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Conflict data

Y<-conflict90s$conflicts

Xn<-conflict90s$nodevars

colnames(Xn)

## [1] "pop" "gdp" "polity"

Xn[,1:2]<-log(Xn[,1:2])

table(Y)

## Y
## 0 1 2 3 4 5 6 7 8
## 16567 154 22 14 7 2 2 1 1
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Dichotomized conflict data
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SRM fit to ordinal data

#### nodal covariates only
fit_n<-ame(Y,Xrow=Xn,Xcol=Xn,model="ord",nscan=10000)

summary(fit_n)

##
## beta:
## pmean psd z-stat p-val
## pop.row 0.256 0.121 2.114 0.034
## gdp.row -0.430 0.099 -4.334 0.000
## polity.row -0.014 0.017 -0.797 0.425
## pop.col 0.207 0.096 2.151 0.031
## gdp.col -0.371 0.078 -4.774 0.000
## polity.col -0.001 0.014 -0.062 0.950
##
## Sigma_ab pmean:
## a b
## a 1.134 0.801
## b 0.801 0.687
##
## rho pmean:
## 0.804
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SRM fit to ordinal data

plot(fit_n)
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Triad dependence measure

gofstats

## function (Y)
## {
## sd.rowmean <- sd(rowMeans(Y, na.rm = TRUE), na.rm = TRUE)
## sd.colmean <- sd(colMeans(Y, na.rm = TRUE), na.rm = TRUE)
## dyad.dep <- cor(c(Y), c(t(Y)), use = "complete.obs")
## E <- Y - mean(Y, na.rm = TRUE)
## D <- 1 * (!is.na(E))
## E[is.na(E)] <- 0
## triad.dep <- sum(diag(E %*% E %*% E))/(sum(diag(D %*% D %*%
## D)) * sd(c(Y), na.rm = TRUE)^3)
## gof <- c(sd.rowmean, sd.colmean, dyad.dep, triad.dep)
## names(gof) <- c("sd.rowmean", "sd.colmean", "dyad.dep", "triad.dep")
## gof
## }
## <environment: namespace:amen>
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Triad dependence measure

Let E = (Y − 11T ȳ··)/sy , that is, ei,j = (yi,j − ȳ··)/sy .

• ȳ·· is the grand mean;

• sy is the sample standard deviation of the yi,j ’s

• ei,j is like a “scaled residual” from the simple mean model yi,j = µ+ εi,j .

The sum of the diagonal of E 3 gives the scaled third-order moment:

trace(E3) =
∑
i

∑
j

∑
k

ei,jej,kek,i

The GOF statistic used in amen is the average of the ei,jej,kek,i ’s:

t(Y) =

∑
i

∑
j

∑
k ei,jej,kei,j

# of ordered triads
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Let E = (Y − 11T ȳ··)/sy , that is, ei,j = (yi,j − ȳ··)/sy .
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Triad dependence and transitivity

This triadic dependence measure is related to transitivity for binary data:

Transitive triple: An ordered triple (i , j , k) is transitive if i → j → k → i
(yi,j = yj,k = yk,i ).

trans(Y) =
∑
i

∑
j

∑
k

yi,jyj,kyk,i
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SRM fit to ordinal data with dyadic covariates

#### dyadic and nodal covariates
fit_dn<-ame(Y,Xdyad=Xd,Xrow=Xn,Xcol=Xn,model="ord",nscan=10000)

summary(fit_dn)

##
## beta:
## pmean psd z-stat p-val
## pop.row 0.212 0.095 2.230 0.026
## gdp.row 0.077 0.078 0.992 0.321
## polity.row -0.028 0.013 -2.045 0.041
## pop.col 0.205 0.092 2.232 0.026
## gdp.col -0.029 0.078 -0.376 0.707
## polity.col 0.002 0.012 0.130 0.896
## polity_int.dyad -0.003 0.001 -2.419 0.016
## imports.dyad -0.142 0.100 -1.415 0.157
## shared_igos.dyad -0.017 0.005 -3.383 0.001
## distance.dyad -1.837 0.101 -18.244 0.000
##
## Sigma_ab pmean:
## a b
## a 0.500 0.332
## b 0.332 0.462
##
## rho pmean:
## 0.566
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SRM fit to ordinal data with dyadic covariates

plot(fit_dn)

0 100 200 300 400

0.
2

0.
6

1.
0

S
A

B
R

0 100 200 300 400

−
2.

0
−

1.
0

0.
0

B
E

TA
sd.rowmean

0.030 0.035 0.040 0.045 0.050
sd.colmean

0.025 0.030 0.035 0.040

dyad.dep
0.2 0.3 0.4 0.5 0.6

triad.dep
0.00 0.02 0.04 0.06

10/39



GOF comparison
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Dyadic functions of nodal characteristics

Adding these dyadic covariates improved the fit with regard to t(Y).

Note that each of these dyadic covariates was a function of nodal covariates:

• xi,j,1 = f1(polityi , polityj)

• xi,j,2 = f2(igoi , igoj)

• xi,j,3 = f3(locationi , locationj)

This suggests models of the form

yi,j ∼ β0 + β1xi,j

xi,j = s(xi , xj)

where s(·, ·) is some (non-additive) function of the nodal characteristics xi , xj .
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Homophily and stochastic equivalence

More generally, let

ui be a covariate of i as a sender of ties;

vj be covariate of j as a receiver of ties.

yi,j ∼ β0 + β1 × s(ui , vj)

Such a model can describe various types of higher-order dependence, including

transitivity

stochastic equivalence
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Transitivity via homophily

Homophily on covariates can explain transitivity:

yi,j ∼ β0 + β1 × s(xi , xj)

If β1 > 0 and the yi,j ’s are binary, then

• yi,j = 1⇒ xi ≈ xj ;

• yi,k = 1⇒ xi ≈ xk ;

• xi ≈ xj , xi ≈ xk ⇒ xj ≈ xk .

• xj ≈ xk ⇒ yj,k = 1.

Similarly, homophily can explain triadic dependence for ordinal yi,j ’s.
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Stochastic equivalence

Returning to the more general model:

yi,j ∼ β0 + β1 × s(ui , vj)

If ui = uk then i and j are equivalent as senders in terms of the model.

Example: Logistic regression

Pr(Yi,j = 1) =
eβ0+β1s(ui ,vj )

1 + eβ0+β1s(ui ,vj )

If ui = uk = u, then

Pr(Yi,j = 1) =
eβ0+β1s(ui ,vj )

1 + eβ0+β1s(ui ,vj )
= Pr(Yk,j = 1),

and nodes i and k are stochastically equivalent (as senders).
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Homophily and stochastic equivalence

In our hypothetical model of social relations, we’ve seen how nodal
characteristics relate to homophily and stochastic equivalence.

Homophily: Similar nodes link to each other

• “similar” in terms of characteristics (potentially unobserved)

• homophily leads to transitive or clustered social networks

• observed transitivity may be due to exogenous or endogenous factors

( See Shalizi and Thomas 2010 for a more careful discussion )

Stochastic equivalence: Similar nodes have similar relational patterns

• similar nodes may or may not link to each other

• equivalent nodes can be thought of as having the same “role”
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Visualizing stochastic equivalence
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For which network is homophily a plausible explanation?

Which network exhibits a large degree of stochastic equivalence?
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Homophily and stochastic equivalence in real networks
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• AddHealth friendships: friendships among 247 12th-graders

• Word neighbors in Genesis: neighboring occurrences among 158 words

• Protein binding interactions: binding patterns among 230 proteins
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Homophily and stochastic equivalence in real networks
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• AddHealth friendships: friendships among 247 12th-graders

• Word neighbors in Genesis: neighboring occurrences among 158 words

• Protein binding interactions: binding patterns among 230 proteins
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Homophily and stochastic equivalence in real networks
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Homophily and stochastic equivalence in real networks
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• AddHealth friendships: friendships among 247 12th-graders

• Word neighbors in Genesis: neighboring occurrences among 158 words

• Protein binding interactions: binding patterns among 230 proteins
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Homophily and stochastic equivalence in real networks
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Latent factor models

Homophily and stochastic equivalence from unobserved variables can be
represented with a latent factor model:

yi,j ∼ uT
i Dv j ,

• u i is a vector of latent factors describing i as a sender of ties;

• v j is a vector of latent factors describing j as a receiver of ties;

• D is a diagonal matrix of factor weights.

Normal, binomial, ordinal data can be represented with this structure as follows:

zi,j = uT
i Dv j + εi,j

yi,j = g(zi,j)

where g is some increasing function:

• g(z) = z for normal data;

• g(z) = 1(z > 0) for binomial data;

• g(z) = some increasing step function for ordinal data.
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Understanding latent factors

Z = UTDV + E

zi,j = uT
i Dvj + εi,j

=
R∑

r=1

drui,rvj,r + εi,j

For example, in a 2 factor model, we have

zi,j = d1(ui,1 × vj,1) + d2(ui,2 × vj,2) + εi,j

Interpretation

• u i ≈ u j : similarity of latent factors implies approximate stoch equivalence;

• u i ≈ v j : similarity of latent factors implies high probability of a tie.
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Matrix decomposition interpretation

Recall from linear algebra:

• Every m × n matrix Z can be written

Z = UDVT

where D = diag(d1, . . . , dn), U and V are orthonormal.

• If UDVT is the svd of Z, then

Ẑk ≡ U[,1:k]D[1:k,1:k]V
T
[,1:k]

is the least-squares rank-k approximation to Z.
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Least squares matrix approximations
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LFM for symmetric data

Probit version of the symmetric latent factor model:

yi,j = g(zi,j) , where g is a nondecreasing function

zi,j = uT
i Λuj + εi,j , where ui ∈ RK , Λ=diag(λ1, . . . , λK )

{εi,j}
iid∼ normal(0, 1)

Writing {zi,j} as a matrix ,

Z = UΛUT + E

Recall from linear algebra:

• Every n × n symmetric matrix Z can be written

Z = UΛUT
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Least squares approximations of increasing rank
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Understanding eigenvectors and eigenvalues

Z = UTΛU + E

zi,j = uT
i Λuj + εi,j

=
R∑

r=1

λrui,ruj,r + εi,j

For example, in a rank-2 model, we have

zi,j = λ1(ui,1 × uj,1) + λ2(ui,2 × uj,2) + εi,j

Interpretation

• ui,r ≈ uj,r : equality of latent factors; represents stochastic equivalence;

• λr > 0: positive eigenvalues represent homophily;

• λr < 0: negative eigenvalues represent antihomophily.
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AME models

Returning to directed relations:

SRM: We have motivated the SRM in order to represent 2nd order
dependence:

• within row dependence, within column dependence;

• within dyad dependence.

zi,j = βT xi,j + ai + bj + εi,j

yi,j = g(zi,j)

This model is made up of additive random effects.

LFM: We have motivated the LFM to model more complex structures:

• third order dependence and transitivity;

• stochastic equivalence.

zi,j = uT
i Dv j + εi,j

yi,j = g(zi,j)

This model is made up of multiplicative random effects.
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AME models
Combining them gives an additive and multiplicative effects model

zi,j = βT xi,j + ai + bj + uT
i Dv j + εi,j

yi,j = g(zi,j)

ame(Y, Xdyad=NULL, Xrow=NULL, Xcol=NULL, rvar = !(model=="rrl") ,
cvar = TRUE, dcor = TRUE, R = 0, model="nrm",...)

Arguments:
Y: an n x n square relational matrix of relations. See model

below for various data types.

Xdyad: an n x n x pd array of covariates

Xrow: an n x pr matrix of nodal row covariates

Xcol: an n x pc matrix of nodal column covariates

rvar: logical: fit row random effects?

cvar: logical: fit column random effects?

dcor: logical: fit a dyadic correlation?

R: integer: dimension of the multiplicative effects (can be
zero)

model: character: one of "nrm","bin","ord","cbin","frn","rrl" - see
the details below
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AME fit to ordinal data with nodal covariates

#### nodal covariates and latent factors
fit_nr2<-ame(Y,Xrow=Xn,Xcol=Xn,R=2,model="ord",nscan=10000)

summary(fit_nr2)

##
## beta:
## pmean psd z-stat p-val
## pop.row 0.236 0.101 2.329 0.020
## gdp.row -0.092 0.179 -0.516 0.606
## polity.row -0.030 0.015 -2.057 0.040
## pop.col 0.243 0.087 2.783 0.005
## gdp.col -0.173 0.136 -1.267 0.205
## polity.col -0.009 0.013 -0.652 0.515
##
## Sigma_ab pmean:
## a b
## a 0.307 0.167
## b 0.167 0.206
##
## rho pmean:
## 0.838
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GOF comparison
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Plots of latent factors

circplot(Y,fit_nr2$U,fit_nr2$V)
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Blockmodels

A blockmodel is

• a partition of the nodes into classes;

• an estimation of the rate of ties between and within classes.

Such a model includes

• a classification function c : {1, . . . , n} → {1, . . . ,K},
i.e. ci = k means i is in block/group k.

• a between-group tie density matrix:

Θ =

θ11 · · · θ1K
...

...
...

θK1 · · · θKK


Under this model,

Pr(Yi,j = 1) = θci ,cj

Note: When the classes/blocks are defined by known binary covariates, the
blockmodel is essentially the same as binary regression with indicators for block
memberships.
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Stochastic equivalence and blockmodels

The blockmodel is a model of the form we’ve been discussing:

yi,j ∼ β0 + β1s(xi , xj)

Let

• β0 = 0, β1 = 1;

• xi = ci , xj = cj ;

• s(xi , xj) = θci ,cj

Stochastic equivalence:
All nodes within the same block are stochastically equivalent, under this model.

If ci = ck = c, then

Pr(Yi,j = 1) = Pr(Yk,j = 1) = θc,cj .
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Stochastic blockmodels

Consider the task of identifying stochastically equivalent classes from the data.

In the simplest case of an undirected binary relation, we want to find

latent classes c1, . . . , cn ∈ {1, . . . ,K};
between-class rates Θ = {θk,l : 1 ≤ k, l ≤ K}
that make the probability of our data large:

Pr(Y = y|c ,Θ) =
∏
i 6=j

θ
yi,j
ci ,cj (1− θci ,cj )

1−yi,j

=
K∏

k=1

K∏
l=1

θ
sk,l
k,l (1− θk,l)nk,l−sk,l ,

where

• nk,l= number of pairs (i , j) for which ci = k and cj = l

• sk,l= number of pairs (i , j) for which ci = k and cj = l and yi,j = 1.

This model is sometimes called the stochastic blockmodel.
It is a blockmodel where the classes are estimated from the data.
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Stochastic blockmodel

You can’t take derivative to find the MLEs of c1, . . . , cn. Instead, use

• EM algorithm

• Gibbs sampling/MCMC

The basic model can be extended in various ways:

• covariates/regressors;

• directed data
• dyadic correlation;
• separate sender and receiver classes.

Much of this was done in Nowicki and Snijders (2001).

A variety of more complex variants have been recently developed.

34/39



Stochastic blockmodel

You can’t take derivative to find the MLEs of c1, . . . , cn. Instead, use

• EM algorithm

• Gibbs sampling/MCMC

The basic model can be extended in various ways:

• covariates/regressors;

• directed data
• dyadic correlation;
• separate sender and receiver classes.

Much of this was done in Nowicki and Snijders (2001).

A variety of more complex variants have been recently developed.

34/39



Stochastic blockmodel

You can’t take derivative to find the MLEs of c1, . . . , cn. Instead, use

• EM algorithm

• Gibbs sampling/MCMC

The basic model can be extended in various ways:

• covariates/regressors;

• directed data
• dyadic correlation;
• separate sender and receiver classes.

Much of this was done in Nowicki and Snijders (2001).

A variety of more complex variants have been recently developed.

34/39



Stochastic blockmodel

You can’t take derivative to find the MLEs of c1, . . . , cn. Instead, use

• EM algorithm

• Gibbs sampling/MCMC

The basic model can be extended in various ways:

• covariates/regressors;

• directed data
• dyadic correlation;
• separate sender and receiver classes.

Much of this was done in Nowicki and Snijders (2001).

A variety of more complex variants have been recently developed.

34/39



Stochastic blockmodel

You can’t take derivative to find the MLEs of c1, . . . , cn. Instead, use

• EM algorithm

• Gibbs sampling/MCMC

The basic model can be extended in various ways:

• covariates/regressors;

• directed data
• dyadic correlation;
• separate sender and receiver classes.

Much of this was done in Nowicki and Snijders (2001).

A variety of more complex variants have been recently developed.

34/39



Stochastic blockmodel

You can’t take derivative to find the MLEs of c1, . . . , cn. Instead, use

• EM algorithm

• Gibbs sampling/MCMC

The basic model can be extended in various ways:

• covariates/regressors;

• directed data
• dyadic correlation;
• separate sender and receiver classes.

Much of this was done in Nowicki and Snijders (2001).

A variety of more complex variants have been recently developed.

34/39



Stochastic blockmodel

You can’t take derivative to find the MLEs of c1, . . . , cn. Instead, use

• EM algorithm

• Gibbs sampling/MCMC

The basic model can be extended in various ways:

• covariates/regressors;

• directed data
• dyadic correlation;
• separate sender and receiver classes.

Much of this was done in Nowicki and Snijders (2001).

A variety of more complex variants have been recently developed.

34/39



Stochastic blockmodel

You can’t take derivative to find the MLEs of c1, . . . , cn. Instead, use

• EM algorithm

• Gibbs sampling/MCMC

The basic model can be extended in various ways:

• covariates/regressors;

• directed data
• dyadic correlation;
• separate sender and receiver classes.

Much of this was done in Nowicki and Snijders (2001).

A variety of more complex variants have been recently developed.

34/39



Stochastic blockmodel

You can’t take derivative to find the MLEs of c1, . . . , cn. Instead, use

• EM algorithm

• Gibbs sampling/MCMC

The basic model can be extended in various ways:

• covariates/regressors;

• directed data
• dyadic correlation;
• separate sender and receiver classes.

Much of this was done in Nowicki and Snijders (2001).

A variety of more complex variants have been recently developed.

34/39



Stochastic blockmodel

You can’t take derivative to find the MLEs of c1, . . . , cn. Instead, use

• EM algorithm

• Gibbs sampling/MCMC

The basic model can be extended in various ways:

• covariates/regressors;

• directed data
• dyadic correlation;
• separate sender and receiver classes.

Much of this was done in Nowicki and Snijders (2001).

A variety of more complex variants have been recently developed.

34/39



Stochastic blockmodel

You can’t take derivative to find the MLEs of c1, . . . , cn. Instead, use

• EM algorithm

• Gibbs sampling/MCMC

The basic model can be extended in various ways:

• covariates/regressors;

• directed data
• dyadic correlation;
• separate sender and receiver classes.

Much of this was done in Nowicki and Snijders (2001).

A variety of more complex variants have been recently developed.

34/39



Stochastic blockmodel for Cold War data
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Stochastic blockmodel for Cold War data

A three-class model gives the following inferred classes:

rownames(Y)[latentclass==1]

## [1] "CHN" "IRN" "IRQ" "PRK" "USR"

rownames(Y)[latentclass==2]

## [1] "AUL" "CAN" "GFR" "ITA" "NEW" "NOR" "NTH" "PHI" "ROK" "THI" "TUR"
## [12] "UKG" "USA"

and everyone else in class 3, with the following between-class means:

round(M,2)

## [,1] [,2] [,3]
## [1,] 0.02 -0.89 0.50
## [2,] -0.89 4.47 1.07
## [3,] 0.50 1.07 0.86

These rates are on the probit scale (recall the data are ordinal).
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Latent class for Cold War data
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Matrix form of the blockmodel

The essential feature of the blockmodel is the representation

yi,j ∼ θci ,cj

where

• ci , cj are unobserved latent class variables;

• Θ is a matrix of between-class intensities.

This model structure can be expressed in matrix form as follows:

θci ,cj = uT
i Θu j ,

where

• u i is a K × 1 vector of all 0s except u i [ci ] = 1;

• Θ is the K × K matrix of between class intensities.

(
0 0 1

)θ11 θ12 θ13
θ21 θ22 θ23
θ31 θ32 θ33

1
0
0

 = θ31

This model is a special case of the latent factor model.
Community detection methods are (more or less) special cases of blockmodels.
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Summary of LFM

Features of real datasets:

• third-order triadic dependence;

• groups of nodes with similar roles.

Explanations of features:

• homophily on covariates can generate triadic dependence;

• stochastic equivalence can generate groups of similar nodes;

• both features can be represented by the “model” yi,j ∼ β0 + β1 × s(ui , vj)

Statistical modeling:
• Generate derived dyadic variables s(ui , vj) from nodal covariates ui , vj .

• indicators for categorical variables: s(ui , vj ) = 1(ui = vj );
• interactions for continuous variables: s(ui , vj ) = uivj .

• If insufficient for model fit, estimate additional latent factors from data:
• stochastic blockmodel: latent categorical variables;
• latent factor model: latent continuous variables.
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