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Preliminary analysis

mean( Y7,na.rm=TRUE)

## [1] 0.1693548

mean( Y7[ X$male==1, X$male==1 ],na.rm=TRUE )
## [1] 0.3571429

mean( Y7[ X$male==0, X$male==0 ],na.rm=TRUE )
## [1] 0.1956522

mean( Y7[ X$smoke==1, X$smoke==1 ],na.rm=TRUE )
## [1] 0.2692308

mean( Y7[ X$smoke==0, X$smoke==0 ],na.rm=TRUE )
## [1] 0.2017544

SP<-outer (X$prog,X$prog,"=="
mean( Y7[SP], na.rm=TRUE)

## [1] 0.2861111
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Preliminary analysis
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Degree heterogeneity and Reciprocity

#### degree analysis
sd(outdegree)

## [1] 4.662825

sd(indegree)

## [1] 2.514474

cor (outdegree, indegree)

## [1] 0.1705822

#### dyad census

M<-sum(Y7*t (Y7) ,na.rm=TRUE) /2
A<-sum(Y7,na.rm=TRUE) - 2x%M
N<- choose(nrow(Y7),2) - M - A
pl1<-2*M/ (2%M+A)

Pp1O<-A/ (A+2+N)

log( p11 * (1-p10) /( (1-p11) * p10) )

## [1] 2.250258
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Logistic regression
Nevertheless, regression with appropriate covariates might be adequate.

In particular, network patterns could be explained by covariates:
e degree heterogeneity could be explained by one or more nodal covariates;
e reciprocity could be explained by a group comembership variable.

Let's do an ordinary logistic regression and evaluate the fit.

XM<-array(dim=c(n,n,5) )
XM[, ,1]<-matrix( X[,2] ,n,n)
XML, ,2]<-t(XM[, ,11)

XM[,,3]<-outer( X[,1],X[,1],"=="

XM[, ,4]<-outer( X[,2],X[,2],"==")
XM[,,5]<-outer( X[,3],X[,3],"==")
y7<-c(Y7)

x<-apply (XM, 3,"c")

colnames (x)<-c("rsmoke","csmoke","ssex","ssmoke","sprog")

fit.glm<-glm( y7 ~ x ,family=binomial)
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summary (fit.glm)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Call:
glm(formula = y7 ~

Deviance Residuals:

Logistic regression fit

x, family = binomial)

Min 1Q Median Max
-1.1144 -0.6909 -0.4446 -0.3119 2.4689
Coefficients:

Estimate Std. Error z value Pr(>|zl|)
(Intercept) -3.2122 0.2671 -12.027 < 2e-16
xrsmoke 0.2548 0.1882 1.354 0.175716
xcsmoke 0.2130 0.1881 1.132 0.257500
xssex 0.6930 0.2079  3.334 0.000857
xssmoke 0.7983 0.1863 4.285 1.83e-05
Xsprog 1.1030 0.1800 6.127 8.94e-10
Signif. codes: 0 '#x*' 0.001 '**' 0.01 'x' 0.05

(Dispersion parameter for binomial

Null deviance: 902.45
Residual deviance: 819.39

on 991
on 986

(32 observations deleted due to missingness)

AIC: 831.39

Number of Fisher Scoring iterations: 5

*kk

', 0.1

family taken to be 1)

degrees of freedom
degrees of freedom

1



Fitting logistic regression in ergm
Logistic regression is an ERGM with independent relations.
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Fitting logistic regression in ergm

As logistic regression is an ERGM, we should be able to fit it with ergm.
We first need to convert the data to a network object:

library(ergm)
netdat<-network(Y7,vertex.attr=X)

Sometimes you want to add vertex attributes one at a time:

netdat<-network(Y7)
set.vertex.attribute(netdat,"male",X[,1])
set.vertex.attribute(netdat,"smoker",X[,2])
set.vertex.attribute(netdat, "program",X[,3])
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Fitting logistic regression in ergm

The model is then fit, as before, by specifying sufficient statistics:

fit.ergm<-ergm( netdat ~ edges + nodeocov("smoker") + nodeicov("smoker") +
nodematch("male") + nodematch("smoker") + nodematch("program") )

The terms nodeicov, nodeocov and nodematch create sufficient statistics out
of nodal covariates:

e nodeocov creates a row regression effect;
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Fitting logistic regression in ergm

The model is then fit, as before, by specifying sufficient statistics:

fit.ergm<-ergm( netdat ~ edges + nodeocov("smoker") + nodeicov("smoker") +
nodematch("male") + nodematch("smoker") + nodematch("program") )

The terms nodeicov, nodeocov and nodematch create sufficient statistics out
of nodal covariates:

e nodeocov creates a row regression effect;
e nodeicov creates a column regression effect;

e nodematch creates a dyadic binary indicator .

See the ergm manual for more details.



Fitting logistic regression in ergm

summary (fit.ergm)

##

##

## Summary of model fit

##

##

## Formula: netdat ~ edges + nodeocov("smoker") + nodeicov("smoker") + nodematch("male")
## nodematch("smoker") + nodematch("program")

##

## Iterations: 5 out of 20

##

## Monte Carlo MLE Results:

#it Estimate Std. Error MCMC % p-value

## edges -3.2122 0.2671 0 < 1e-04 *xx
## nodeocov.smoker 0.2548 0.1882 0 0.176026

## nodeicov.smoker 0.2130 0.1881 0 0.257774

## nodematch.male 0.6930 0.2079 0 0.000889 *xx*
## nodematch.smoker 0.7983 0.1863 0 < 1e-04 **x
## nodematch.program 1.1030 0.1800 0 < 1e-04 *xx*
##H -—-

## Signif. codes: O 'sxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

## Null Deviance: 1375 on 992 degrees of freedom

## Residual Deviance: 1292 on 986 degrees of freedom

##

## AIC: 1304 BIC: 1334 (Smaller is better.)
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Goodness of fit

We fit this model without regard to its network structure:
e across sender heterogeneity /within sender correlation;
e across receiver heterogeneity/within receiver correlation;

e reciprocity/within dyad correlation.

It is possible that such patterns could be explained by covariates:

e heterogeneity in smoking leads to heterogeneity in degree;

homophily for sex, smoking and group leads to reciprocity.

Let's examine this with a goodness of fit evaluation.

14/39



15/39

Goodness of fit

s.obs<-c(sd(rsum(Y7)),sd(csum(Y7)) ,mdyad (Y7))

py.hat<-fit.glm$fitted
s.SIM<-NULL
for(s in 1:8S)
{
Ysim<-matrix (NA,nrow(Y7) ,nrow(Y7))
Ysim[!is.na(Y7)] <- rbinom(length(py.hat),1,py.hat)

s.SIM<-rbind(s.SIM, c(sd(rsum(Ysim)),sd(csum(Ysim)),mdyad(Ysim)))
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Goodness of fit

mean(s.SIM[,1]>=s.obs[1])
## [1] O
mean(s.SIM[,2]>=s.obs[2])
## [1] 0.135
mean(s.SIM[,3]>=s.0obs[3])
## [1] O

Evaluation: These results indicate

e more outdgree heterogeneity than expected under the MLE;
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p1 with covariates

This lack of fit can be addressed by adding statistics to the model:

fit.plcov.1<-ergm( netdat ~ edges + sender + receiver + mutual +
nodeocov("smoker") + nodeicov("smoker") +

nodematch("male") + nodematch("smoker") + nodematch("program") )
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This lack of fit can be addressed by adding statistics to the model:

fit.plcov.1<-ergm( netdat ~ edges + sender + receiver + mutual +
nodeocov("smoker") + nodeicov("smoker") +
nodematch("male") + nodematch("smoker") + nodematch("program") )

## Error in which.package.InitFunction(fun): could not find function
"findFunction"

summary (fit.plcov.1)

## Error in summary(fit.plcov.1): object ’fit.picov.1’ not found
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Regression terms

fit.plcov.1$coef [-(1:(2*n))]

## Error in eval(expr, envir, enclos): object ’fit.plcov.1’ not found
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p1 with alternative term order

fit.plcov.2<-ergm(netdat
nodeocov("smoker") + nodeicov("smoker") +
nodematch("male") + nodematch("smoker") + nodematch("program") +
edges + sender + receiver + mutual )
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Confounding

The problem is confounding between these effects and the sender and receiver
effects.
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The problem is confounding between these effects and the sender and receiver
effects.
To illustrate this issue, consider a simple model with just
o sender effects;
e one sender-specific covariate.
elutaitBxiyi

Pr(Yis = yi)) = T anraian
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Confounding

The sufficient statistics can be found by summing the exponent over pairs:

Z wyij+ aiyij+ Bxiyij = py.. + Z aiyi- + Z XiYi-
i#j i i

Naively, the parameters and sufficient statistics are

0:(N731,~~~73n,ﬂ)
() = (Vs Yoy s Yo D Xi¥i)

Note that
1. y.. is a function of yi.,...,y, (this leads to side conditions on the a;'s);
2. > xiyi. is a function of y1.,..., ya (the x;'s are treated as “fixed” ).
This latter phenomenon means that 5 and the a;'s are not jointly estimable.
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Confounding

Let's examine this more explicitly:
t(y) - O0(u,a,8) = py.. + Z aiyi. + ,BZXiyln

t(y) - 8(p,a — cx, 5+ c) = py. +Z i = oa)yi. + (B+¢) Y xivi

=py.. + Z ajyi. + B Z XiYi.

= t(y) . O(Maa,ﬁ)'
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Confounding

Let's examine this more explicitly:
t(y) - O0(u,a,8) = py.. + Z aiyi. + ,BZXiyln
t(y) - 0(p,a —cx, B+ ¢c) = py.. +Z P — €)Y +(ﬁ+c)2x,y,4

= py.. + Z aiyi. + BZX;y;.
=t(y) - 6(u,a,B).
Nonidentifiability:
This result implies that for any two values of 3, say 51 and (32, there are
vectors a; and a such that
/(/-l/7a17/61 : Y) = /(:va 327,62 : Y)

The data information can’t distinguish between (u, a1, 51) and (u, az, 32).
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Modeling options
There are three commonly used methods of addressing this issue:
1. fit the model without sender and receiver effects;
2. fit the model without sender and receiver regressors;
3. use a random effects model.

We don't want to do 1 if the logistic regression model has been rejected.

We will fit the model in item 2, but use a two-stage procedure for estimating
nodal covariate effects: For example,

e obtain 8 = (i, 4);
o fit the regression model 4; = Bx; + €;.
This is an ad-hoc approximation to the random effects approach:
e Model y;; as a function of aj;
e Model a; as a function of x;
aj = Bx + €

{e1,...,€n} ~i.id.normal(0, 53)

We will cover such models shortly.



Dyadic covariates for pl

fit.plcov.d<-ergm(netdat
nodematch("male") + nodematch("smoker") + nodematch("program") +
edges + mutual + sender + receiver )

## Error in which.package.InitFunction(fun): could not find function
"findFunction"

summary (fit.plcov.d)

## Error in summary(fit.plcov.d): object ’fit.plcov.d’ not found
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Extracting row and column effects

a.hat<-c(0,fit.plcov.d$coef [4+(2:nrow(Y))] )
## Error in eval(expr, envir, enclos): object ’fit.plcov
b.hat<-c(0,fit.plcov.d$coef [4+ nrow(Y)-1 + (2:nrow(Y))]

## Error in eval(expr, envir, enclos): object ’fit.plcov

## Error in xy.coords(x, y, xlabel, ylabel, log): object
## Error in xy.coords(x, y, xlabel, ylabel, log): object
## Error in plot(a.hat, b.hat): object ’a.hat’ not found

.d’> not found
)

.d’ not found

’a.hat’ not found
’b.hat’ not found



Nodal covariate effects

How does a covariate x = {xi, ..., xa} relate to

e outgoingness (ai,...,an)?
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Nodal covariate effects

How does a covariate x = {xi, ..., xa} relate to
e outgoingness (ai,...,an)?

e popularity (b1, ..., bn)?

## Error in eval(expr, envir, enclos): object ’a.hat’ not found
## Error in eval(expr, envir, enclos): object ’b.hat’ not found
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Statistical evaluation

1m(a.hat~xsmoke)

## Error in eval(expr, envir, enclos): object ’a.hat’ not found

The problem here is that &; is —oo for nodes with zero outdegree.
What can we do?

Item 1 removes information and biases the results:

Item 2 requires we can pick the “right” replacement value.
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## Error in eval(expr, envir, enclos): object ’a.hat’ not found

The problem here is that 4; is —oco for nodes with zero outdegree.
What can we do?

. give up;

0

1. remove the problematic observations;

2. replace the problematic observations with some large negative value;
3

. fit a random effects model.

Item 1 removes information and biases the results:
e Zero degree nodes are highly informative about covariate effects.

e Their removal could bias the estimated effects towards zero.

Item 2 requires we can pick the “right” replacement value.
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Ad-hoc statistical evaluation

a.hat[a.hat == -Inf ] <- NA

## Error in a.hat[a.hat == -Inf] <- NA: object ’a.hat’ not found
b.hat[b.hat == -Inf ] <- NA

## Error in b.hat[b.hat == -Inf] <- NA: object ’b.hat’ not found
summary (glm(a.hat~xsmoke) ) $coef

## Error in eval(expr, envir, enclos): object ’a.hat’ not found
summary (glm(b.hat~xsmoke) ) $coef

## Error in eval(expr, envir, enclos): object ’b.hat’ not found

The results suggest that smoking doesn't have a large effect on sender or
receiver effects, and hence on outgoingness or popularity.
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Ad-hoc statistical evaluation
However: What if

e all —oco aj's corresponded to smokers?
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Ad-hoc statistical evaluation
However: What if
e all —oco aj's corresponded to smokers?
e all —oco bj’s corresponded to nonsmokers?

Either possibility would suggest a estimating the parameter as further away
from zero, making it “more significant.”

xsmoke [is.na(a.hat)]

## Error in eval(expr, envir, enclos): object ’a.hat’ not found
xsmoke[is.na(b.hat)]

## Error in eval(expr, envir, enclos): object ’b.hat’ not found
mean (xsmoke)

## [1] 0.40625

mean (xsmoke [is.na(a.hat)])

## Error in mean(xsmoke[is.na(a.hat)]): object ’a.hat’ not found

These results don't give indications of strong relationships between smoking
and the tendancy to send or receive ties.
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mdyad (Y)

## [1] 43

(sum(Y,na.rm=TRUE) "2 - sum( rsum(Y)~2) )/(2 *(arow(Y)-1)"2 )

## [1] 1.178715
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Network patterns

fit.0<-ergm( Y ~ edges )

## Error in which.package.InitFunction(fun): could not find function
"findFunction"

s.SIMO<-NULL
for(s in 1:8)
{
Ysim<-as.matrix(simulate(fit.0))
diag(Ysim)<-NA
s.SIMO<-rbind(s.SIMO, c(sd(rsum(¥Ysim)),sd(csum(Ysim)),mdyad(Ysim)))

## Error in simulate(fit.0): object ’fit.0’ not found

## Error in hist.default(tH, xlim = xlim, main = "", prob = TRUE, col = ncol,

’x’ must be numeric



Covariate information
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Covariate information

Additionally, we have the following covariates:

o Nodal covariates:
e population
e gdp
e polity

e Dyad covariates:

® exports
e shared IGOs
e geographic distance

Let's see if these covariates account for any of the network patterns.
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Coding covariates

It is common to log values of money, population and distance:
colnames (Xn)

## [1] "pop" "gdp" "polity"

Xn[,1:2]<-log(Xn[,1:2])

colnames (Xn)<-c("1lpop","lgdp","polity")
netdat<-network(Y,vertex.attr=as.data.frame(Xn))
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Coding covariates

It is common to log values of money, population and distance:
colnames (Xn)

## [1] "pop" "gdp" "polity"

Xn[,1:2]<-log(Xn[,1:2])

colnames (Xn)<-c("1lpop","lgdp","polity")
netdat<-network(Y,vertex.attr=as.data.frame(Xn))

Dyad covariates enter into ergm via the edgecov function:
fit.cov.ergm<-ergm( netdat ~ edges +
nodeocov("lpop") + mnodeocov("lgdp") + nodeocov("polity") +
nodeicov("lpop") + nodeicov("lgdp") + nodeicov("polity") +
edgecov(Xpol) + edgecov(Xigo) + edgecov(Xldst) + edgecov(Xlexp) + edgecov(Xlimp))
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Logistic regression fit

summary (fit.cov.ergm)

##

##

## Summary of model fit

##

##

## Formula: netdat ~ edges + nodeocov("lpop") + nodeocov("lgdp") + nodeocov("polity") +
## nodeicov("lpop") + nodeicov("lgdp") + nodeicov("polity") +
## edgecov(Xpol) + edgecov(Xigo) + edgecov(Xldst) + edgecov(Xlexp) +
## edgecov (X1imp)

##

## Iterations: 9 out of 20

##

## Monte Carlo MLE Results:

## Estimate Std. Error MCMC % p-value

## edges -2.548601 0.362832 0 < 1e-04 *xx*

## nodeocov.lpop 0.204650  0.083405 0 0.014150 *

## nodeocov.lgdp 0.277993 0.080569 0 0.000561 ***

## nodeocov.polity -0.081600 0.012262 0 < 1e-04 **x

## nodeicov.lpop 0.193615  0.083862 0 0.020970 *

## nodeicov.lgdp 0.171160  0.079843 0 0.032071 *

## nodeicov.polity -0.037818 0.012390 0 0.002274 **

## edgecov.Xpol -0.004510 0.001659 0 0.006551 *x*

## edgecov.Xigo -0.011437 0.005592 0 0.040844 *

## edgecov.Xldst -2.663417 0.142696 0 < 1e-04 *xx*

## edgecov.Xlexp 0.058343  0.426599 0 0.891219

## edgecov.Xlimp -0.035318 0.428694 0 0.934341

#t -—-
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Goodness of fit evaluation

s.SIM<-NULL

for(s in 1:8)

{

Ysim<-as.matrix(simulate(fit.cov.ergm))
diag(Ysim)<-NA
s.SIM<-rbind(s.SIM, c(sd(rsum(Ysim)),sd(csum(Ysim)),mdyad(Ysim)))
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Improvement via covariates

## Error in hist.default(tH, xlim = xlim, main = "", prob = TRUE, col = ncol,
’x’ must be numeric
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fit.cov.ergm<-ergm( netdat ~ edges +
# mnodeocov("lpop"”) + mnodeocov("lgdp") + modeocov("polity") +
# nodeicov("lpop") + modeicou("lgdp") + nodeicov("polity") +
sender + receiver + mutual +
edgecov(Xpol) + edgecov(Xigo) + edgecov(Xldst) + edgecov(Xlexp) + edgecov(Xlimp))

## Observed statistic(s) sender2, sender3, sender7, sender9, sender10, senderll, senderil2,

## Iteration 1 of at most 20:

## The log-likelihood improved by 0.9757

## Iteration 2 of at most 20:

## The log-likelihood improved by 1.004

## Iteration 3 of at most 20:

## The log-likelihood improved by 1.049

## Iteration 4 of at most 20:

## The log-likelihood improved by 0.9582

## Iteration 5 of at most 20:

## The log-likelihood improved by 0.9893

## Iteration 6 of at most 20:

## The log-likelihood improved by 0.8685

## Iteration 7 of at most 20:

## The log-likelihood improved by 1.025

## Iteration 8 of at most 20:

## The log-likelihood improved by 0.8937

## Iteration 9 of at most 20:

## The log-likelihood improved by 0.9246

## Iteration 10 of at most 20:

## The log-likelihood improved by 0.9991

## Iteration 11 of at most 20:

## The log-likelihood improved by 0.9405

## Iteration 12 of at most 20:

## The log-likelihood improved by 0.985
37/39 ## Iteration 13 of at most 20:
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ahat<-c(0,fit.cov.ergm$coef [1+(1: (nrow(Y)-1) )] )
bhat<-c(0,fit.cov.ergm$coef [nrow(Y)+(1: (nrow(Y)-1) )] )
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summary (1m(ahat [ahat> -Inf]~Xn[ahat> -Inf,]) )

##
##
##
##
##
##
##
##
##
##

Call:
Im(formula = ahat[ahat > -Inf] ~ Xn[ahat > -Inf, ])
Residuals:

Min 1Q Median 3Q Max
-4.8238 -0.6376 -0.0533 0.5625 5.2171
Coefficients:

Estimate Std. Error t value Pr(>[t|)



e Covariates can be included in the ERGMs.

e dyad level covariates: nodematch, edgecov and others;
e node level covariates: nodeocov, nodeicov and others.

o Covariates can often partially explain degree heterogeneity and reciprocity.
e Node-level parameters are confounded with node-level covariate effects.
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