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Running example
Managers data:

• nodeset = 21 managers in high-tech companies

• yi,j = presence of a directed friendship relation.
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WARNING: These data have been tweaked for didactic purposes:

Y[7,11] <- Y[9,17] <- 1

2/48



Candidate models

M0 : Pr(Yi,j = 1) =
eµ

1 + eµ

Mr : Pr(Yi,j = 1) =
eµ+ai

1 + eµ+ai

Mc : Pr(Yi,j = 1) =
eµ+bj

1 + eµ+bj

Mrc : Pr(Yi,j = 1) =
eµ+ai+bj

1 + eµ+ai+bj
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Model selection

ridx<-c(matrix((1:nrow(Y)),nrow(Y),nrow(Y)))
cidx<-c(t(matrix((1:nrow(Y)),nrow(Y),nrow(Y)) ))
y<-c(Y)

fit.0<-glm( y ~ 1, family=binomial)
fit.r<-glm( y ~ C(factor(ridx),sum) , family=binomial)
fit.c<-glm( y ~ C(factor(cidx),sum) , family=binomial)
fit.rc<-glm( y ~ C(factor(ridx),sum)+C(factor(cidx),sum), family=binomial)

AIC(fit.0)

## [1] 472.1516

AIC(fit.r)

## [1] 412.2251

AIC(fit.c)

## [1] 481.9417

AIC(fit.rc)

## [1] 408.3688
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Best case scenario comparison

mu.hat<-fit.rc$coef[1]

a.hat<- fit.rc$coef[1+1:(nrow(Y)-1)] ; a.hat<-c(a.hat,-sum(a.hat) )

b.hat<- fit.rc$coef[nrow(Y)+1:(nrow(Y)-1)] ; b.hat<-c(b.hat,-sum(b.hat) )

#### Best case scenario comparison

muij.mle<- mu.hat+ outer(a.hat,b.hat,"+")

p.mle<-exp(muij.mle)/(1+exp(muij.mle))

S.H<-NULL

for(s in 1:S)

{
Ysim<-matrix(rbinom(nrow(Y)^2,1,p.mle),nrow(Y),nrow(Y)) ; diag(Ysim)<-NA

S.H<-rbind(S.H, c(gmean(Ysim),sd(rsum(Ysim)),sd(csum(Ysim))) )

}

s.obs<-c(gmean(Y),sd(rsum(Y)),sd(csum(Y)))

mean(s.obs[3]<= S.H[,3])

## [1] 0.942
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Evaluating reciprocity

M<-sum(Y*t(Y),na.rm=TRUE)/2

A<-sum(Y,na.rm=TRUE) - 2*M

N<- choose(nrow(Y),2) - M - A

M

## [1] 24

A

## [1] 56

N

## [1] 130

p11<-2*M/(2*M+A)

p10<-A/(A+2*N)

p11

## [1] 0.4615385

p10

## [1] 0.1772152

s.obs<-log( p11 * (1-p10) /( (1-p11) * p10) )

s.obs

## [1] 1.381179
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Empirical reciprocity

Evididence for reciprocity:

Pr(Yi,j = 1|Yj,i = 1)

Pr(Yi,j = 1|Yj,i = 0)
≈ 3.98

The corresponding log-odds are about 1.38.

Is this large?

We need to compare this number to what we’d expect under our RCE model.
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Best case scenario

S.H<-NULL
for(s in 1:S)
{
Ysim<-matrix(rbinom(nrow(Y)^2,1,p.mle),nrow(Y),nrow(Y))
diag(Ysim)<-NA

M<-sum(Ysim*t(Ysim),na.rm=TRUE)/2
A<-sum(Ysim,na.rm=TRUE) - 2*M
N<- choose(nrow(Ysim),2) - M - A

p11<-2*M/(2*M+A)
p10<-A/(A+2*N)
s.sim<-log( p11 * (1-p10) /( (1-p11) * p10) )

S.H<-c(S.H,s.sim)
}
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Best case scenario
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mean(S.H>=s.obs)

## [1] 0.001
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Formal test of reciprocity with MCMC

S.H<-NULL
Ysim<-Y
for(s in 1:S)
{
Ysim<-rY.Yrc(Ysim)

M<-sum(Ysim*t(Ysim),na.rm=TRUE)/2
A<-sum(Ysim,na.rm=TRUE) - 2*M
N<- choose(nrow(Ysim),2) - M - A

p11<-2*M/(2*M+A)
p10<-A/(A+2*N)
s.sim<-log( p11 * (1-p10) /( (1-p11) * p10) )

S.H<-c(S.H,s.sim)
}
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Formal test and p-value
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## [1] 0.002
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Within-dyad dependence

The RCE model fails in terms of representing mutuality:

• s(Y) =
∑

i<j yi,jyj,i larger than expected under independent RCE model.

• A large M relative to A and N is interpretable as within-dyad dependence:

Pr(Yj,1 = 1|Yi,j = 1) > Pr(Yj,i = 1) > Pr(Yj,1 = 1|Yi,j = 0)

So we have

• Model failure: The model doesn’t represent the data feature s(Y);

• Statistical failure: The data suggest statistical dependence in (Yi,j ,Yj,i ).
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Statistical independence versus dependence
Under the RCE model

Pr(Y = y) =
∏
i 6=j

e(µ+ai+bj )yi,j

1 + eµ+ai+bj

In particular,

Pr(Yi,j = yi,j ,Yj,i = yj,i ) =
e(µ+ai+bj )yi,j

1 + eµ+ai+bj
× e(µ+aj+bi )yi,j

1 + eµ+aj+bi

= Pr(Yi,j = yi,j)× Pr(Yj,i = yj,i )

This means, for example

Pr(Yi,j = 1|Yj,i = yi,j) =
Pr(Yi,j = 1,Yj,i = yj,i )

Pr(Yj,i = yj,i )

=
Pr(Yi,j = 1)× Pr(Yj,i = yj,i )

Pr(Yj,i = yj,i )

= Pr(Yi,j = 1)

Pr(Yi,j = 1|Yj,i = 1) = Pr(Yi,j = 1|Yj,i = 0) = Pr(Yi,j = 1)
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A model for dependence

For notational convenience, let µi,j = µ+ ai + bj .

To accommodate within-dyad dependence, we want something like

Pr(Yi,j = 1|Yj,i = 0) =
eµi,j

1 + eµi,j

Pr(Yi,j = 1|Yj,i = 1) =
eµi,j+γ

1 + eµi,j+γ

Convince yourself that if γ T 0, then

Pr(Yi,j = 1|Yj,i = 1) T Pr(Yi,j1|Yj,i = 0).

Additionally, you should be able to show

log odds(Yi,j = 1|Yj,i = 1,Yi,j = 0) = γ
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A model for dependence

The proposed conditional model is as follows:

Pr(Yi,j = yi,j |Yj,i = yj,i ) ∝ eµi,j yi,j+γyi,j yj,i

To get a joint model for {Yi,j ,Yj,i}, we need to multiply by Pr(Yj,i = yj,i ):

Pr(Yi,j = yi,j ,Yj,i = yj,i ) = Pr(Yi,j = yi,j |Yj,i = yj,i )× Pr(Yj,i = yj,i )

∝ eµi,j yi,j+γyi,j yj,i × Pr(Yj,i = yj,i ).

Symmetry suggests

Pr(Yi,j = yi,j ,Yj,i = yj,i ) ∝ eµi,j yi,j+µj,i yj,i+γyi,j yj,i
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A model for dependence

Pr(Yi,j = yi,j ,Yj,i = yj,i ) ∝ exp(µi,jyi,j + µj,iyj,i + γyi,jyj,i )

Denote Pr(Yi,j = yi,j ,Yj,i = yj,i ) = p(yi,j , yj,i ). Then

p(0, 0) = ci,j

p(1, 0) = ci,j exp(µi,j)

p(0, 1) = ci,j exp(µj,i )

p(1, 1) = ci,j exp(µi,j + µj,i + γ)

What is ci,j?

1 = p(0, 0) + p(1, 0) + p(0, 1) + p(1, 1)

1 = ci,j(1 + eµi,j + eµj,i + eµi,j+µj,i+γ)

ci,j =
1

1 + eµi,j + eµj,i + eµi,j+µj,i+γ
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p1 dependence model

Our proposed statistical model is as follows:

• Between-dyad relations are independent;

• Within dyad relations have the following distribution:

p(yi,j , yj,i |µ, ai , bj , γ) =
eµi,j yi,j+µj,i yj,i+γyi,j yj,i

1 + eµi,j + eµj,i + eµi,j+µj,i+γ

This is the so-called “p1” network model (Holland and Leinhardt, 1981).

As you might suspect, this is a type of ERGM.

Let’s find the sufficient statistics.
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Sufficient statistics for p1

Pr(Y = y|µ, a, b, γ) =
∏
i<j

p(yi,j , yj,i |µ, ai , aj , bi , bj , γ)

=
∏
i<j

ci,je
µi,j yi,j+µj,i yj,i+γyi,j yj,i

=

(∏
i<j

ci,j

)
exp(

∑
i<j

µi,jyi,j +
∑
i<j

µj,iyj,i +
∑
i<j

γyi,jyj,i )

= c(µ, a, b, γ) exp(
∑
i 6=j

µi,jyi,j + γ
∑
i<j

yi,jyj,i )
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Sufficient statistics for p1

Recall µi,j = µ+ ai + bj , so∑
i 6=j

µi,jyi,j = µ
∑
i 6=j

yi,j +
∑
i

ai
∑
j :j 6=i

yi,j +
∑
j

bj
∑
i :i 6=j

yi,j + γ
∑
i<j

yi,jyj,i

= (µ, a1, . . . , an, b1, . . . , bn, γ) · (y··, y1·, . . . , yn·, y·1, . . . , y·n,
∑
i<j

yi,jyj,i )

Sufficient statistics for p1 are therefore

• the edge total;

• the outdegrees and indegrees;

• the total mutual dyads.
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Estimation

Maximum likelihood estimation: Find (µ, a, b, γ) to maximize

l(µ, a, b, γ : y) = log Pr(Y = y|µ, a, b, γ)

=
∑
i<j

log p(yi,j , yj,i |µ, ai , bj , γ)

ll.p1<-function(Y,mu,a,b,g)
{
mij<- mu+outer(a,b,"+")
diag(mij)<-NA
lnum<- sum( mij*Y + t(Y*mij) + g*(Y*(t(Y))),na.rm=TRUE )/2
lden<-sum( log( 1+exp(mij)+exp(t(mij))+exp(mij+t(mij)+g)),na.rm=TRUE )/2
lnum-lden

}

20/48



Profile likelihood

Recall, the RCE model is obtained by setting γ = 0:

RCE = {Pr(Y = y|µ, a, b, γ) : γ = 0}

We can obtain estimates of (µ, a, b) under the RCE via glm:

fit.rc<-glm( y ~ C(factor(ridx),sum)+C(factor(cidx),sum), family=binomial)
mu.hat<-fit.rc$coef[1]
a.hat<- fit.rc$coef[1+1:(nrow(Y)-1)] ; a.hat<-c(a.hat,-sum(a.hat) )
b.hat<- fit.rc$coef[nrow(Y)+1:(nrow(Y)-1)] ; b.hat<-c(b.hat,-sum(b.hat) )

Reality check:
The maximized log-likelihood of this model should equal l(µ̂, â, b̂, 0 : y)

logLik(fit.rc)

## 'log Lik.' -163.1844 (df=41)

ll.p1(Y,mu.hat, a.hat, b.hat, 0 )

## [1] -163.1844
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Profile likelihood

The profile likelihood is the likelihood

as a function of one parameter,

with the other parameters fixed at a particular estimate.

Let’s examine the profile likelihood in γ:

l̃(γ : Y, µ̂, â, b̂) = l(µ̂, â, b̂, γ : Y) =

GLL<-NULL
for(g in seq(-2,2,length=50))
{
GLL<-rbind(GLL,c(g,ll.p1(Y,mu.hat,a.hat,b.hat,g)) )

}
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Profile likelihood

−2 −1 0 1 2

−
19

5
−

18
5

−
17

5
−

16
5

γ

lo
g−

lik
el

ih
oo

d

GLL[ which.max(GLL[,2]),]

## [1] 0.6122449 -160.4248852

logLik(fit.rc)

## 'log Lik.' -163.1844 (df=41)
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Limits of profile likelihood

Let γ̃ be the maximizer of the profile likelihood:

γ̃ = arg max
γ

l̃(γ : Y, µ̂, â, b̂)

The values (µ̂, â, b̂, γ̃) are not generally the MLE:

• (µ̂, â, b̂) are only “best” when γ = 0.

• γ̃ is only “best” for (µ̂, â, b̂).

• The MLEs simultaneously maximize the likelihood.

24/48



Fitting p1 with ergm

The p1 and other ERGMs can be fit in R with some additional software.

> library(ergm)

ergm: version 3.2.4, created on 2014-12-13
Copyright (c) 2014, Mark S. Handcock, University of California -- Los Angeles

David R. Hunter, Penn State University
Carter T. Butts, University of California -- Irvine
Steven M. Goodreau, University of Washington
Pavel N. Krivitsky, University of Wollongong
Martina Morris, University of Washington
with contributions from
Li Wang
Kirk Li, University of Washington

Based on "statnet" project software (statnet.org).
For license and citation information see statnet.org/attribution
or type citation("ergm").

The ergm package allows (in theory) estimation and inference for ERGMs.

• accommodates a variety of sufficient statistics;

• accommodates covariate effects;

• accommodates more complicated model features (eg. random effects).
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Fitting p1 with ergm

First, lets fit the RCE with the ergm function.

A model is fit to data with ergm by specifying the sociomatrix Y and the
sufficient statistics:

fit <- ergm( Y ~ sstat1 + sstat2 + sstat3 )

The above pseduocode fits an ERGM to Y having sufficient statistics sstat1,
sstat2 and sstat3.

The sufficient statistics have particular predefined names.

For example, the following command fits the RCE model:

fit.rc.ergm <- ergm( Y ~ edges + sender + receiver )
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Reality check

betas<-fit.rc.ergm$coef

mu.ergm<-betas[1]

a.ergm<-c(0,betas[2:nrow(Y)] )

b.ergm<-c(0,betas[nrow(Y)+1:(nrow(Y)-1) ] )

mu.ergm-mu.hat

## edges

## 1.550538

a.ergm-a.hat

## sender2 sender3 sender4 sender5 sender6 sender7

## -0.335315 -0.335315 -0.335315 -0.335315 -0.335315 -0.335315 -0.335315

## sender8 sender9 sender10 sender11 sender12 sender13 sender14

## -0.335315 -0.335315 -0.335315 -0.335315 -0.335315 -0.335315 -0.335315

## sender15 sender16 sender17 sender18 sender19 sender20 sender21

## -0.335315 -0.335315 -0.335315 -0.335315 -0.335315 -0.335315 -0.335315

b.ergm-b.hat

## receiver2 receiver3 receiver4 receiver5 receiver6

## -1.215223 -1.215223 -1.215223 -1.215223 -1.215223 -1.215223

## receiver7 receiver8 receiver9 receiver10 receiver11 receiver12

## -1.215223 -1.215223 -1.215223 -1.215223 -1.215223 -1.215223

## receiver13 receiver14 receiver15 receiver16 receiver17 receiver18

## -1.215223 -1.215223 -1.215223 -1.215223 -1.215223 -1.215223

## receiver19 receiver20 receiver21

## -1.215223 -1.215223 -1.215223
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Reality check

muij.ergm <- mu.ergm +outer(a.ergm,b.ergm,"+")
muij.hat<- mu.hat+ outer(a.hat,b.hat,"+")
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Reality check

logLik(fit.rc)

## 'log Lik.' -163.1844 (df=41)

logLik(fit.rc.ergm)

## 'log Lik.' -219.2304 (df=41)

ll.p1(Y,mu.ergm,a.ergm,b.ergm,0)

## [1] -163.1844

ll.p1(Y,mu.hat,a.hat,b.hat,0)

## [1] -163.1844
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Fitting the p1 model

We have just used ergm to fit the RCE ERGM:

Pr(Y = y|µ, a, b) = c(µ, a, b) exp(µy·· +
n∑

i=1

aiyi· +
n∑

j=1

bjy·j)

The p1 model is just the RCE model with an additional sufficient statistic:

Pr(Y = y|µ, a, b, γ) = c(µ, a, b, γ) exp(µy··+
n∑

i=1

aiyi·+
n∑

j=1

bjy·j +γ
∑
i<j

yi,jyj,i )
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Fitting the p1 model

This model is easily specified in ergm:

fit.rcm.ergm<-ergm(Y ~ edges + sender + receiver + mutual)

## Iteration 1 of at most 20:
## The log-likelihood improved by 1.476
## Step length converged once. Increasing MCMC sample size.
## Iteration 2 of at most 20:
## The log-likelihood improved by 0.4795
## Step length converged twice. Stopping.
##
## This model was fit using MCMC. To examine model diagnostics and check for degeneracy, use the mcmc.diagnostics() function.

31/48



Fitting the p1 model

summary(fit.rcm.ergm)

##
## ==========================
## Summary of model fit
## ==========================
##
## Formula: Y ~ edges + sender + receiver + mutual
##
## Iterations: 2 out of 20
##
## Monte Carlo MLE Results:
## Estimate Std. Error MCMC % p-value
## edges -1.20687 0.73364 0 0.10079
## sender2 -1.01988 0.92642 0 0.27165
## sender3 -1.02331 0.99691 0 0.30532
## sender4 0.65827 0.85327 0 0.44091
## sender5 0.84375 0.84413 0 0.31817
## sender6 1.04552 0.85719 0 0.22334
## sender7 -1.53711 1.27560 0 0.22895
## sender8 -1.86464 1.23701 0 0.13255
## sender9 -2.04243 1.28152 0 0.11183
## sender10 1.45133 0.83505 0 0.08302 .
## sender11 2.46813 0.85584 0 0.00415 **
## sender12 -0.39952 0.88042 0 0.65025
## sender13 -0.42186 1.00983 0 0.67636
## sender14 -1.04542 1.01202 0 0.30226
## sender15 1.36164 0.84258 0 0.10692
## sender16 -0.87130 1.02607 0 0.39633
## sender17 4.61969 1.14183 0 < 1e-04 ***
## sender18 -1.57262 1.19483 0 0.18891
## sender19 1.56667 0.83788 0 0.06229 .
## sender20 -0.76428 1.01615 0 0.45244
## sender21 -0.07843 0.91295 0 0.93159
## receiver2 0.86518 0.82125 0 0.29279
## receiver3 -0.74140 0.87231 0 0.39590
## receiver4 -1.23071 0.89505 0 0.16994
## receiver5 -0.91602 0.86707 0 0.29143
## receiver6 -3.02246 1.13172 0 0.00790 **
## receiver7 -1.53735 0.99590 0 0.12350
## receiver8 -0.58229 0.86210 0 0.49982
## receiver9 -0.17570 0.83033 0 0.83253
## receiver10 -4.37959 1.45243 0 0.00274 **
## receiver11 -1.19772 0.87472 0 0.17173
## receiver12 0.14582 0.82659 0 0.86007
## receiver13 -3.49393 1.44247 0 0.01590 *
## receiver14 -0.72371 0.89479 0 0.41914
## receiver15 -1.94136 0.96570 0 0.04511 *
## receiver16 -1.14305 0.93341 0 0.22149
## receiver17 -1.69242 0.90750 0 0.06297 .
## receiver18 -1.00095 0.91817 0 0.27634
## receiver19 -1.55482 0.92724 0 0.09440 .
## receiver20 -1.69668 1.00999 0 0.09380 .
## receiver21 -0.97229 0.90222 0 0.28187
## mutual 2.48452 0.61184 0 < 1e-04 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Null Deviance: 582.2 on 420 degrees of freedom
## Residual Deviance: 306.7 on 378 degrees of freedom
##
## AIC: 390.7 BIC: 560.4 (Smaller is better.)
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Reality check

betas<-fit.rcm.ergm$coef
mu.rcm<-betas[1]
a.rcm<-c(0,betas[2:nrow(Y)] )
b.rcm<-c(0,betas[nrow(Y)+1:(nrow(Y)-1) ] )
gamma.rcm<-betas[2*nrow(Y)]

gamma.rcm

## mutual
## 2.484522

GLLM<-NULL
for(g in seq(-1,6,length=300))
{
GLLM<-rbind(GLLM,c(g,ll.p1(Y,mu.rcm,a.rcm,b.rcm,g)) )

}
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Reality check
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Reality check

gamma.rcm ; logLik(fit.rcm.ergm)

## mutual

## 2.484522

## 'log Lik.' -153.3574 (df=42)

GLLM[ which.max(GLLM[,2]), ]

## [1] 2.488294 -153.261507

logLik(fit.rc.ergm)

## 'log Lik.' -219.2304 (df=41)

GLL[ which.max(GLL[,2]), ]

## [1] 0.6122449 -160.4248852
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How does ergm work?

Recall the general ERGM:

Pr(Y = y|θ) = c(θ) exp(t(y) · θ)

t(y) (t1(y), . . . , tp(y))
θ (θ1, . . . , θp)

c(θ) is a normalizing constant.

Let y be the observed value of the network. The MLE θ̂ maximizes the
log-likelihood:

l(θ : y) = log Pr(Y = y|θ) = θT t(y) + log c(θ).

A standard approach to function estimation is with gradient ascent This
approach requires the derivatives of l(θ : y)

∇l(θ : y) = t(y) +∇ log c(θ)
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Likelihood derivatives

∇ log c(θ) =
∇c(θ)

c(θ)

What is c(θ)? Recall,
∑

y∈Y Pr(Y = y|θ) = 1. Therefore,

1 =
∑

y

Pr(Y = y|θ)

1 =
∑

y

c(θ) exp(t(y) · θ)

1 = c(θ)
∑

y

exp(t(y) · θ)

c−1(θ) =
∑

y

exp(t(y) · θ)

c(θ) =
1∑

y exp(t(y) · θ)
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Likelihood derivatives

∇ log c(θ) = −∇ log c(θ)−1

= −
∑

y t(y) exp(t(y) · θ)∑
y exp(t(y) · θ)

For each step of gradient ascent we need to calculate ∇ log c(θ).
This requires summing over all possible n × n graphs y.

n number of graphs

2 22 = 4
3 26 = 64

n 2n(n−1)

20 2300 = 2.46× 10114

This isn’t going to work.
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MCMCMLE

The ergm package takes a different strategy.

Consider comparing a “reference” value θ0 to θ:

l(θ)− l(θ0) = θ · t(y) + log c(θ)− θ0 · t(y)− log c(θ0)

= (θ − θ0) · t(y) + log
c(θ)

c(θ0)

It turns out that

log
c(θ)

c(θ0)
= E[exp((θ0 − θ) · t(Y))|θ0]

This is an average, that can be approximated with an MCMC routine.

The ergm fitting routine is roughly as follows: Given a current value of θ0

1. Run an MCMC routine to approximate log c(θ)
c(θ0)

for θ near θ0.

2. Approximate the derivative near θ0

3. Move along the derivative to a new value of θ0

4. Repeat until convergence.
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Speed and convergence

This procedure can take a long time:

> date()

[1] "Wed Feb 5 14:20:43 2014"

> fit.rcm.ergm<-ergm(Y ~ edges + sender + receiver + mutual)

Iteration 1 of at most 20:

Convergence test P-value: 0e+00

The log-likelihood improved by 0.4616

Iteration 2 of at most 20:

Convergence test P-value: 9.9e-163

The log-likelihood improved by 0.08207

Iteration 3 of at most 20:

Convergence test P-value: 3.2e-47

The log-likelihood improved by 0.03287

Iteration 4 of at most 20:

Convergence test P-value: 1.9e-14

The log-likelihood improved by 0.01313

.

.

.

Iteration 19 of at most 20:

Convergence test P-value: 5.6e-01

Convergence detected. Stopping.

The log-likelihood improved by 0.003658

This model was fit using MCMC. To examine model diagnostics and check for degeneracy, use the mcmc.diagnostics() function.

> date()

[1] "Wed Feb 5 14:22:30 2014"
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Speed and convergence

> date()

[1] "Fri Feb 20 15:35:02 2015"

> fit.rcm.ergm<-ergm(Y ~ edges + sender + receiver + mutual)

Iteration 1 of at most 20:

The log-likelihood improved by 1.617

Step length converged once. Increasing MCMC sample size.

Iteration 2 of at most 20:

The log-likelihood improved by 0.1834

Step length converged twice. Stopping.

This model was fit using MCMC. To examine model diagnostics and check for degeneracy, use the mcmc.diagnostics() function.

Warning message:

In .ergm.mvar.spec0(z) :

Excessive correlation among the statistics. Using a no-crosscorrelation approximation.

> date()

[1] "Fri Feb 20 15:35:20 2015"
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A larger datatset
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dim(Yc90)

## [1] 67 67
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Speed and convergence

> date()

[1] "Wed Feb 13 15:11:57 2013"

> fit.rcm.ergm<-ergm(Yc90 ~ edges + sender + receiver + mutual)

Iteration 1 of at most 20:

the log-likelihood improved by 3.602

Iteration 2 of at most 20:

the log-likelihood improved by 1.886

Iteration 3 of at most 20:

the log-likelihood improved by 5.315

Iteration 4 of at most 20:

the log-likelihood improved by 4.038

.

.

Iteration 17 of at most 20:

the log-likelihood improved by 0.275

Iteration 18 of at most 20:

the log-likelihood improved by 0.3019

Iteration 19 of at most 20:

the log-likelihood improved by 0.4783

Iteration 20 of at most 20:

the log-likelihood improved by 0.3691

date()

[1] "Wed Feb 13 15:22:17 2013"
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Speed and convergence

> date()

[1] "Fri Feb 20 15:36:05 2015"

> fit.rcm.ergm<-ergm(Yc90 ~ edges + sender + receiver + mutual)

Observed statistic(s) sender2, sender7, sender10, sender12, sender14, sender15, sender21, sender24, sender25, sender36, sender37, sender38, sender39, sender40, sender46, sender54, sender58, sender65, sender66, and sender67 are at their smallest attainable values. Their coefficients will be fixed at -Inf.

Iteration 1 of at most 20:

The log-likelihood improved by 1.143

Iteration 2 of at most 20:

The log-likelihood improved by 1.218

Iteration 3 of at most 20:

The log-likelihood improved by 1.14

Iteration 4 of at most 20:

The log-likelihood improved by 1.188

Step length converged once. Increasing MCMC sample size.

Iteration 5 of at most 20:

The log-likelihood improved by 0.6905

Step length converged twice. Stopping.

This model was fit using MCMC. To examine model diagnostics and check for degeneracy, use the mcmc.diagnostics() function.

Warning messages:

1: In .ergm.mvar.spec0(z) :

Excessive correlation among the statistics. Using a no-crosscorrelation approximation.

2: In ergm.checkextreme.model(model = model.initial, nw = nw, init = control$init, :

Observed statistic(s) sender2, sender7, sender10, sender12, sender14, sender15, sender21, sender24, sender25, sender36, sender37, sender38, sender39, sender40, sender46, sender54, sender58, sender65, sender66, and sender67 are at their smallest attainable values and drop=FALSE. The MLE is poorly defined.

> date()

[1] "Fri Feb 20 15:37:28 2015"
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An ergm bug or two

Y<-htmanagers$Y[,,2]
rsum(Y)

## [1] 5 3 2 6 7 6 0 1 0 7 13 4 2 2 8 2 18 1 9 2 4

csum(Y)

## [1] 8 10 5 5 6 2 3 5 6 1 6 8 1 5 4 4 6 4 5 3 5
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An ergm bug or two

Fitting the p1 model:

fit.rcm.ergm<-ergm( Y ~ edges + sender + receiver + mutual )

## Observed statistic(s) sender7 and sender9 are at their smallest attainable values. Their coefficients will be fixed at -Inf.

## Iteration 1 of at most 20:

## The log-likelihood improved by 2.195

## Iteration 2 of at most 20:

## The log-likelihood improved by 0.5805

## Step length converged once. Increasing MCMC sample size.

## Iteration 3 of at most 20:

## The log-likelihood improved by 0.07849

## Step length converged twice. Stopping.

##

## This model was fit using MCMC. To examine model diagnostics and check for degeneracy, use the mcmc.diagnostics() function.

logLik(fit.rcm.ergm)

## 'log Lik.' NaN (df=42)
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Goodness of fit via network simulation
ergm provides a convenient function for network simulation:

Ysim<-simulate(fit.rcm.ergm)

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

47/48



Goodness of fit via network simulation

Simulation can be handy for goodness of fit checks.

ergm uses simulate to evaluate fit for some pre-specified statistics:

p1gof<-gof( fit.rcm.ergm , GOF= ~ idegree + odegree + triadcensus )
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