Y[idx]
if( all( y[2*(1:3)-1]== 1 - y[2*(1:3) ] )) { Y[idx]<- 1-y }
###

Y
}
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A more efficient sampler
rY.Yrc<-function(Y)

{

###

n<-nrow(Y)

i1<-resample( (1:n)[apply(Y,1,sum,na.rm=TRUE)>0 ] ,1)

j1<-resample(which(Y[i1,]==1),1) ; j2<- resample(which(Y[i1,]==0),1)

yj1j2<-Y[,c(j1,j2) ]

if(length(c(j1,j2))==2)

{
nnodes<- which( yj1j2[,1]==0 & yj1j2[,2]==1 )

if(length(nnodes)>0)

{
i2<-resample(nnodes,1)

if(length(i2)==1){ Y[c(i1,i2),c(j1,j2)] <- 1 - Y[c(i1,i2),c(j1,j2)] }
}
}
###

###

Y1<-Y ; diag(Y1)<- 0

Y2<-Y1%*%Y1

ikt<-which( Y2*t(Y1)*(1-Y1) > 0,arr.ind=TRUE )

ik<-ikt[ resample(1:nrow(ikt),1) ,]

j<- resample(which(Y1[ik[1],]==1 & Y1[,ik[1]]==0 &

Y1[,ik[2] ]==1 & Y1[ik[2], ]==0 ), 1 )

if(length(j)>0)

{
ijk<-c(ik[1],j,ik[2] )

Y[ijk,ijk]<-1-Y[ijk,ijk]

}
###

Y

}
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Evaluating the RCE model

H : log odds(Yi,j = 1) = µ+ ai + bj , Yi,j ’s independent

If H is true, then

• Y should look like Ỹ ∼ RCE(µ, a, b) for some (µ, a, b).
• We can’t simulate from this distribution as we don’t know (µ, a, b).

• Y should look like Ỹ ∼ uniform on t(Ỹ) = t(Y).
• We can sample from this distribution using MCMC.

For the conflict data, let’s evaluate H with some test statistics:

s(Y) = {s1(Y), s2(Y), s3(Y)}
• s1(Y) = sd(outdegree) ;

• s2(Y) = sd(indegree) ;

• s3(Y) = reciprocated dyads

s3(Y) =
∑
i<j

yi,jyj,i
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• Y should look like Ỹ ∼ RCE(µ, a, b) for some (µ, a, b).
• We can’t simulate from this distribution as we don’t know (µ, a, b).
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MCMC approximation

s.H<- c(sd(rsum(Y)),sd(csum(Y)),sum(Y*t(Y),na.rm=TRUE)/2)

Ys<-Y
for(s in 1:S)
{

Ys<-rY.Yrc(Ys)
s.H<-rbind(s.H,c(sd(rsum(Ys)),sd(csum(Ys)),sum(Ys*t(Ys)/2,na.rm=TRUE)))
}
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MCMC approximation

s.H<-matrix(0,nrow=Sbig/Sout,ncol=3)

Ys<-Y
for(s in 1:Sbig)
{

Ys<-rY.Yrc(Ys)
if(s%%Sout==0)
{

s.H[s/Sout,]<-c(sd(rsum(Ys)),sd(csum(Ys)),sum(Ys*t(Ys)/2,na.rm=TRUE))
}
}
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Reciprocity

reciprocal dyads
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The RCE model fails to capture the number of reciprocal dyads:

• There are more reciprocal dyads than expected under any RCE model;

• This makes sense - conflict is likely to be reciprocated;

• Statistically, this suggests that Yi,j and Yj,i are not independent.
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Dyads

A dyad is an unordered pair of nodes

• {i , j} = {j , i} is the pair of nodes i and j .

For an undirected binary relation, the dyad can be in one of four states:

• i 6 −j (null)

• i → j (asymmetric)

• i ← j (asymmetric)

• i ↔ j (mutual)

These correspond to the following values of (yi,j , yj,i )

• i 6 −j (0,0)

• i → j (1,0)

• i ← j (0,1)

• i ↔ j (1,1)
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Reciprocity

Reciprocity or mutuality describes the tendency for ties to be mutual.

A quantification of reciprocity is a standard part of SNA

• Statistical analysis requires we account for dyadic dependence, if present.

• Reciprocity by itself may be of interest in terms of evaluating social theory.
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The dyad census
Let

• M= the number of mutual dyads;

• A= the number of asymmetric dyads;

• N= the number of null dyads.

Then M + A + N = the number of dyads =
(
n
2

)
.

Computing M: Recall, yi,jyj,i = 1 only if both yi,j and yj,i are 1.

M =
∑
i<j

yi,jyj,i

Computing A: A equals the number of links minus the number of reciprocated
links.

A = y·· − 2M

Computing N: Recall M + A + N = the number of dyads =
(
n
2

)
.

N =

(
n

2

)
−M − A

Other formula are available.
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Dyad census in R

M<-sum(Y*t(Y),na.rm=TRUE)/2

A<-sum(Y,na.rm=TRUE) - 2*M

N<- choose(nrow(Y),2) - M - A

M

## [1] 43

A

## [1] 117

N

## [1] 8225

### check
sum( (1-Y)*t((1-Y)),na.rm=TRUE)/2

## [1] 8225
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Evaluating M

For what types of networks will

• M be large?

• M be small?

How do we evaluate M? What should it be compared to?

• Its distribution under some null model (RCE via MCMC);

• Its expected value under some simple conditions (direct calculation).

In the latter case, we

1. posit some simple conditions H on tie selection;

2. calculate E[M|H];

3. compare M to E[M|H].

This is less informative than comparing to a conditional distribution, but can
be done without simulation in some cases.
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Mutuality under fixed choice

Fixed nomination scheme:
A network survey instrument in which each individual is required to make
exactly d nominations, where d is fixed in advance.

This is a common type of network survey instrument used in institutions:

• Each member given a roster of all members;

• Each member checks off their “top d” friends;

• Often ranks of the top d friends are included (fixed rank nomination)

Such an approach is useful when the goal is to

• to distinguish between the strong and weak ties;

• to control for outdegree heterogeneity.
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Mutuality under fixed choice
H : Individuals make d nominations uniformly at random.

To say “this network has more mutuality than expected under randomness”, we
need to calculate E[M|H]

E[M|H] = E[
∑
i<j

yi,jyj,i |H]

=
∑
i<j

E[yi,jyj,i |H]

=

(
n

2

)
E[yi,jyj,i |H]

=

(
n

2

)
Pr(yi,j = 1 and yj,i = 1|H)

Pr(yi,j = 1 and yj,i = 1|H) = Pr(yi,j = 1|H)× Pr(yj,i = 1|H)

=
d

n − 1
× d

n − 1
=

d2

(n − 1)2
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Mutuality under fixed choice

E[M|H] =

(
n

2

)
d2

(n − 1)2

=
n(n − 1)

2

d2

(n − 1)2
=

nd2

2(n − 1)
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Mutuality under free choice

H : Individuals make yi· nominations uniformly at random.

It can be shown that

E[M|H] =
y 2
·· − (

∑
y 2
i·)

2(n − 1)2

This allows us to evaluate mutuality, controlling for heterogeneity in outdegree.

yod<-rsum(Y)
( sum(yod)^2 - sum(yod^2) ) / ( 2*(nrow(Y)-1)^2)

## [1] 1.178715

mean(s.H[,3] )

## [1] 9.21

sum(Y*t(Y),na.rm=TRUE)/2

## [1] 43

For these data, there is more reciprocity than expected, controlling for either
outdegrees or both in and outdegrees.
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A reciprocity parameter

How should we measure reciprocity?

• reciprocity reflects dependence between Yi,j and Yj,i ;

• a reciprocity metric should measure “the effect” of Yi,j on Yj,i

Pr(Yj,i = 1|Yi,j = 1) =


Pr(Yj,i = 1) under independence

0 under complete antireciprocity
1 under complete reciprocity

Katz and Powell (1955) propose a reciprocity measure ρ:

Pr(Yj,i = 1|Yi,j = 1) = Pr(Yj,i = 1) + ρPr(Yj,i = 0)

• ρ = 0 implies independence;

• ρ < 0 implies antireciprocity;

• ρ > 0 implies reciprocity.

WF goes through a few ways to estimate this assuming various models.
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Log odds ratio

An arguably more natural way to measure reciprocity is with a log-odds ratio:

odds(Yj,i = 1 : Yi,j = 1) =
Pr(Yj,i = 1|Yi,j = 1)

Pr(Yj,i = 0|Yi,j = 1)

odds(Yj,i = 1 : Yi,j = 0) =
Pr(Yj,i = 1|Yi,j = 0)

Pr(Yj,i = 0|Yi,j = 0)

odds ratio(Yj,i = 1 : Yi,j = 1,Yi,j = 0) =
p1|1

(1− p1|1)

(1− p1|0)

p1|0

Where
pw|x = Pr(Yj,i = w |Yi,j = x)
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Log odds ratio

Empirical estimates of these probabilities can be obtained from (M,A,N).

Pr(Yj,i = 1|Yi,j = 1) =
Pr(Yi,j = 1,Yj,i = 1)

Pr(Yi,j = 1)

=
Pr(Yi,j = 1,Yj,i = 1)

Pr(Yi,j = 1,Yj,i = 1) + Pr(Yi,j = 1,Yj,i = 0)

≈ M/T

M/T + A/(2T )
=

2M

2M + A

Similarly,

Pr(Yj,i = 1|Yi,j = 0) =
Pr(Yi,j = 1,Yj,i = 0)

Pr(Yi,j = 0)

=
Pr(Yi,j = 1,Yj,i = 0)

Pr(Yi,j = 0,Yj,i = 0) + Pr(Yi,j = 1,Yj,i = 0)

≈ A/(2T )

A/(2T ) + N/T
=

A

A + 2N
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Reciprocity measure for 90s conflict data
M<-sum(Y*t(Y),na.rm=TRUE)/2

A<-sum(Y,na.rm=TRUE) - 2*M

N<- choose(nrow(Y),2) - M - A

M

## [1] 43

A

## [1] 117

N

## [1] 8225

p11<-2*M/(2*M+A)

p10<-A/(A+2*N)

p11

## [1] 0.4236453

p10

## [1] 0.007062232

log( p11 * (1-p10) /( (1-p11) * p10) )

## [1] 4.63808
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Reciprocity measure in 90s conflict data

y<-c(Y) ; x<-c(t(Y))

mean(y[x==1],na.rm=TRUE)

## [1] 0.4236453

mean(y[x==0],na.rm=TRUE)

## [1] 0.007062232

fit<-glm(y~x,family=binomial)

fit

##

## Call: glm(formula = y ~ x, family = binomial)

##

## Coefficients:

## (Intercept) x

## -4.946 4.638

##

## Degrees of Freedom: 16769 Total (i.e. Null); 16768 Residual

## (130 observations deleted due to missingness)

## Null Deviance: 2196

## Residual Deviance: 1669 AIC: 1673

table(fit$fitted)

##

## 0.00706223230891567 0.423645320196599

## 16567 203
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Reciprocity via logistic regression

Exercise: Show that the log-odds ratio is the logistic regression coefficient.

Note: This use of glm is not really fitting a model - the outcome is on both
sides of the regression equation.
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