Higher order patterns via factor models 567 Statistical analysis of social networks

Peter Hoff

Statistics, University of Washington

Conflict data

Y<-conflict90s\$conflicts											
Xn<-confl	ict90s\$	nodeva	rs								
colnames(Xn)										
## [1] "p	op"	"gdp"	"po	lity"							
Xn[,1:2]<	-log(Xn	1[,1:2])								
<pre>table(Y)</pre>											
## Y											
## 0	1	2	3	4	5	6	7	8			
## 16567	154	22	14	7	2	2	1	1			

Dichotomized conflict data

SRM fit to ordinal data

```
#### nodal covariates only
fit_n<-ame(Y,Xrow=Xn,Xcol=Xn,model="ord",nscan=10000)</pre>
```

summary(fit_n)

##

beta:

```
##
         pmean psd z-stat p-val
## pop.row 0.256 0.121 2.114 0.034
## gdp.row -0.430 0.099 -4.334 0.000
## polity.row -0.014 0.017 -0.797 0.425
## pop.col 0.207 0.096 2.151 0.031
## gdp.col -0.371 0.078 -4.774 0.000
## polity.col -0.001 0.014 -0.062 0.950
##
## Sigma_ab pmean:
## a b
## a 1.134 0.801
## b 0.801 0.687
##
## rho pmean:
## 0.804
```

SRM fit to ordinal data

plot(fit_n)


```
gofstats
## function (Y)
## {
##
       sd.rowmean <- sd(rowMeans(Y, na.rm = TRUE), na.rm = TRUE)</pre>
##
       sd.colmean <- sd(colMeans(Y, na.rm = TRUE), na.rm = TRUE)</pre>
##
       dyad.dep <- cor(c(Y), c(t(Y)), use = "complete.obs")</pre>
       E <- Y - mean(Y, na.rm = TRUE)
##
##
       D <- 1 * (!is.na(E))
       E[is.na(E)] <- 0
##
       triad.dep <- sum(diag(E %*% E %*% E))/(sum(diag(D %*% D %*%
##
##
           D)) * sd(c(Y), na.rm = TRUE)^3)
       gof <- c(sd.rowmean, sd.colmean, dyad.dep, triad.dep)</pre>
##
##
       names(gof) <- c("sd.rowmean", "sd.colmean", "dyad.dep", "triad.dep")</pre>
##
       gof
## }
## <environment: namespace:amen>
```

Let $\mathbf{E} = (\mathbf{Y} - \mathbf{11}^T \bar{y}_{..})/s_y$, that is, $e_{i,j} = (y_{i,j} - \bar{y}_{..})/s_y$.

- \overline{y}_{\cdots} is the grand mean;
- s_y is the sample standard deviation of the $y_{i,j}$'s
- $e_{i,j}$ is like a "scaled residual" from the simple mean model $y_{i,j} = \mu + \epsilon_{i,j}$.

The sum of the diagonal of E^3 gives the scaled third-order moment:

$$\mathsf{trace}(\mathsf{E}^3) = \sum_i \sum_j \sum_k e_{i,j} e_{j,k} e_{k,i}$$

$$t(\mathbf{Y}) = \frac{\sum_{i} \sum_{j} \sum_{k} e_{i,j} e_{j,k} e_{i,j}}{\# \text{ of ordered triads}}$$

Let $\mathbf{E} = (\mathbf{Y} - \mathbf{11}^T \bar{y}_{..})/s_y$, that is, $e_{i,j} = (y_{i,j} - \bar{y}_{..})/s_y$.

- \bar{y}_{\cdots} is the grand mean;
- sy is the sample standard deviation of the y_{i,j}'s
- $e_{i,j}$ is like a "scaled residual" from the simple mean model $y_{i,j} = \mu + \epsilon_{i,j}$.

The sum of the diagonal of E³ gives the scaled third-order moment:

$$\mathsf{trace}(\mathsf{E}^3) = \sum_i \sum_j \sum_k e_{i,j} e_{j,k} e_{k,i}$$

$$t(\mathbf{Y}) = \frac{\sum_{i} \sum_{j} \sum_{k} e_{i,j} e_{j,k} e_{i,j}}{\# \text{ of ordered triads}}$$

Let $\mathbf{E} = (\mathbf{Y} - \mathbf{11}^T \bar{y}_{..})/s_y$, that is, $e_{i,j} = (y_{i,j} - \bar{y}_{..})/s_y$.

- \bar{y}_{\cdots} is the grand mean;
- sy is the sample standard deviation of the y_{i,j}'s
- $e_{i,j}$ is like a "scaled residual" from the simple mean model $y_{i,j} = \mu + \epsilon_{i,j}$.

The sum of the diagonal of E^3 gives the scaled third-order moment:

$$\mathsf{trace}(\mathbf{E}^3) = \sum_i \sum_j \sum_k e_{i,j} e_{j,k} e_{k,i}$$

$$t(\mathbf{Y}) = \frac{\sum_{i} \sum_{j} \sum_{k} e_{i,j} e_{j,k} e_{i,j}}{\# \text{ of ordered triads}}$$

Let $\mathbf{E} = (\mathbf{Y} - \mathbf{1}\mathbf{1}^T \bar{y}_{\cdot\cdot})/s_y$, that is, $e_{i,j} = (y_{i,j} - \bar{y}_{\cdot\cdot})/s_y$.

- \bar{y}_{\cdots} is the grand mean;
- sy is the sample standard deviation of the y_{i,j}'s
- $e_{i,j}$ is like a "scaled residual" from the simple mean model $y_{i,j} = \mu + \epsilon_{i,j}$.

The sum of the diagonal of E^3 gives the scaled third-order moment:

$$\mathsf{trace}(\mathbf{E}^3) = \sum_i \sum_j \sum_k e_{i,j} e_{j,k} e_{k,i}$$

$$t(\mathbf{Y}) = \frac{\sum_{i} \sum_{j} \sum_{k} e_{i,j} e_{j,k} e_{i,j}}{\# \text{ of ordered triads}}$$

Triad dependence and transitivity

This triadic dependence measure is related to transitivity for binary data:

Transitive triple: An ordered triple (i, j, k) is transitive if $i \rightarrow j \rightarrow k \rightarrow i$ $(y_{i,j} = y_{j,k} = y_{k,i})$.

$$trans(\mathbf{Y}) = \sum_{i} \sum_{j} \sum_{k} y_{i,j} y_{j,k} y_{k,i}$$

Triad dependence and transitivity

This triadic dependence measure is related to **transitivity** for binary data: **Transitive triple:** An ordered triple (i, j, k) is transitive if $i \rightarrow j \rightarrow k \rightarrow i$ $(y_{i,j} = y_{j,k} = y_{k,i})$.

$$trans(\mathbf{Y}) = \sum_{i} \sum_{j} \sum_{k} y_{i,j} y_{j,k} y_{k,i}$$

Triad dependence and transitivity

This triadic dependence measure is related to **transitivity** for binary data: **Transitive triple:** An ordered triple (i, j, k) is transitive if $i \rightarrow j \rightarrow k \rightarrow i$ $(y_{i,j} = y_{j,k} = y_{k,i})$.

$$trans(\mathbf{Y}) = \sum_{i} \sum_{j} \sum_{k} y_{i,j} y_{j,k} y_{k,i}$$

SRM fit to ordinal data with dyadic covariates

dyadic and nodal covariates
fit_dn<-ame(Y,Xdyad=Xd,Xrow=Xn,Xcol=Xn,model="ord",nscan=10000)</pre>

summary(fit_dn)

##					
##	beta:				
##		pmean	psd	z-stat	p-val
##	pop.row	0.212	0.095	2.230	0.026
##	gdp.row	0.077	0.078	0.992	0.321
##	polity.row	-0.028	0.013	-2.045	0.041
##	pop.col	0.205	0.092	2.232	0.026
##	gdp.col	-0.029	0.078	-0.376	0.707
##	polity.col	0.002	0.012	0.130	0.896
##	<pre>polity_int.dyad</pre>	-0.003	0.001	-2.419	0.016
##	imports.dyad	-0.142	0.100	-1.415	0.157
##	shared_igos.dyad	-0.017	0.005	-3.383	0.001
##	distance.dyad	-1.837	0.101	-18.244	0.000
##					
##	Sigma_ab pmean:				
##	a b				
##	a 0.500 0.332				
##	b 0.332 0.462				
##					
##	rho pmean:				
##	0.566				

SRM fit to ordinal data with dyadic covariates

plot(fit_dn)

GOF comparison

Adding these dyadic covariates improved the fit with regard to $t(\mathbf{Y})$.

Note that each of these dyadic covariates was a function of nodal covariates:

- $x_{i,j,1} = f_1(\text{polity}_i, \text{polity}_j)$
- $x_{i,j,2} = f_2(igo_i, igo_j)$
- $x_{i,j,3} = f_3(\text{location}_i, \text{location}_j)$

This suggests models of the form

$$y_{i,j} \sim \beta_0 + \beta_1 x_{i,j}$$

 $x_{i,j} = s(x_i, x_j)$

Adding these dyadic covariates improved the fit with regard to $t(\mathbf{Y})$.

Note that each of these dyadic covariates was a function of nodal covariates:

- $x_{i,j,1} = f_1(\text{polity}_i, \text{polity}_j)$
- $x_{i,j,2} = f_2(igo_i, igo_j)$
- $x_{i,j,3} = f_3(\text{location}_i, \text{location}_j)$

This suggests models of the form

$$y_{i,j} \sim \beta_0 + \beta_1 x_{i,j}$$

 $x_{i,j} = s(x_i, x_j)$

Adding these dyadic covariates improved the fit with regard to $t(\mathbf{Y})$.

Note that each of these dyadic covariates was a function of nodal covariates:

- x_{i,j,1} = f₁(polity_i, polity_j)
- $x_{i,j,2} = f_2(igo_i, igo_j)$
- $x_{i,j,3} = f_3(\text{location}_i, \text{location}_j)$

This suggests models of the form

$$y_{i,j} \sim \beta_0 + \beta_1 x_{i,j}$$

 $x_{i,j} = s(x_i, x_j)$

Adding these dyadic covariates improved the fit with regard to $t(\mathbf{Y})$.

Note that each of these dyadic covariates was a function of nodal covariates:

- x_{i,j,1} = f₁(polity_i, polity_j)
- $x_{i,j,2} = f_2(igo_i, igo_j)$
- $x_{i,j,3} = f_3(\text{location}_i, \text{location}_j)$

This suggests models of the form

$$y_{i,j} \sim \beta_0 + \beta_1 x_{i,j}$$

 $x_{i,j} = s(x_i, x_j)$

Adding these dyadic covariates improved the fit with regard to $t(\mathbf{Y})$.

Note that each of these dyadic covariates was a function of nodal covariates:

- x_{i,j,1} = f₁(polity_i, polity_j)
- $x_{i,j,2} = f_2(igo_i, igo_j)$
- $x_{i,j,3} = f_3(\text{location}_i, \text{location}_j)$

This suggests models of the form

$$y_{i,j} \sim \beta_0 + \beta_1 x_{i,j}$$

 $x_{i,j} = s(x_i, x_j)$

Adding these dyadic covariates improved the fit with regard to $t(\mathbf{Y})$.

Note that each of these dyadic covariates was a function of nodal covariates:

- x_{i,j,1} = f₁(polity_i, polity_j)
- $x_{i,j,2} = f_2(igo_i, igo_j)$
- x_{i,j,3} = f₃(location_i, location_j)

This suggests models of the form

$$y_{i,j} \sim \beta_0 + \beta_1 x_{i,j}$$
$$x_{i,j} = s(x_i, x_j)$$

More generally, let

- u_i be a covariate of *i* as a sender of ties;
- v_j be covariate of j as a receiver of ties.

 $y_{i,j} \sim \beta_0 + \beta_1 \times s(u_i, v_j)$

Such a model can describe various types of higher-order dependence, including transitivity

stochastic equivalence

More generally, let

- u_i be a covariate of *i* as a sender of ties;
- v_j be covariate of j as a receiver of ties.

 $y_{i,j} \sim \beta_0 + \beta_1 \times s(u_i, v_j)$

Such a model can describe various types of higher-order dependence, including transitivity

stochastic equivalence

More generally, let

- u_i be a covariate of *i* as a sender of ties;
- v_j be covariate of j as a receiver of ties.

 $y_{i,j} \sim \beta_0 + \beta_1 \times s(u_i, v_j)$

Such a model can describe various types of higher-order dependence, including transitivity

stochastic equivalence

Homophily on covariates can explain transitivity:

$$y_{i,j} \sim \beta_0 + \beta_1 \times s(x_i, x_j)$$

If $\beta_1 > 0$ and the $y_{i,j}$'s are binary, then

- $y_{i,j} = 1 \Rightarrow x_i \approx x_j;$
- $y_{i,k} = 1 \Rightarrow x_i \approx x_k;$
- $x_i \approx x_j, \ x_i \approx x_k \Rightarrow x_j \approx x_k.$
- $x_j \approx x_k \Rightarrow y_{j,k} = 1.$

Homophily on covariates can explain transitivity:

$$y_{i,j} \sim \beta_0 + \beta_1 \times s(x_i, x_j)$$

If $\beta_1 > 0$ and the $y_{i,j}$'s are binary, then

- $y_{i,j} = 1 \Rightarrow x_i \approx x_j;$
- $y_{i,k} = 1 \Rightarrow x_i \approx x_k;$
- $x_i \approx x_j, \ x_i \approx x_k \Rightarrow x_j \approx x_k.$
- $x_j \approx x_k \Rightarrow y_{j,k} = 1.$

Homophily on covariates can explain transitivity:

$$y_{i,j} \sim \beta_0 + \beta_1 \times s(x_i, x_j)$$

If $\beta_1 > 0$ and the $y_{i,j}$'s are binary, then

- $y_{i,j} = 1 \Rightarrow x_i \approx x_j;$
- $y_{i,k} = 1 \Rightarrow x_i \approx x_k;$
- $x_i \approx x_j, \ x_i \approx x_k \Rightarrow x_j \approx x_k.$
- $x_j \approx x_k \Rightarrow y_{j,k} = 1.$

Homophily on covariates can explain transitivity:

$$y_{i,j} \sim \beta_0 + \beta_1 \times s(x_i, x_j)$$

If $\beta_1 > 0$ and the $y_{i,j}$'s are binary, then

- $y_{i,j} = 1 \Rightarrow x_i \approx x_j;$
- $y_{i,k} = 1 \Rightarrow x_i \approx x_k;$
- $x_i \approx x_j, \ x_i \approx x_k \Rightarrow x_j \approx x_k.$
- $x_j \approx x_k \Rightarrow y_{j,k} = 1.$

Homophily on covariates can explain transitivity:

$$y_{i,j} \sim \beta_0 + \beta_1 \times s(x_i, x_j)$$

If $\beta_1 > 0$ and the $y_{i,j}$'s are binary, then

- $y_{i,j} = 1 \Rightarrow x_i \approx x_j;$
- $y_{i,k} = 1 \Rightarrow x_i \approx x_k;$
- $x_i \approx x_j, \ x_i \approx x_k \Rightarrow x_j \approx x_k.$
- $x_j \approx x_k \Rightarrow y_{j,k} = 1.$

Homophily on covariates can explain transitivity:

$$y_{i,j} \sim \beta_0 + \beta_1 \times s(x_i, x_j)$$

If $\beta_1 > 0$ and the $y_{i,j}$'s are binary, then

- $y_{i,j} = 1 \Rightarrow x_i \approx x_j;$
- $y_{i,k} = 1 \Rightarrow x_i \approx x_k;$
- $x_i \approx x_j, \ x_i \approx x_k \Rightarrow x_j \approx x_k.$
- $x_j \approx x_k \Rightarrow y_{j,k} = 1.$

Stochastic equivalence

Returning to the more general model:

$$y_{i,j} \sim \beta_0 + \beta_1 \times s(u_i, v_j)$$

If $u_i = u_k$ then *i* and *j* are equivalent as senders in terms of the model.

Example: Logistic regression

$$\Pr(Y_{i,j} = 1) = \frac{e^{\beta_0 + \beta_1 s(u_i, v_j)}}{1 + e^{\beta_0 + \beta_1 s(u_i, v_j)}}$$

If $u_i = u_k = u$, then

$$\Pr(Y_{i,j} = 1) = \frac{e^{\beta_0 + \beta_1 s(u_i, v_j)}}{1 + e^{\beta_0 + \beta_1 s(u_i, v_j)}} = \Pr(Y_{k,j} = 1),$$

and nodes i and k are stochastically equivalent (as senders).

Stochastic equivalence

Returning to the more general model:

$$y_{i,j} \sim \beta_0 + \beta_1 \times s(u_i, v_j)$$

If $u_i = u_k$ then *i* and *j* are equivalent as senders in terms of the model.

Example: Logistic regression

$$\Pr(Y_{i,j} = 1) = \frac{e^{\beta_0 + \beta_1 s(u_i, v_j)}}{1 + e^{\beta_0 + \beta_1 s(u_i, v_j)}}$$

If $u_i = u_k = u$, then

$$\Pr(Y_{i,j} = 1) = \frac{e^{\beta_0 + \beta_1 s(u_i, v_j)}}{1 + e^{\beta_0 + \beta_1 s(u_i, v_j)}} = \Pr(Y_{k,j} = 1),$$

and nodes i and k are stochastically equivalent (as senders).

Returning to the more general model:

$$y_{i,j} \sim \beta_0 + \beta_1 \times s(u_i, v_j)$$

If $u_i = u_k$ then *i* and *j* are **equivalent** as senders in terms of the model. Example: Logistic regression

$$\Pr(Y_{i,j} = 1) = \frac{e^{\beta_0 + \beta_1 s(u_i, v_j)}}{1 + e^{\beta_0 + \beta_1 s(u_i, v_j)}}$$

If $u_i = u_k = u$, then

$$\Pr(Y_{i,j} = 1) = \frac{e^{\beta_0 + \beta_1 s(u_i, v_j)}}{1 + e^{\beta_0 + \beta_1 s(u_i, v_j)}} = \Pr(Y_{k,j} = 1),$$

and nodes i and k are stochastically equivalent (as senders).

In our hypothetical model of social relations, we've seen how nodal characteristics relate to homophily and stochastic equivalence.

Homophily: Similar nodes link to each other

- "similar" in terms of characteristics (potentially unobserved)
- homophily leads to transitive or clustered social networks
- observed transitivity may be due to exogenous or endogenous factors

(See Shalizi and Thomas 2010 for a more careful discussion

Stochastic equivalence: Similar nodes have similar relational patterns

- similar nodes may or may not link to each other.
- equivalent nodes can be thought of as having the same "role"

In our hypothetical model of social relations, we've seen how nodal characteristics relate to homophily and stochastic equivalence.

Homophily: Similar nodes link to each other

- "similar" in terms of characteristics (potentially unobserved)
- homophily leads to transitive or clustered social networks
- observed transitivity may be due to exogenous or endogenous factors

(See Shalizi and Thomas 2010 for a more careful discussion

Stochastic equivalence: Similar nodes have similar relational patterns

- similar nodes may or may not link to each other.
- equivalent nodes can be thought of as having the same "role"
In our hypothetical model of social relations, we've seen how nodal characteristics relate to homophily and stochastic equivalence.

Homophily: Similar nodes link to each other

- "similar" in terms of characteristics (potentially unobserved)
- homophily leads to transitive or clustered social networks
- observed transitivity may be due to exogenous or endogenous factors (See Shalizi and Thomas 2010 for a more careful discussion)

- similar nodes may or may not link to each other
- equivalent nodes can be thought of as having the same "role"

In our hypothetical model of social relations, we've seen how nodal characteristics relate to homophily and stochastic equivalence.

Homophily: Similar nodes link to each other

- "similar" in terms of characteristics (potentially unobserved)
- · homophily leads to transitive or clustered social networks
- observed transitivity may be due to exogenous or endogenous factors

 (See Shalizi and Thomas 2010 for a more careful discussion)

- similar nodes may or may not link to each other
- equivalent nodes can be thought of as having the same "role"

In our hypothetical model of social relations, we've seen how nodal characteristics relate to homophily and stochastic equivalence.

Homophily: Similar nodes link to each other

- "similar" in terms of characteristics (potentially unobserved)
- · homophily leads to transitive or clustered social networks
- observed transitivity may be due to exogenous or endogenous factors

See Shalizi and Thomas 2010 for a more careful discussion

- similar nodes may or may not link to each other
- equivalent nodes can be thought of as having the same "role"

In our hypothetical model of social relations, we've seen how nodal characteristics relate to homophily and stochastic equivalence.

Homophily: Similar nodes link to each other

- "similar" in terms of characteristics (potentially unobserved)
- · homophily leads to transitive or clustered social networks
- observed transitivity may be due to exogenous or endogenous factors

See Shalizi and Thomas 2010 for a more careful discussion

- similar nodes may or may not link to each other
- equivalent nodes can be thought of as having the same "role"

In our hypothetical model of social relations, we've seen how nodal characteristics relate to homophily and stochastic equivalence.

Homophily: Similar nodes link to each other

- "similar" in terms of characteristics (potentially unobserved)
- · homophily leads to transitive or clustered social networks
- observed transitivity may be due to exogenous or endogenous factors

(See Shalizi and Thomas 2010 for a more careful discussion)

- similar nodes may or may not link to each other
- equivalent nodes can be thought of as having the same "role"

In our hypothetical model of social relations, we've seen how nodal characteristics relate to homophily and stochastic equivalence.

Homophily: Similar nodes link to each other

- "similar" in terms of characteristics (potentially unobserved)
- · homophily leads to transitive or clustered social networks
- observed transitivity may be due to exogenous or endogenous factors (See Shalizi and Thomas 2010 for a more careful discussion)

- similar nodes may or may not link to each other
- equivalent nodes can be thought of as having the same "role"

In our hypothetical model of social relations, we've seen how nodal characteristics relate to homophily and stochastic equivalence.

Homophily: Similar nodes link to each other

- "similar" in terms of characteristics (potentially unobserved)
- · homophily leads to transitive or clustered social networks
- observed transitivity may be due to exogenous or endogenous factors (See Shalizi and Thomas 2010 for a more careful discussion)

- similar nodes may or may not link to each other
- equivalent nodes can be thought of as having the same "role"

In our hypothetical model of social relations, we've seen how nodal characteristics relate to homophily and stochastic equivalence.

Homophily: Similar nodes link to each other

- "similar" in terms of characteristics (potentially unobserved)
- · homophily leads to transitive or clustered social networks
- observed transitivity may be due to exogenous or endogenous factors (See Shalizi and Thomas 2010 for a more careful discussion)

- similar nodes may or may not link to each other
- equivalent nodes can be thought of as having the same "role"

In our hypothetical model of social relations, we've seen how nodal characteristics relate to homophily and stochastic equivalence.

Homophily: Similar nodes link to each other

- "similar" in terms of characteristics (potentially unobserved)
- · homophily leads to transitive or clustered social networks
- observed transitivity may be due to exogenous or endogenous factors (See Shalizi and Thomas 2010 for a more careful discussion)

- similar nodes may or may not link to each other
- equivalent nodes can be thought of as having the same "role"

Visualizing stochastic equivalence

For which network is homophily a plausible explanation?

Which network exhibits a large degree of stochastic equivalence?

Visualizing stochastic equivalence

For which network is homophily a plausible explanation?

Which network exhibits a large degree of stochastic equivalence?

- AddHealth friendships: friendships among 247 12th-graders
- Word neighbors in Genesis: neighboring occurrences among 158 words
- Protein binding interactions: binding patterns among 230 proteins

- AddHealth friendships: friendships among 247 12th-graders
- Word neighbors in Genesis: neighboring occurrences among 158 words
- Protein binding interactions: binding patterns among 230 proteins

- AddHealth friendships: friendships among 247 12th-graders
- Word neighbors in Genesis: neighboring occurrences among 158 words
- Protein binding interactions: binding patterns among 230 proteins

- AddHealth friendships: friendships among 247 12th-graders
- Word neighbors in Genesis: neighboring occurrences among 158 words
- Protein binding interactions: binding patterns among 230 proteins

- AddHealth friendships: friendships among 247 12th-graders
- Word neighbors in Genesis: neighboring occurrences among 158 words
- Protein binding interactions: binding patterns among 230 proteins

Homophily and stochastic equivalence from unobserved variables can be represented with a latent factor model:

$$y_{i,j} \sim \boldsymbol{u}_i^T \boldsymbol{\mathsf{D}} \boldsymbol{v}_j,$$

- **u**_i is a vector of latent factors describing *i* as a sender of ties;
- v_i is a vector of latent factors describing j as a receiver of ties;
- D is a diagonal matrix of factor weights.

Normal, binomial, ordinal data can be represented with this structure as follows:

$$z_{i,j} = \boldsymbol{u}_i^T \mathbf{D} \boldsymbol{v}_j + \epsilon_{i,j}$$
$$y_{i,j} = g(z_{i,j})$$

- g(z) = z for normal data;
- g(z) = 1(z > 0) for binomial data;
- g(z) = some increasing step function for ordinal data.

Homophily and stochastic equivalence from unobserved variables can be represented with a latent factor model:

$$y_{i,j} \sim \boldsymbol{u}_i^T \boldsymbol{\mathsf{D}} \boldsymbol{v}_j,$$

- **u**_i is a vector of latent factors describing *i* as a sender of ties;
- **v**_j is a vector of latent factors describing j as a receiver of ties;
- D is a diagonal matrix of factor weights.

Normal, binomial, ordinal data can be represented with this structure as follows:

$$z_{i,j} = \boldsymbol{u}_i^T \mathbf{D} \boldsymbol{v}_j + \epsilon_{i,j}$$
$$y_{i,j} = g(z_{i,j})$$

- g(z) = z for normal data;
- g(z) = 1(z > 0) for binomial data;
- g(z) = some increasing step function for ordinal data.

Homophily and stochastic equivalence from unobserved variables can be represented with a latent factor model:

$$y_{i,j} \sim \boldsymbol{u}_i^T \boldsymbol{\mathsf{D}} \boldsymbol{v}_j,$$

- **u**_i is a vector of latent factors describing *i* as a sender of ties;
- v_j is a vector of latent factors describing j as a receiver of ties;
- D is a diagonal matrix of factor weights.

Normal, binomial, ordinal data can be represented with this structure as follows:

$$z_{i,j} = \boldsymbol{u}_i^T \mathbf{D} \boldsymbol{v}_j + \epsilon_{i,j}$$
$$y_{i,j} = g(z_{i,j})$$

where g is some increasing function:

• g(z) = z for normal data;

- g(z) = 1(z > 0) for binomial data;
- g(z) = some increasing step function for ordinal data.

Homophily and stochastic equivalence from unobserved variables can be represented with a latent factor model:

$$y_{i,j} \sim \boldsymbol{u}_i^T \boldsymbol{\mathsf{D}} \boldsymbol{v}_j,$$

- **u**_i is a vector of latent factors describing *i* as a sender of ties;
- v_j is a vector of latent factors describing j as a receiver of ties;
- D is a diagonal matrix of factor weights.

Normal, binomial, ordinal data can be represented with this structure as follows:

$$z_{i,j} = \boldsymbol{u}_i^T \mathbf{D} \boldsymbol{v}_j + \epsilon_{i,j}$$
$$y_{i,j} = g(z_{i,j})$$

where g is some increasing function:

• g(z) = z for normal data;

- g(z) = 1(z > 0) for binomial data;
- g(z) = some increasing step function for ordinal data.

Homophily and stochastic equivalence from unobserved variables can be represented with a latent factor model:

$$y_{i,j} \sim \boldsymbol{u}_i^T \boldsymbol{\mathsf{D}} \boldsymbol{v}_j,$$

- **u**_i is a vector of latent factors describing *i* as a sender of ties;
- **v**_j is a vector of latent factors describing j as a receiver of ties;
- D is a diagonal matrix of factor weights.

Normal, binomial, ordinal data can be represented with this structure as follows:

$$egin{aligned} & z_{i,j} = oldsymbol{u}_i^T oldsymbol{D} oldsymbol{v}_j + \epsilon_{i,j} \ & y_{i,j} = oldsymbol{g}(oldsymbol{z}_{i,j}) \end{aligned}$$

- g(z) = z for normal data;
- g(z) = 1(z > 0) for binomial data;
- g(z) = some increasing step function for ordinal data.

Homophily and stochastic equivalence from unobserved variables can be represented with a latent factor model:

$$y_{i,j} \sim \boldsymbol{u}_i^T \boldsymbol{\mathsf{D}} \boldsymbol{v}_j,$$

- **u**_i is a vector of latent factors describing *i* as a sender of ties;
- **v**_j is a vector of latent factors describing j as a receiver of ties;
- D is a diagonal matrix of factor weights.

Normal, binomial, ordinal data can be represented with this structure as follows:

$$egin{aligned} & z_{i,j} = oldsymbol{u}_i^T oldsymbol{D} oldsymbol{v}_j + \epsilon_{i,j} \ & y_{i,j} = oldsymbol{g}(oldsymbol{z}_{i,j}) \end{aligned}$$

where g is some increasing function:

- g(z) = z for normal data;
- g(z) = 1(z > 0) for binomial data;

• g(z) = some increasing step function for ordinal data.

Homophily and stochastic equivalence from unobserved variables can be represented with a latent factor model:

$$y_{i,j} \sim \boldsymbol{u}_i^T \boldsymbol{\mathsf{D}} \boldsymbol{v}_j,$$

- **u**_i is a vector of latent factors describing *i* as a sender of ties;
- **v**_j is a vector of latent factors describing j as a receiver of ties;
- D is a diagonal matrix of factor weights.

Normal, binomial, ordinal data can be represented with this structure as follows:

$$egin{aligned} & z_{i,j} = oldsymbol{u}_i^T oldsymbol{D} oldsymbol{v}_j + \epsilon_{i,j} \ & y_{i,j} = oldsymbol{g}(oldsymbol{z}_{i,j}) \end{aligned}$$

- g(z) = z for normal data;
- g(z) = 1(z > 0) for binomial data;
- g(z) = some increasing step function for ordinal data.

Homophily and stochastic equivalence from unobserved variables can be represented with a latent factor model:

$$y_{i,j} \sim \boldsymbol{u}_i^T \boldsymbol{\mathsf{D}} \boldsymbol{v}_j,$$

- **u**_i is a vector of latent factors describing *i* as a sender of ties;
- **v**_j is a vector of latent factors describing j as a receiver of ties;
- D is a diagonal matrix of factor weights.

Normal, binomial, ordinal data can be represented with this structure as follows:

$$egin{aligned} & z_{i,j} = oldsymbol{u}_i^T oldsymbol{D} oldsymbol{v}_j + \epsilon_{i,j} \ & y_{i,j} = oldsymbol{g}(oldsymbol{z}_{i,j}) \end{aligned}$$

- g(z) = z for normal data;
- g(z) = 1(z > 0) for binomial data;
- g(z) = some increasing step function for ordinal data.

Homophily and stochastic equivalence from unobserved variables can be represented with a latent factor model:

$$y_{i,j} \sim \boldsymbol{u}_i^T \boldsymbol{\mathsf{D}} \boldsymbol{v}_j,$$

- **u**_i is a vector of latent factors describing *i* as a sender of ties;
- **v**_j is a vector of latent factors describing j as a receiver of ties;
- D is a diagonal matrix of factor weights.

Normal, binomial, ordinal data can be represented with this structure as follows:

$$egin{aligned} & z_{i,j} = oldsymbol{u}_i^T oldsymbol{D} oldsymbol{v}_j + \epsilon_{i,j} \ & y_{i,j} = oldsymbol{g}(oldsymbol{z}_{i,j}) \end{aligned}$$

- g(z) = z for normal data;
- g(z) = 1(z > 0) for binomial data;
- g(z) = some increasing step function for ordinal data.

 $\mathbf{Z} = \mathbf{U}^T \mathbf{D} \mathbf{V} + \mathbf{E}$

$$\begin{aligned} f_{i,j} &= \mathbf{u}_i^T \mathbf{D} \mathbf{v}_j + \epsilon_{i,j} \\ &= \sum_{r=1}^R d_r u_{i,r} v_{j,r} + \epsilon_{i,j} \end{aligned}$$

For example, in a 2 factor model, we have

$$z_{i,j} = d_1(u_{i,1} \times v_{j,1}) + d_2(u_{i,2} \times v_{j,2}) + \epsilon_{i,j}$$

- $u_i \approx u_j$: similarity of latent factors implies approximate stoch equivalence;
- $u_i \approx v_i$: similarity of latent factors implies high probability of a tie.

 $\mathbf{Z} = \mathbf{U}^{\mathsf{T}} \mathbf{D} \mathbf{V} + \mathbf{E}$

$$z_{i,j} = \mathbf{u}_i^T \mathbf{D} \mathbf{v}_j + \epsilon_{i,j}$$
$$= \sum_{r=1}^R d_r u_{i,r} \mathbf{v}_{j,r} + \epsilon_{i,j}$$

For example, in a 2 factor model, we have

$$z_{i,j} = d_1(u_{i,1} \times v_{j,1}) + d_2(u_{i,2} \times v_{j,2}) + \epsilon_{i,j}$$

- $u_i \approx u_j$: similarity of latent factors implies approximate stoch equivalence;
- $u_i \approx v_i$: similarity of latent factors implies high probability of a tie.

 $\mathbf{Z} = \mathbf{U}^{\mathsf{T}} \mathbf{D} \mathbf{V} + \mathbf{E}$

$$z_{i,j} = \mathbf{u}_i^T \mathbf{D} \mathbf{v}_j + \epsilon_{i,j}$$
$$= \sum_{r=1}^R d_r u_{i,r} \mathbf{v}_{j,r} + \epsilon_{i,j}$$

For example, in a 2 factor model, we have

$$z_{i,j} = d_1(u_{i,1} \times v_{j,1}) + d_2(u_{i,2} \times v_{j,2}) + \epsilon_{i,j}$$

Interpretation

• $u_i \approx u_j$: similarity of latent factors implies approximate stoch equivalence;

• $u_i \approx v_i$: similarity of latent factors implies high probability of a tie.

 $\mathbf{Z} = \mathbf{U}^{\mathsf{T}} \mathbf{D} \mathbf{V} + \mathbf{E}$

$$z_{i,j} = \mathbf{u}_i^T \mathbf{D} \mathbf{v}_j + \epsilon_{i,j}$$
$$= \sum_{r=1}^R d_r u_{i,r} \mathbf{v}_{j,r} + \epsilon_{i,j}$$

For example, in a 2 factor model, we have

$$z_{i,j} = d_1(u_{i,1} \times v_{j,1}) + d_2(u_{i,2} \times v_{j,2}) + \epsilon_{i,j}$$

- $u_i \approx u_j$: similarity of latent factors implies approximate stoch equivalence;
- $u_i \approx v_j$: similarity of latent factors implies high probability of a tie.

 $\mathbf{Z} = \mathbf{U}^{\mathsf{T}} \mathbf{D} \mathbf{V} + \mathbf{E}$

$$z_{i,j} = \mathbf{u}_i^T \mathbf{D} \mathbf{v}_j + \epsilon_{i,j}$$
$$= \sum_{r=1}^R d_r u_{i,r} \mathbf{v}_{j,r} + \epsilon_{i,j}$$

For example, in a 2 factor model, we have

$$z_{i,j} = d_1(u_{i,1} \times v_{j,1}) + d_2(u_{i,2} \times v_{j,2}) + \epsilon_{i,j}$$

- $u_i \approx u_j$: similarity of latent factors implies approximate stoch equivalence;
- $u_i \approx v_j$: similarity of latent factors implies high probability of a tie.

 $\mathbf{Z} = \mathbf{U}^{\mathsf{T}} \mathbf{D} \mathbf{V} + \mathbf{E}$

$$z_{i,j} = \mathbf{u}_i^T \mathbf{D} \mathbf{v}_j + \epsilon_{i,j}$$
$$= \sum_{r=1}^R d_r u_{i,r} \mathbf{v}_{j,r} + \epsilon_{i,j}$$

For example, in a 2 factor model, we have

$$z_{i,j} = d_1(u_{i,1} \times v_{j,1}) + d_2(u_{i,2} \times v_{j,2}) + \epsilon_{i,j}$$

- $u_i \approx u_j$: similarity of latent factors implies approximate stoch equivalence;
- $u_i \approx v_j$: similarity of latent factors implies high probability of a tie.

 $\mathbf{Z} = \mathbf{U}^{\mathsf{T}} \mathbf{D} \mathbf{V} + \mathbf{E}$

$$z_{i,j} = \mathbf{u}_i^T \mathbf{D} \mathbf{v}_j + \epsilon_{i,j}$$
$$= \sum_{r=1}^R d_r u_{i,r} \mathbf{v}_{j,r} + \epsilon_{i,j}$$

For example, in a 2 factor model, we have

$$z_{i,j} = d_1(u_{i,1} \times v_{j,1}) + d_2(u_{i,2} \times v_{j,2}) + \epsilon_{i,j}$$

- $u_i \approx u_j$: similarity of latent factors implies approximate stoch equivalence;
- $u_i \approx v_j$: similarity of latent factors implies high probability of a tie.

Matrix decomposition interpretation

Recall from linear algebra:

• Every $m \times n$ matrix **Z** can be written

$\bm{Z} = \bm{U}\bm{D}\bm{V}^{T}$

where $\mathbf{D} = \text{diag}(d_1, \ldots, d_n)$, \mathbf{U} and \mathbf{V} are orthonormal.

 $\hat{\mathsf{Z}}_k \equiv \mathsf{U}_{[,1:k]}\mathsf{D}_{[1:k,1:k]}\mathsf{V}_{[,1:k]}^T$

is the least-squares rank-k approximation to **Z**.

Matrix decomposition interpretation

Recall from linear algebra:

• Every $m \times n$ matrix **Z** can be written

$\mathbf{Z} = \mathbf{U}\mathbf{D}\mathbf{V}^{\mathsf{T}}$

where $\mathbf{D} = \text{diag}(d_1, \ldots, d_n)$, \mathbf{U} and \mathbf{V} are orthonormal.

If UDV' is the svd of Z, then

 $\hat{\mathsf{Z}}_k \equiv \mathsf{U}_{[,1:k]} \mathsf{D}_{[1:k,1:k]} \mathsf{V}_{[,1:k]}^T$

is the least-squares rank-k approximation to Z_{-}

Matrix decomposition interpretation

Recall from linear algebra:

• Every $m \times n$ matrix **Z** can be written

$\mathbf{Z} = \mathbf{U}\mathbf{D}\mathbf{V}^T$

where $\mathbf{D} = \text{diag}(d_1, \ldots, d_n)$, \mathbf{U} and \mathbf{V} are orthonormal.

• If **UDV**^T is the svd of **Z**, then

$$\hat{\mathbf{Z}}_{k} \equiv \mathbf{U}_{[,1:k]} \mathbf{D}_{[1:k,1:k]} \mathbf{V}_{[,1:k]}^{T}$$

is the least-squares rank-k approximation to **Z**.

Least squares matrix approximations

Probit version of the symmetric latent factor model:

 $\begin{array}{lll} y_{i,j} &=& g(z_{i,j}) \;, & \text{where } g \text{ is a nondecreasing function} \\ z_{i,j} &=& \mathbf{u}_i^T \Lambda \mathbf{u}_j + \epsilon_{i,j} \;, & \text{where } \mathbf{u}_i \in \mathbb{R}^K \;, \; \Lambda = \text{diag}(\lambda_1, \ldots, \lambda_K) \\ \{\epsilon_{i,j}\} &\stackrel{iid}{\sim} & \text{normal}(0, 1) \end{array}$

Writing $\{z_{i,j}\}$ as a matrix ,

 $\mathbf{Z} = \mathbf{U} \wedge \mathbf{U}^T + \mathbf{E}$

Recall from linear algebra:

• Every *n* × *n* symmetric matrix **Z** can be written

 $\mathbf{Z} = \mathbf{U} \Lambda \mathbf{U}^T$

where $\Lambda = diag(\lambda_1, \dots, \lambda_n)$ and U is orthonormal.

If UAU^T is the eigendecomposition of Z, then

 $\hat{\mathsf{Z}}_k \equiv \mathsf{U}_{[,1:k]} \Lambda_{[1:k,1:k]} \mathsf{U}_{[,1:k]}^T$

Probit version of the symmetric latent factor model:

 $\begin{array}{lll} y_{i,j} &=& g(z_{i,j}) \;, & \text{where } g \text{ is a nondecreasing function} \\ z_{i,j} &=& \mathbf{u}_i^T \Lambda \mathbf{u}_j + \epsilon_{i,j} \;, & \text{where } \mathbf{u}_i \in \mathbb{R}^K \;, \; \Lambda = \text{diag}(\lambda_1, \ldots, \lambda_K) \\ \{\epsilon_{i,j}\} &\stackrel{\textit{iid}}{\sim} & \text{normal}(0, 1) \end{array}$

Writing $\{z_{i,j}\}$ as a matrix ,

 $\mathbf{Z} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{T} + \mathbf{E}$

Recall from linear algebra:

• Every *n* × *n* symmetric matrix **Z** can be written

 $\mathbf{Z} = \mathbf{U} \Lambda \mathbf{U}^T$

where $\Lambda = diag(\lambda_1, \dots, \lambda_n)$ and **U** is orthonormal.

If UAU^T is the eigendecomposition of Z, then

 $\hat{\mathsf{Z}}_k \equiv \mathsf{U}_{[,1:k]} \Lambda_{[1:k,1:k]} \mathsf{U}_{[,1:k]}^T$

Probit version of the symmetric latent factor model:

 $\begin{array}{lll} y_{i,j} &=& g(z_{i,j}) \;, & \text{where } g \; \text{is a nondecreasing function} \\ z_{i,j} &=& \mathbf{u}_i^T \Lambda \mathbf{u}_j + \epsilon_{i,j} \;, & \text{where } \mathbf{u}_i \in \mathbb{R}^K \;, \; \Lambda = \text{diag}(\lambda_1, \ldots, \lambda_K) \\ \{\epsilon_{i,j}\} &\stackrel{\textit{iid}}{\sim} & \text{normal}(0, 1) \end{array}$

Writing $\{z_{i,j}\}$ as a matrix ,

$$\mathbf{Z} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\mathsf{T}} + \mathbf{E}$$

Recall from linear algebra:

• Every $n \times n$ symmetric matrix **Z** can be written

 $\mathbf{Z} = \mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{T}$

where $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_n)$ and **U** is orthonormal.

If UAU^T is the eigendecomposition of Z, then

 $\hat{\mathsf{Z}}_k \equiv \mathsf{U}_{[,1:k]} \Lambda_{[1:k,1:k]} \mathsf{U}_{[,1:k]}^T$

Probit version of the symmetric latent factor model:

 $\begin{array}{lll} y_{i,j} &=& g(z_{i,j}) \;, & \text{where } g \; \text{is a nondecreasing function} \\ z_{i,j} &=& \mathbf{u}_i^T \Lambda \mathbf{u}_j + \epsilon_{i,j} \;, & \text{where } \mathbf{u}_i \in \mathbb{R}^K \;, \; \Lambda = \text{diag}(\lambda_1, \ldots, \lambda_K) \\ \{\epsilon_{i,j}\} &\stackrel{\textit{iid}}{\sim} & \text{normal}(0, 1) \end{array}$

Writing $\{z_{i,j}\}$ as a matrix ,

$$\mathbf{Z} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\mathsf{T}} + \mathbf{E}$$

Recall from linear algebra:

• Every $n \times n$ symmetric matrix **Z** can be written

 $\bm{Z} = \bm{U} \bm{\Lambda} \bm{U}^T$

where $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_n)$ and **U** is orthonormal.

If UAU^T is the eigendecomposition of Z, then

 $\hat{\mathsf{Z}}_k \equiv \mathsf{U}_{[,1:k]} \Lambda_{[1:k,1:k]} \mathsf{U}_{[,1:k]}^{\,\prime}$

Probit version of the symmetric latent factor model:

 $\begin{array}{lll} y_{i,j} &=& g(z_{i,j}) \;, & \text{where } g \; \text{is a nondecreasing function} \\ z_{i,j} &=& \mathbf{u}_i^T \Lambda \mathbf{u}_j + \epsilon_{i,j} \;, & \text{where } \mathbf{u}_i \in \mathbb{R}^K \;, \; \Lambda = \text{diag}(\lambda_1, \ldots, \lambda_K) \\ \{\epsilon_{i,j}\} &\stackrel{\textit{iid}}{\sim} & \text{normal}(0, 1) \end{array}$

Writing $\{z_{i,j}\}$ as a matrix ,

$$\mathbf{Z} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\mathsf{T}} + \mathbf{E}$$

Recall from linear algebra:

• Every $n \times n$ symmetric matrix **Z** can be written

 $\bm{Z} = \bm{U} \bm{\Lambda} \bm{U}^T$

where $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_n)$ and **U** is orthonormal.

• If $\mathbf{U} \wedge \mathbf{U}^{\mathsf{T}}$ is the eigendecomposition of \mathbf{Z} , then

$$\hat{\mathbf{Z}}_{k} \equiv \mathbf{U}_{[,1:k]} \mathbf{\Lambda}_{[1:k,1:k]} \mathbf{U}_{[,1:k]}^{T}$$

Probit version of the symmetric latent factor model:

 $\begin{array}{lll} y_{i,j} &=& g(z_{i,j}) \;, & \text{where } g \; \text{is a nondecreasing function} \\ z_{i,j} &=& \mathbf{u}_i^T \Lambda \mathbf{u}_j + \epsilon_{i,j} \;, & \text{where } \mathbf{u}_i \in \mathbb{R}^K \;, \; \Lambda = \text{diag}(\lambda_1, \ldots, \lambda_K) \\ \{\epsilon_{i,j}\} &\stackrel{\textit{iid}}{\sim} & \text{normal}(0, 1) \end{array}$

Writing $\{z_{i,j}\}$ as a matrix ,

$$\mathbf{Z} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\mathsf{T}} + \mathbf{E}$$

Recall from linear algebra:

• Every $n \times n$ symmetric matrix **Z** can be written

 $\bm{Z} = \bm{U} \bm{\Lambda} \bm{U}^T$

where $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_n)$ and **U** is orthonormal.

• If $\mathbf{U} \wedge \mathbf{U}^{\mathsf{T}}$ is the eigendecomposition of \mathbf{Z} , then

$$\hat{\mathbf{Z}}_{k} \equiv \mathbf{U}_{[,1:k]} \boldsymbol{\Lambda}_{[1:k,1:k]} \mathbf{U}_{[,1:k]}^{T}$$

Probit version of the symmetric latent factor model:

 $\begin{array}{lll} y_{i,j} &=& g(z_{i,j}) \;, & \text{where } g \; \text{is a nondecreasing function} \\ z_{i,j} &=& \mathbf{u}_i^T \Lambda \mathbf{u}_j + \epsilon_{i,j} \;, & \text{where } \mathbf{u}_i \in \mathbb{R}^K \;, \; \Lambda = \text{diag}(\lambda_1, \ldots, \lambda_K) \\ \{\epsilon_{i,j}\} &\stackrel{\textit{iid}}{\sim} & \text{normal}(0, 1) \end{array}$

Writing $\{z_{i,j}\}$ as a matrix ,

$$\mathbf{Z} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\mathsf{T}} + \mathbf{E}$$

Recall from linear algebra:

• Every $n \times n$ symmetric matrix **Z** can be written

 $\bm{Z} = \bm{U} \bm{\Lambda} \bm{U}^T$

where $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_n)$ and **U** is orthonormal.

• If $\mathbf{U} \wedge \mathbf{U}^{\mathsf{T}}$ is the eigendecomposition of \mathbf{Z} , then

$$\hat{\mathbf{Z}}_{k} \equiv \mathbf{U}_{[,1:k]} \boldsymbol{\Lambda}_{[1:k,1:k]} \mathbf{U}_{[,1:k]}^{T}$$

Least squares approximations of increasing rank

 $\mathbf{Z} = \mathbf{U}^{\mathsf{T}} \mathbf{\Lambda} \mathbf{U} + \mathbf{E}$

$$z_{i,j} = \mathbf{u}_i^T \mathbf{\Lambda} \mathbf{u}_j + \epsilon_{i,j}$$
$$= \sum_{r=1}^R \lambda_r u_{i,r} u_{j,r} + \epsilon_{i,j}$$

For example, in a rank-2 model, we have

$$z_{i,j} = \lambda_1(\mathbf{u}_{i,1} \times \mathbf{u}_{j,1}) + \lambda_2(\mathbf{u}_{i,2} \times \mathbf{u}_{j,2}) + \epsilon_{i,j}$$

- $u_{i,r} \approx u_{i,r}$: equality of latent factors; represents stochastic equivalence;
- λ_r > 0: positive eigenvalues represent homophily;
- λ_r < 0: negative eigenvalues represent antihomophily.

 $\mathbf{Z} = \mathbf{U}^{\mathsf{T}} \mathbf{\Lambda} \mathbf{U} + \mathbf{E}$

$$z_{i,j} = \mathbf{u}_i^T \mathbf{\Lambda} \mathbf{u}_j + \epsilon_{i,j}$$
$$= \sum_{r=1}^R \lambda_r u_{i,r} u_{j,r} + \epsilon_{i,j}$$

For example, in a rank-2 model, we have

$$z_{i,j} = \lambda_1(\mathbf{u}_{i,1} \times \mathbf{u}_{j,1}) + \lambda_2(\mathbf{u}_{i,2} \times \mathbf{u}_{j,2}) + \epsilon_{i,j}$$

- $u_{i,r} \approx u_{i,r}$: equality of latent factors; represents stochastic equivalence;
- λ_r > 0: positive eigenvalues represent homophily;
- λ_r < 0: negative eigenvalues represent antihomophily.

 $\mathbf{Z} = \mathbf{U}^{\mathsf{T}} \mathbf{\Lambda} \mathbf{U} + \mathbf{E}$

$$z_{i,j} = \mathbf{u}_i^T \mathbf{\Lambda} \mathbf{u}_j + \epsilon_{i,j}$$
$$= \sum_{r=1}^R \lambda_r u_{i,r} u_{j,r} + \epsilon_{i,j}$$

For example, in a rank-2 model, we have

$$z_{i,j} = \lambda_1(u_{i,1} \times u_{j,1}) + \lambda_2(u_{i,2} \times u_{j,2}) + \epsilon_{i,j}$$

- $u_{i,r} \approx u_{i,r}$: equality of latent factors; represents stochastic equivalence;
- λ_r > 0: positive eigenvalues represent homophily;
- λ_r < 0: negative eigenvalues represent antihomophily.

 $\mathbf{Z} = \mathbf{U}^{\mathsf{T}} \mathbf{\Lambda} \mathbf{U} + \mathbf{E}$

$$z_{i,j} = \mathbf{u}_i^T \mathbf{\Lambda} \mathbf{u}_j + \epsilon_{i,j}$$
$$= \sum_{r=1}^R \lambda_r u_{i,r} u_{j,r} + \epsilon_{i,j}$$

For example, in a rank-2 model, we have

$$z_{i,j} = \lambda_1(u_{i,1} \times u_{j,1}) + \lambda_2(u_{i,2} \times u_{j,2}) + \epsilon_{i,j}$$

- $u_{i,r} \approx u_{j,r}$: equality of latent factors; represents stochastic equivalence;
- $\lambda_r > 0$: positive eigenvalues represent homophily;
- λ_r < 0: negative eigenvalues represent antihomophily.

 $\mathbf{Z} = \mathbf{U}^{\mathsf{T}} \mathbf{\Lambda} \mathbf{U} + \mathbf{E}$

$$z_{i,j} = \mathbf{u}_i^T \mathbf{\Lambda} \mathbf{u}_j + \epsilon_{i,j}$$
$$= \sum_{r=1}^R \lambda_r u_{i,r} u_{j,r} + \epsilon_{i,j}$$

For example, in a rank-2 model, we have

$$z_{i,j} = \lambda_1(u_{i,1} \times u_{j,1}) + \lambda_2(u_{i,2} \times u_{j,2}) + \epsilon_{i,j}$$

- $u_{i,r} \approx u_{j,r}$: equality of latent factors; represents stochastic equivalence;
- $\lambda_r > 0$: positive eigenvalues represent homophily;
- $\lambda_r < 0$: negative eigenvalues represent antihomophily.

 $\mathbf{Z} = \mathbf{U}^{\mathsf{T}} \mathbf{\Lambda} \mathbf{U} + \mathbf{E}$

$$z_{i,j} = \mathbf{u}_i^T \mathbf{\Lambda} \mathbf{u}_j + \epsilon_{i,j}$$
$$= \sum_{r=1}^R \lambda_r u_{i,r} u_{j,r} + \epsilon_{i,j}$$

For example, in a rank-2 model, we have

$$z_{i,j} = \lambda_1(u_{i,1} \times u_{j,1}) + \lambda_2(u_{i,2} \times u_{j,2}) + \epsilon_{i,j}$$

- $u_{i,r} \approx u_{j,r}$: equality of latent factors; represents stochastic equivalence;
- $\lambda_r > 0$: positive eigenvalues represent homophily;
- $\lambda_r < 0$: negative eigenvalues represent antihomophily.

 $\mathbf{Z} = \mathbf{U}^{\mathsf{T}} \mathbf{\Lambda} \mathbf{U} + \mathbf{E}$

$$z_{i,j} = \mathbf{u}_i^T \mathbf{\Lambda} \mathbf{u}_j + \epsilon_{i,j}$$
$$= \sum_{r=1}^R \lambda_r u_{i,r} u_{j,r} + \epsilon_{i,j}$$

For example, in a rank-2 model, we have

$$z_{i,j} = \lambda_1(u_{i,1} \times u_{j,1}) + \lambda_2(u_{i,2} \times u_{j,2}) + \epsilon_{i,j}$$

Interpretation

- $u_{i,r} \approx u_{j,r}$: equality of latent factors; represents stochastic equivalence;
- $\lambda_r > 0$: positive eigenvalues represent homophily;

• $\lambda_r < 0$: negative eigenvalues represent antihomophily.

 $\mathbf{Z} = \mathbf{U}^{\mathsf{T}} \mathbf{\Lambda} \mathbf{U} + \mathbf{E}$

$$z_{i,j} = \mathbf{u}_i^T \mathbf{\Lambda} \mathbf{u}_j + \epsilon_{i,j}$$
$$= \sum_{r=1}^R \lambda_r u_{i,r} u_{j,r} + \epsilon_{i,j}$$

For example, in a rank-2 model, we have

$$z_{i,j} = \lambda_1(u_{i,1} \times u_{j,1}) + \lambda_2(u_{i,2} \times u_{j,2}) + \epsilon_{i,j}$$

- $u_{i,r} \approx u_{j,r}$: equality of latent factors; represents stochastic equivalence;
- $\lambda_r > 0$: positive eigenvalues represent homophily;
- $\lambda_r < 0$: negative eigenvalues represent antihomophily.

 $\mathbf{Z} = \mathbf{U}^{\mathsf{T}} \mathbf{\Lambda} \mathbf{U} + \mathbf{E}$

$$z_{i,j} = \mathbf{u}_i^T \mathbf{\Lambda} \mathbf{u}_j + \epsilon_{i,j}$$
$$= \sum_{r=1}^R \lambda_r u_{i,r} u_{j,r} + \epsilon_{i,j}$$

For example, in a rank-2 model, we have

$$z_{i,j} = \lambda_1(u_{i,1} \times u_{j,1}) + \lambda_2(u_{i,2} \times u_{j,2}) + \epsilon_{i,j}$$

- $u_{i,r} \approx u_{j,r}$: equality of latent factors; represents stochastic equivalence;
- $\lambda_r > 0$: positive eigenvalues represent homophily;
- $\lambda_r < 0$: negative eigenvalues represent antihomophily.

 $\mathbf{Z} = \mathbf{U}^{\mathsf{T}} \mathbf{\Lambda} \mathbf{U} + \mathbf{E}$

$$z_{i,j} = \mathbf{u}_i^T \mathbf{\Lambda} \mathbf{u}_j + \epsilon_{i,j}$$
$$= \sum_{r=1}^R \lambda_r u_{i,r} u_{j,r} + \epsilon_{i,j}$$

For example, in a rank-2 model, we have

$$z_{i,j} = \lambda_1(u_{i,1} \times u_{j,1}) + \lambda_2(u_{i,2} \times u_{j,2}) + \epsilon_{i,j}$$

- $u_{i,r} \approx u_{j,r}$: equality of latent factors; represents stochastic equivalence;
- $\lambda_r > 0$: positive eigenvalues represent homophily;
- $\lambda_r < 0$: negative eigenvalues represent antihomophily.

Returning to directed relations:

SRM: We have motivated the SRM in order to represent 2nd order dependence:

- within row dependence, within column dependence;
- within dyad dependence.

$$z_{i,j} = \beta^T x_{i,j} + a_i + b_j + \epsilon_{i,j}$$
$$y_{i,j} = g(z_{i,j})$$

This model is made up of additive random effects.

LFM: We have motivated the LFM to model more complex structures:

- third order dependence and transitivity;
- stochastic equivalence.

$$z_{i,j} = \boldsymbol{u}_i^T \mathbf{D} \boldsymbol{v}_j + \epsilon_{i,j}$$
$$y_{i,j} = \boldsymbol{g}(z_{i,j})$$

Returning to directed relations:

 $\ensuremath{\mathsf{SRM}}$: We have motivated the $\ensuremath{\mathsf{SRM}}$ in order to represent 2nd order dependence:

- within row dependence, within column dependence;
- within dyad dependence.

$$z_{i,j} = \beta^T x_{i,j} + a_i + b_j + \epsilon_{i,j}$$
$$y_{i,j} = g(z_{i,j})$$

This model is made up of additive random effects.

LFM: We have motivated the LFM to model more complex structures:

- third order dependence and transitivity;
- stochastic equivalence.

$$z_{i,j} = \boldsymbol{u}_i^T \mathbf{D} \boldsymbol{v}_j + \epsilon_{i,j}$$
$$y_{i,j} = \boldsymbol{g}(z_{i,j})$$

Returning to directed relations:

 $\ensuremath{\mathsf{SRM}}$: We have motivated the $\ensuremath{\mathsf{SRM}}$ in order to represent 2nd order dependence:

- within row dependence, within column dependence;
- within dyad dependence.

$$z_{i,j} = \beta^T x_{i,j} + a_i + b_j + \epsilon_{i,j}$$

$$y_{i,j} = g(z_{i,j})$$

This model is made up of additive random effects.

LFM: We have motivated the LFM to model more complex structures:

- third order dependence and transitivity;
- stochastic equivalence.

$$z_{i,j} = \boldsymbol{u}_i^T \mathbf{D} \boldsymbol{v}_j + \epsilon_{i,j}$$
$$y_{i,j} = \boldsymbol{g}(z_{i,j})$$

Returning to directed relations:

 $\ensuremath{\mathsf{SRM}}$: We have motivated the $\ensuremath{\mathsf{SRM}}$ in order to represent 2nd order dependence:

- within row dependence, within column dependence;
- within dyad dependence.

$$z_{i,j} = \beta^T x_{i,j} + a_i + b_j + \epsilon_{i,j}$$

$$y_{i,j} = g(z_{i,j})$$

This model is made up of additive random effects.

LFM: We have motivated the LFM to model more complex structures:

- third order dependence and transitivity;
- stochastic equivalence.

$$z_{i,j} = \boldsymbol{u}_i^T \mathbf{D} \boldsymbol{v}_j + \epsilon_{i,j}$$
$$y_{i,j} = \boldsymbol{g}(z_{i,j})$$

Returning to directed relations:

 $\ensuremath{\mathsf{SRM}}$: We have motivated the $\ensuremath{\mathsf{SRM}}$ in order to represent 2nd order dependence:

- within row dependence, within column dependence;
- within dyad dependence.

$$z_{i,j} = \beta^T x_{i,j} + a_i + b_j + \epsilon_{i,j}$$

$$y_{i,j} = g(z_{i,j})$$

This model is made up of additive random effects.

LFM: We have motivated the LFM to model more complex structures:

- third order dependence and transitivity;
- stochastic equivalence.

$$z_{i,j} = \boldsymbol{u}_i^T \mathbf{D} \boldsymbol{v}_j + \epsilon_{i,j}$$
$$y_{i,j} = \boldsymbol{g}(z_{i,j})$$

Returning to directed relations:

 $\ensuremath{\mathsf{SRM}}$: We have motivated the $\ensuremath{\mathsf{SRM}}$ in order to represent 2nd order dependence:

- within row dependence, within column dependence;
- within dyad dependence.

$$z_{i,j} = \beta^T x_{i,j} + a_i + b_j + \epsilon_{i,j}$$

$$y_{i,j} = g(z_{i,j})$$

This model is made up of additive random effects.

LFM: We have motivated the LFM to model more complex structures:

- third order dependence and transitivity;
- stochastic equivalence.

$$z_{i,j} = \boldsymbol{u}_i^T \mathbf{D} \boldsymbol{v}_j + \epsilon_{i,j}$$
$$y_{i,j} = g(z_{i,j})$$

Returning to directed relations:

 $\ensuremath{\mathsf{SRM}}$: We have motivated the $\ensuremath{\mathsf{SRM}}$ in order to represent 2nd order dependence:

- within row dependence, within column dependence;
- within dyad dependence.

$$z_{i,j} = \beta^T x_{i,j} + a_i + b_j + \epsilon_{i,j}$$

$$y_{i,j} = g(z_{i,j})$$

This model is made up of additive random effects.

LFM: We have motivated the LFM to model more complex structures:

- third order dependence and transitivity;
- stochastic equivalence.

$$z_{i,j} = \boldsymbol{u}_i^T \mathbf{D} \boldsymbol{v}_j + \epsilon_{i,j}$$
$$y_{i,j} = g(z_{i,j})$$

Returning to directed relations:

 $\ensuremath{\mathsf{SRM}}$: We have motivated the $\ensuremath{\mathsf{SRM}}$ in order to represent 2nd order dependence:

- within row dependence, within column dependence;
- within dyad dependence.

$$z_{i,j} = \beta^T x_{i,j} + a_i + b_j + \epsilon_{i,j}$$

$$y_{i,j} = g(z_{i,j})$$

This model is made up of additive random effects.

LFM: We have motivated the LFM to model more complex structures:

- third order dependence and transitivity;
- stochastic equivalence.

$$z_{i,j} = \boldsymbol{u}_i^T \mathbf{D} \boldsymbol{v}_j + \epsilon_{i,j}$$
$$y_{i,j} = g(z_{i,j})$$

Returning to directed relations:

 $\ensuremath{\mathsf{SRM}}$: We have motivated the $\ensuremath{\mathsf{SRM}}$ in order to represent 2nd order dependence:

- within row dependence, within column dependence;
- within dyad dependence.

$$z_{i,j} = \beta^T x_{i,j} + a_i + b_j + \epsilon_{i,j}$$

$$y_{i,j} = g(z_{i,j})$$

This model is made up of additive random effects.

LFM: We have motivated the LFM to model more complex structures:

- third order dependence and transitivity;
- stochastic equivalence.

$$z_{i,j} = \boldsymbol{u}_i^T \mathbf{D} \boldsymbol{v}_j + \epsilon_{i,j}$$
$$y_{i,j} = \boldsymbol{g}(z_{i,j})$$

Combining them gives an additive and multiplicative effects model

$$z_{i,j} = \beta^T x_{i,j} + a_i + b_j + \boldsymbol{u}_i^T \mathbf{D} \boldsymbol{v}_j + \epsilon_{i,j}$$

$$y_{i,j} = \boldsymbol{g}(z_{i,j})$$

ame(Y, Xdyad=NULL, Xrow=NULL, Xcol=NULL, rvar = !(model=="rrl") , cvar = TRUE, dcor = TRUE, R = 0, model="nrm",...)

Arguments:

27/39

Y: an n x n square relational matrix of relations. See model below for various data types.

Xdyad: an n x n x pd array of covariates

Xrow: an n x pr matrix of nodal row covariates

Xcol: an n x pc matrix of nodal column covariates

rvar: logical: fit row random effects?

cvar: logical: fit column random effects?

dcor: logical: fit a dyadic correlation?

- R: integer: dimension of the multiplicative effects (can be zero)
- model: character: one of "nrm","bin","ord","cbin","frn","rrl" see

AME fit to ordinal data with nodal covariates

```
#### nodal covariates and latent factors
fit_nr2<-ame(Y,Xrow=Xn,Xcol=Xn,R=2,model="ord",nscan=10000)</pre>
```

summary(fit_nr2)

##

beta:

```
##
         pmean psd z-stat p-val
## pop.row 0.236 0.101 2.329 0.020
## gdp.row -0.092 0.179 -0.516 0.606
## polity.row -0.030 0.015 -2.057 0.040
## pop.col 0.243 0.087 2.783 0.005
## gdp.col -0.173 0.136 -1.267 0.205
## polity.col -0.009 0.013 -0.652 0.515
##
## Sigma_ab pmean:
## a b
## a 0.307 0.167
## b 0.167 0.206
##
## rho pmean:
## 0.838
```

GOF comparison

Plots of latent factors

circplot(Y,fit_nr2\$U,fit_nr2\$V)

A blockmodel is

- a partition of the nodes into classes;
- an estimation of the rate of ties between and within classes.

Such a model includes

- a classification function c : {1,...,n} → {1,...,K},
 i.e. c_i = k means i is in block/group k.
- a between-group tie density matrix:

$$\boldsymbol{\vartheta} = \begin{pmatrix} \theta_{11} & \cdots & \theta_{1K} \\ \vdots & \vdots & \vdots \\ \theta_{K1} & \cdots & \theta_{KK} \end{pmatrix}$$

Under this model,

$$\Pr(Y_{i,j}=1) = \theta_{c_i,c_j}$$

A blockmodel is

- a partition of the nodes into classes;
- an estimation of the rate of ties between and within classes.

Such a model includes

- a classification function c : {1,...,n} → {1,...,K},
 i.e. c_i = k means i is in block/group k.
- a between-group tie density matrix:

$$\Theta = \begin{pmatrix} \theta_{11} & \cdots & \theta_{1K} \\ \vdots & \vdots & \vdots \\ \theta_{K1} & \cdots & \theta_{KK} \end{pmatrix}$$

Under this model,

$$\Pr(Y_{i,j}=1) = \theta_{c_i,c_j}$$

A blockmodel is

- a partition of the nodes into classes;
- an estimation of the rate of ties between and within classes.

Such a model includes

- a classification function c : {1,...,n} → {1,...,K},
 i.e. c_i = k means i is in block/group k.
- a between-group tie density matrix:

$$\Theta = \begin{pmatrix} \theta_{11} & \cdots & \theta_{1K} \\ \vdots & \vdots & \vdots \\ \theta_{K1} & \cdots & \theta_{KK} \end{pmatrix}$$

Under this model,

$$\Pr(Y_{i,j}=1) = \theta_{c_i,c_j}$$

A blockmodel is

- a partition of the nodes into classes;
- an estimation of the rate of ties between and within classes.

Such a model includes

- a classification function c : {1,...,n} → {1,...,K},
 i.e. c_i = k means i is in block/group k.
- a between-group tie density matrix:

$$\Theta = \begin{pmatrix} \theta_{11} & \cdots & \theta_{1K} \\ \vdots & \vdots & \vdots \\ \theta_{K1} & \cdots & \theta_{KK} \end{pmatrix}$$

Under this model,

$$\Pr(Y_{i,j}=1) = \theta_{c_i,c_j}$$

A blockmodel is

- a partition of the nodes into classes;
- an estimation of the rate of ties between and within classes.

Such a model includes

• a classification function $c: \{1, \ldots, n\} \rightarrow \{1, \ldots, K\}$,

• a between-group tie density matrix:

$$\Theta = \begin{pmatrix} \theta_{11} & \cdots & \theta_{1K} \\ \vdots & \vdots & \vdots \\ \theta_{K1} & \cdots & \theta_{KK} \end{pmatrix}$$

Under this model,

$$\Pr(Y_{i,j}=1)=\theta_{c_i,c_j}$$
A blockmodel is

- a partition of the nodes into classes;
- an estimation of the rate of ties between and within classes.

Such a model includes

a classification function c : {1,..., n} → {1,..., K},
 i.e. c_i = k means i is in block/group k.

• a between-group tie density matrix:

$$\Theta = \begin{pmatrix} \theta_{11} & \cdots & \theta_{1K} \\ \vdots & \vdots & \vdots \\ \theta_{K1} & \cdots & \theta_{KK} \end{pmatrix}$$

Under this model,

$$\Pr(Y_{i,j}=1) = \theta_{c_i,c_j}$$

A blockmodel is

- a partition of the nodes into classes;
- an estimation of the rate of ties between and within classes.

Such a model includes

- a classification function c : {1,..., n} → {1,..., K},
 i.e. c_i = k means i is in block/group k.
- a between-group tie density matrix:

$$\Theta = \begin{pmatrix} \theta_{11} & \cdots & \theta_{1K} \\ \vdots & \vdots & \vdots \\ \theta_{K1} & \cdots & \theta_{KK} \end{pmatrix}$$

Under this model,

$$\Pr(Y_{i,j}=1) = \theta_{c_i,c_j}$$

A blockmodel is

- a partition of the nodes into classes;
- an estimation of the rate of ties between and within classes.

Such a model includes

- a classification function c : {1,..., n} → {1,..., K},
 i.e. c_i = k means i is in block/group k.
- a between-group tie density matrix:

$$\Theta = \begin{pmatrix} \theta_{11} & \cdots & \theta_{1K} \\ \vdots & \vdots & \vdots \\ \theta_{K1} & \cdots & \theta_{KK} \end{pmatrix}$$

Under this model,

$$\Pr(Y_{i,j}=1) = \theta_{c_i,c_j}$$

A blockmodel is

- a partition of the nodes into classes;
- an estimation of the rate of ties between and within classes.

Such a model includes

- a classification function c : {1,..., n} → {1,..., K},
 i.e. c_i = k means i is in block/group k.
- a between-group tie density matrix:

$$\Theta = \begin{pmatrix} \theta_{11} & \cdots & \theta_{1K} \\ \vdots & \vdots & \vdots \\ \theta_{K1} & \cdots & \theta_{KK} \end{pmatrix}$$

Under this model,

$$\Pr(Y_{i,j}=1) = \theta_{c_i,c_j}$$

A blockmodel is

- a partition of the nodes into classes;
- an estimation of the rate of ties between and within classes.

Such a model includes

- a classification function c : {1,..., n} → {1,..., K},
 i.e. c_i = k means i is in block/group k.
- a between-group tie density matrix:

$$\Theta = \begin{pmatrix} \theta_{11} & \cdots & \theta_{1K} \\ \vdots & \vdots & \vdots \\ \theta_{K1} & \cdots & \theta_{KK} \end{pmatrix}$$

Under this model,

$$\Pr(Y_{i,j}=1)=\theta_{c_i,c_j}$$

The blockmodel is a model of the form we've been discussing:

$$y_{i,j} \sim \beta_0 + \beta_1 s(x_i, x_j)$$

Let

- $\beta_0 = 0$, $\beta_1 = 1$;
- $x_i = c_i, x_j = c_j;$
- $s(x_i, x_j) = \theta_{c_i, c_j}$

Stochastic equivalence:

All nodes within the same block are stochastically equivalent, under this model.

$$\Pr(Y_{i,j}=1) = \Pr(Y_{k,j}=1) = \theta_{c,c_j}.$$

The blockmodel is a model of the form we've been discussing:

$$y_{i,j} \sim \beta_0 + \beta_1 s(x_i, x_j)$$

Let

- β₀ = 0, β₁ = 1;
- $x_i = c_i, x_j = c_j;$
- $s(x_i, x_j) = \theta_{c_i, c_j}$

Stochastic equivalence:

All nodes within the same block are stochastically equivalent, under this model.

$$\Pr(Y_{i,j}=1) = \Pr(Y_{k,j}=1) = \theta_{c,c_j}.$$

The blockmodel is a model of the form we've been discussing:

$$y_{i,j} \sim \beta_0 + \beta_1 s(x_i, x_j)$$

Let

- β₀ = 0, β₁ = 1;
- $x_i = c_i, x_j = c_j;$
- $s(x_i, x_j) = \theta_{c_i, c_j}$

Stochastic equivalence:

All nodes within the same block are stochastically equivalent, under this model.

$$\Pr(Y_{i,j}=1) = \Pr(Y_{k,j}=1) = \theta_{c,c_j}.$$

The blockmodel is a model of the form we've been discussing:

$$y_{i,j} \sim \beta_0 + \beta_1 s(x_i, x_j)$$

Let

- β₀ = 0, β₁ = 1;
- $x_i = c_i, x_j = c_j;$
- $s(x_i, x_j) = \theta_{c_i, c_j}$

Stochastic equivalence:

All nodes within the same block are stochastically equivalent, under this model.

$$\Pr(Y_{i,j}=1) = \Pr(Y_{k,j}=1) = \theta_{c,c_j}.$$

The blockmodel is a model of the form we've been discussing:

$$y_{i,j} \sim \beta_0 + \beta_1 s(x_i, x_j)$$

Let

- β₀ = 0, β₁ = 1;
- $x_i = c_i, x_j = c_j;$

•
$$s(x_i, x_j) = \theta_{c_i, c_j}$$

Stochastic equivalence:

All nodes within the same block are stochastically equivalent, under this model.

$$\Pr(Y_{i,j}=1) = \Pr(Y_{k,j}=1) = \theta_{c,c_j}.$$

The blockmodel is a model of the form we've been discussing:

$$y_{i,j} \sim \beta_0 + \beta_1 s(x_i, x_j)$$

Let

- β₀ = 0, β₁ = 1;
- $x_i = c_i, x_j = c_j;$

•
$$s(x_i, x_j) = \theta_{c_i, c_j}$$

Stochastic equivalence:

All nodes within the same block are stochastically equivalent, under this model.

$$\Pr(Y_{i,j}=1) = \Pr(Y_{k,j}=1) = \theta_{c,c_j}.$$

Consider the task of identifying stochastically equivalent classes from the data.

In the simplest case of an undirected binary relation, we want to find latent classes $c_1, \ldots, c_n \in \{1, \ldots, K\}$; between-class rates $\Theta = \{\theta_{k,l} : 1 \le k, l \le K\}$

that make the probability of our data large:

$$\mathsf{Pr}(\mathbf{Y} = \mathbf{y} | \boldsymbol{c}, \Theta) = \prod_{i \neq j} heta_{c_i, c_j}^{y_{i, j}} (1 - heta_{c_i, c_j})^{1 - y_{i, j}}$$
 $= \prod_{k=1}^{K} \prod_{l=1}^{K} heta_{k, l}^{s_{k, l}} (1 - heta_{k, l})^{n_{k, l} - s_{k, l}},$

where

• $n_{k,l}$ = number of pairs (i, j) for which $c_i = k$ and $c_i = l$

• $s_{k,l}$ = number of pairs (i, j) for which $c_i = k$ and $c_j = l$ and $y_{i,j} = 1$.

This model is sometimes called the **stochastic blockmodel**. It is a blockmodel where the classes are estimated from the data.

that make the probability of our data large:

$$\begin{aligned} \mathsf{Pr}(\mathbf{Y} = \mathbf{y} | \mathbf{c}, \Theta) &= \prod_{i \neq j} \theta_{c_i, c_j}^{y_{i, j}} (1 - \theta_{c_i, c_j})^{1 - y_{i, j}} \\ &= \prod_{k=1}^{K} \prod_{l=1}^{K} \theta_{k, l}^{s_{k, l}} (1 - \theta_{k, l})^{n_{k, l} - s_{k, l}}, \end{aligned}$$

where

• $n_{k,l}$ = number of pairs (i, j) for which $c_i = k$ and $c_j = l$

• $s_{k,l}$ = number of pairs (i, j) for which $c_i = k$ and $c_j = l$ and $y_{i,j} = 1$.

This model is sometimes called the **stochastic blockmodel**. It is a blockmodel where the classes are estimated from the data

that make the probability of our data large:

$$\begin{aligned} \mathsf{Pr}(\mathbf{Y} = \mathbf{y} | \mathbf{c}, \Theta) &= \prod_{i \neq j} \theta_{c_i, c_j}^{y_{i, j}} (1 - \theta_{c_i, c_j})^{1 - y_{i, j}} \\ &= \prod_{k=1}^{K} \prod_{l=1}^{K} \theta_{k, l}^{s_{k, l}} (1 - \theta_{k, l})^{n_{k, l} - s_{k, l}}, \end{aligned}$$

where

- $n_{k,l}$ = number of pairs (i, j) for which $c_i = k$ and $c_j = l$
- $s_{k,l}$ = number of pairs (i, j) for which $c_i = k$ and $c_j = l$ and $y_{i,j} = 1$.

This model is sometimes called the stochastic blockmodel. It is a blockmodel where the classes are estimated from the data.

that make the probability of our data large:

$$\begin{aligned} \mathsf{Pr}(\mathbf{Y} = \mathbf{y} | \mathbf{c}, \Theta) &= \prod_{i \neq j} \theta_{c_i, c_j}^{y_{i, j}} (1 - \theta_{c_i, c_j})^{1 - y_{i, j}} \\ &= \prod_{k=1}^{K} \prod_{l=1}^{K} \theta_{k, l}^{s_{k, l}} (1 - \theta_{k, l})^{n_{k, l} - s_{k, l}}, \end{aligned}$$

where

- $n_{k,l}$ = number of pairs (i, j) for which $c_i = k$ and $c_j = l$
- $s_{k,l}$ = number of pairs (i, j) for which $c_i = k$ and $c_j = l$ and $y_{i,j} = 1$.

This model is sometimes called the **stochastic blockmodel**. It is a blockmodel where the classes are estimated from the data

that make the probability of our data large:

$$\begin{aligned} \mathsf{Pr}(\mathbf{Y} = \mathbf{y} | \mathbf{c}, \Theta) &= \prod_{i \neq j} \theta_{c_i, c_j}^{y_{i, j}} (1 - \theta_{c_i, c_j})^{1 - y_{i, j}} \\ &= \prod_{k=1}^{K} \prod_{l=1}^{K} \theta_{k, l}^{s_{k, l}} (1 - \theta_{k, l})^{n_{k, l} - s_{k, l}}, \end{aligned}$$

where

- $n_{k,l}$ = number of pairs (i, j) for which $c_i = k$ and $c_j = l$
- $s_{k,l}$ = number of pairs (i, j) for which $c_i = k$ and $c_j = l$ and $y_{i,j} = 1$.

This model is sometimes called the **stochastic blockmodel**. It is a blockmodel where the classes are estimated from the data

You can't take derivative to find the MLEs of c_1, \ldots, c_n . Instead, use

- EM algorithm
- Gibbs sampling/MCMC

The basic model can be extended in various ways:

- covariates/regressors;
- directed data
 - dyadic correlation;
 - separate sender and receiver classes.

Much of this was done in Nowicki and Snijders (2001).

You can't take derivative to find the MLEs of c_1, \ldots, c_n . Instead, use

- EM algorithm
- Gibbs sampling/MCMC

The basic model can be extended in various ways:

- covariates/regressors;
- directed data

dyadic correlation;

separate sender and receiver classes.

Much of this was done in Nowicki and Snijders (2001).

You can't take derivative to find the MLEs of c_1, \ldots, c_n . Instead, use

- EM algorithm
- Gibbs sampling/MCMC

The basic model can be extended in various ways:

- covariates/regressors;
- directed data

dyadic correlation;

separate sender and receiver classes.

Much of this was done in Nowicki and Snijders (2001).

You can't take derivative to find the MLEs of c_1, \ldots, c_n . Instead, use

- EM algorithm
- Gibbs sampling/MCMC

The basic model can be extended in various ways:

- covariates/regressors;
- directed data
 - dyadic correlation;
 - separate sender and receiver classes.

Much of this was done in Nowicki and Snijders (2001).

You can't take derivative to find the MLEs of c_1, \ldots, c_n . Instead, use

- EM algorithm
- Gibbs sampling/MCMC

The basic model can be extended in various ways:

- covariates/regressors;
- directed data
 - dyadic correlation;
 - separate sender and receiver classes.

Much of this was done in Nowicki and Snijders (2001).

You can't take derivative to find the MLEs of c_1, \ldots, c_n . Instead, use

- EM algorithm
- Gibbs sampling/MCMC

The basic model can be extended in various ways:

- covariates/regressors;
- directed data
 - dyadic correlation;
 - separate sender and receiver classes.

Much of this was done in Nowicki and Snijders (2001).

You can't take derivative to find the MLEs of c_1, \ldots, c_n . Instead, use

- EM algorithm
- Gibbs sampling/MCMC

The basic model can be extended in various ways:

- covariates/regressors;
- directed data
 - dyadic correlation;
 - separate sender and receiver classes.

Much of this was done in Nowicki and Snijders (2001).

You can't take derivative to find the MLEs of c_1, \ldots, c_n . Instead, use

- EM algorithm
- Gibbs sampling/MCMC

The basic model can be extended in various ways:

- covariates/regressors;
- directed data
 - dyadic correlation;
 - separate sender and receiver classes.

Much of this was done in Nowicki and Snijders (2001).

You can't take derivative to find the MLEs of c_1, \ldots, c_n . Instead, use

- EM algorithm
- Gibbs sampling/MCMC

The basic model can be extended in various ways:

- covariates/regressors;
- directed data
 - dyadic correlation;
 - separate sender and receiver classes.

Much of this was done in Nowicki and Snijders (2001).

You can't take derivative to find the MLEs of c_1, \ldots, c_n . Instead, use

- EM algorithm
- Gibbs sampling/MCMC

The basic model can be extended in various ways:

- covariates/regressors;
- directed data
 - dyadic correlation;
 - separate sender and receiver classes.

Much of this was done in Nowicki and Snijders (2001).

You can't take derivative to find the MLEs of c_1, \ldots, c_n . Instead, use

- EM algorithm
- Gibbs sampling/MCMC

The basic model can be extended in various ways:

- covariates/regressors;
- directed data
 - dyadic correlation;
 - separate sender and receiver classes.

Much of this was done in Nowicki and Snijders (2001).

Stochastic blockmodel for Cold War data

ETH

OMA

HAI DOM

Stochastic blockmodel for Cold War data

A three-class model gives the following inferred classes:

```
rownames(Y)[latentclass==1]
## [1] "CHN" "IRN" "IRQ" "PRK" "USR"
rownames(Y)[latentclass==2]
## [1] "AUL" "CAN" "GFR" "ITA" "NEW" "NOR" "NTH" "PHI" "ROK" "THI" "TUR"
## [12] "UKG" "USA"
```

and everyone else in class 3, with the following between-class means:

round(M,2) ## [,1] [,2] [,3] ## [1,] 0.02 -0.89 0.50 ## [2,] -0.89 4.47 1.07 ## [3,] 0.50 1.07 0.86

These rates are on the probit scale (recall the data are ordinal).

Latent class for Cold War data

The essential feature of the blockmodel is the representation

 $y_{i,j} \sim \theta_{c_i,c_j}$

where

- c_i, c_j are unobserved latent class variables;
- Θ is a matrix of between-class intensities.

This model structure can be expressed in matrix form as follows:

$$\theta_{c_i,c_j} = \boldsymbol{u}_i^T \boldsymbol{\Theta} \boldsymbol{u}_j,$$

where

- u_i is a $K \times 1$ vector of all 0s except $u_i[c_i] = 1$;
- Θ is the $K \times K$ matrix of between class intensities.

$$\begin{pmatrix} 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \theta_{11} & \theta_{12} & \theta_{13} \\ \theta_{21} & \theta_{22} & \theta_{23} \\ \theta_{31} & \theta_{32} & \theta_{33} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \theta_{31}$$

The essential feature of the blockmodel is the representation

 $y_{i,j} \sim \theta_{c_i,c_j}$

where

- c_i, c_j are unobserved latent class variables;
- Θ is a matrix of between-class intensities.

This model structure can be expressed in matrix form as follows:

$$\theta_{c_i,c_j} = \boldsymbol{u}_i^T \boldsymbol{\Theta} \boldsymbol{u}_j,$$

where

- u_i is a $K \times 1$ vector of all 0s except $u_i[c_i] = 1$;
- Θ is the $K \times K$ matrix of between class intensities.

$$\begin{pmatrix} 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \theta_{11} & \theta_{12} & \theta_{13} \\ \theta_{21} & \theta_{22} & \theta_{23} \\ \theta_{31} & \theta_{32} & \theta_{33} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \theta_{31}$$

The essential feature of the blockmodel is the representation

 $y_{i,j} \sim \theta_{c_i,c_j}$

where

- c_i, c_j are unobserved latent class variables;
- Θ is a matrix of between-class intensities.

This model structure can be expressed in matrix form as follows:

$$\theta_{c_i,c_j} = \boldsymbol{u}_i^T \boldsymbol{\Theta} \boldsymbol{u}_j,$$

where

- u_i is a $K \times 1$ vector of all 0s except $u_i[c_i] = 1$;
- Θ is the $K \times K$ matrix of between class intensities.

$$\begin{pmatrix} 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \theta_{11} & \theta_{12} & \theta_{13} \\ \theta_{21} & \theta_{22} & \theta_{23} \\ \theta_{31} & \theta_{32} & \theta_{33} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \theta_{31}$$

The essential feature of the blockmodel is the representation

 $y_{i,j} \sim \theta_{c_i,c_j}$

where

- c_i, c_j are unobserved latent class variables;
- Θ is a matrix of between-class intensities.

This model structure can be expressed in matrix form as follows:

$$\theta_{c_i,c_j} = \boldsymbol{u}_i^T \boldsymbol{\Theta} \boldsymbol{u}_j,$$

where

- u_i is a $K \times 1$ vector of all 0s except $u_i[c_i] = 1$;
- Θ is the $K \times K$ matrix of between class intensities.

$$\begin{pmatrix} 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \theta_{11} & \theta_{12} & \theta_{13} \\ \theta_{21} & \theta_{22} & \theta_{23} \\ \theta_{31} & \theta_{32} & \theta_{33} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \theta_{31}$$

The essential feature of the blockmodel is the representation

 $y_{i,j} \sim \theta_{c_i,c_j}$

where

- c_i, c_j are unobserved latent class variables;
- Θ is a matrix of between-class intensities.

This model structure can be expressed in matrix form as follows:

$$\theta_{c_i,c_j} = \boldsymbol{u}_i^T \boldsymbol{\Theta} \boldsymbol{u}_j,$$

where

- \boldsymbol{u}_i is a $K \times 1$ vector of all 0s except $\boldsymbol{u}_i[c_i] = 1$;
- Θ is the $K \times K$ matrix of between class intensities.

$$\begin{pmatrix} 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \theta_{11} & \theta_{12} & \theta_{13} \\ \theta_{21} & \theta_{22} & \theta_{23} \\ \theta_{31} & \theta_{32} & \theta_{33} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \theta_{31}$$

This model is a *special case* of the latent factor model. Community detection methods are (more or less) special cases of blockmodels

38/39

The essential feature of the blockmodel is the representation

 $y_{i,j} \sim \theta_{c_i,c_j}$

where

- c_i, c_j are unobserved latent class variables;
- Θ is a matrix of between-class intensities.

This model structure can be expressed in matrix form as follows:

$$\theta_{c_i,c_j} = \boldsymbol{u}_i^T \boldsymbol{\Theta} \boldsymbol{u}_j,$$

where

- \boldsymbol{u}_i is a $K \times 1$ vector of all 0s except $\boldsymbol{u}_i[c_i] = 1$;
- Θ is the $K \times K$ matrix of between class intensities.

$$\begin{pmatrix} 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \theta_{11} & \theta_{12} & \theta_{13} \\ \theta_{21} & \theta_{22} & \theta_{23} \\ \theta_{31} & \theta_{32} & \theta_{33} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \theta_{31}$$
Matrix form of the blockmodel

The essential feature of the blockmodel is the representation

 $y_{i,j} \sim \theta_{c_i,c_j}$

where

- c_i, c_j are unobserved latent class variables;
- Θ is a matrix of between-class intensities.

This model structure can be expressed in matrix form as follows:

$$\theta_{c_i,c_j} = \boldsymbol{u}_i^T \boldsymbol{\Theta} \boldsymbol{u}_j,$$

where

- \boldsymbol{u}_i is a $K \times 1$ vector of all 0s except $\boldsymbol{u}_i[c_i] = 1$;
- Θ is the $K \times K$ matrix of between class intensities.

$$\begin{pmatrix} 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \theta_{11} & \theta_{12} & \theta_{13} \\ \theta_{21} & \theta_{22} & \theta_{23} \\ \theta_{31} & \theta_{32} & \theta_{33} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \theta_{31}$$

This model is a *special case* of the latent factor model.

Community detection methods are (more or less) special cases of blockmodels.

Features of real datasets:

- third-order triadic dependence;
- groups of nodes with similar roles.

Explanations of features:

- homophily on covariates can generate triadic dependence;
- stochastic equivalence can generate groups of similar nodes;
- both features can be represented by the "model" $y_{i,j} \sim \beta_0 + \beta_1 imes s(u_i, v_j)$

- Generate derived dyadic variables $s(u_i, v_j)$ from nodal covariates u_i, v_j .
 - \circ indicators for categorical variables: $s(u_i, v_i) = 1(u_i = v_i)$;
 - \ast interactions for continuous variables: $s(u_i,v_i) = u_iv_i$
- If insufficient for model fit, estimate additional latent factors from data:
 - stochastic blockmodel: latent categorical variables;
 - latent factor model: latent continuous variables.

Features of real datasets:

- third-order triadic dependence;
- groups of nodes with similar roles.

Explanations of features:

- homophily on covariates can generate triadic dependence;
- stochastic equivalence can generate groups of similar nodes;
- both features can be represented by the "model" $y_{i,j} \sim \beta_0 + \beta_1 \times s(u_i, v_j)$

- Generate derived dyadic variables s(ui, vj) from nodal covariates ui, vj.
 - * indicators for categorical variables: $s(u_i, v_j) = 1(u_i = v_j)$;
 - interactions for continuous variables: $s(u_i, v_j) = u_i v_j$.
- If insufficient for model fit, estimate additional latent factors from data:
 - stochastic blockmodel: latent categorical variables;
 - alatent factor model: latent continuous variables.

Features of real datasets:

- third-order triadic dependence;
- groups of nodes with similar roles.

Explanations of features:

- homophily on covariates can generate triadic dependence;
- stochastic equivalence can generate groups of similar nodes;
- both features can be represented by the "model" $y_{i,j} \sim \beta_0 + \beta_1 \times s(u_i, v_j)$

- Generate derived dyadic variables $s(u_i, v_j)$ from nodal covariates u_i, v_j .
 - indicators for categorical variables: $s(u_i, v_i) = 1(u_i = v_i)$;
 - interactions for continuous variables: $s(u_i, v_j) = u_i v_j$.
- If insufficient for model fit, estimate additional latent factors from data:
 - stochastic blockmodel: latent categorical variables;
 - latent factor model: latent continuous variables.

Features of real datasets:

- third-order triadic dependence;
- groups of nodes with similar roles.

Explanations of features:

- homophily on covariates can generate triadic dependence;
- stochastic equivalence can generate groups of similar nodes;
- both features can be represented by the "model" $y_{i,j} \sim \beta_0 + \beta_1 \times s(u_i, v_j)$

- Generate derived dyadic variables $s(u_i, v_j)$ from nodal covariates u_i, v_j .
 - indicators for categorical variables: $s(u_i, v_j) = 1(u_i = v_j)$;
 - interactions for continuous variables: $s(u_i, v_j) = u_i v_j$.
- If insufficient for model fit, estimate additional latent factors from data:
 - stochastic blockmodel: latent categorical variables;
 - latent factor model: latent continuous variables.

Features of real datasets:

- third-order triadic dependence;
- groups of nodes with similar roles.

Explanations of features:

- homophily on covariates can generate triadic dependence;
- stochastic equivalence can generate groups of similar nodes;
- both features can be represented by the "model" $y_{i,j} \sim \beta_0 + \beta_1 \times s(u_i, v_i)$

- Generate derived dyadic variables $s(u_i, v_i)$ from nodal covariates u_i, v_i .
 - indicators for categorical variables: s(u_i, v_j) = 1(u_i = v_j);
 interactions for continuous variables: s(u_i, v_j) = u_iv_j.
- If insufficient for model fit, estimate additional latent factors from data:

Features of real datasets:

- third-order triadic dependence;
- groups of nodes with similar roles.

Explanations of features:

- homophily on covariates can generate triadic dependence;
- stochastic equivalence can generate groups of similar nodes;
- both features can be represented by the "model" $y_{i,j} \sim \beta_0 + \beta_1 \times s(u_i, v_i)$

- Generate derived dyadic variables $s(u_i, v_i)$ from nodal covariates u_i, v_j .
 - indicators for categorical variables: s(u_i, v_j) = 1(u_i = v_j);
 interactions for continuous variables: s(u_i, v_j) = u_iv_j.
- If insufficient for model fit, estimate additional latent factors from data:

Features of real datasets:

- third-order triadic dependence;
- groups of nodes with similar roles.

Explanations of features:

- homophily on covariates can generate triadic dependence;
- stochastic equivalence can generate groups of similar nodes;
- both features can be represented by the "model" $y_{i,j} \sim \beta_0 + \beta_1 \times s(u_i, v_i)$

- Generate derived dyadic variables $s(u_i, v_i)$ from nodal covariates u_i, v_j .
 - indicators for categorical variables: s(u_i, v_j) = 1(u_i = v_j);
 interactions for continuous variables: s(u_i, v_j) = u_iv_j.
- If insufficient for model fit. estimate additional latent factors from data:
 - stochastic blockmodel: latent categorical variables;

Features of real datasets:

- third-order triadic dependence;
- groups of nodes with similar roles.

Explanations of features:

- homophily on covariates can generate triadic dependence;
- stochastic equivalence can generate groups of similar nodes;
- both features can be represented by the "model" $y_{i,j} \sim \beta_0 + \beta_1 \times s(u_i, v_i)$

- Generate derived dyadic variables $s(u_i, v_i)$ from nodal covariates u_i, v_j .
 - indicators for categorical variables: s(u_i, v_j) = 1(u_i = v_j);
 interactions for continuous variables: s(u_i, v_j) = u_iv_j.
- If insufficient for model fit. estimate additional latent factors from data:
 - stochastic blockmodel: latent categorical variables;
 - latent factor model: latent continuous variables.

Features of real datasets:

- third-order triadic dependence;
- groups of nodes with similar roles.

Explanations of features:

- homophily on covariates can generate triadic dependence;
- stochastic equivalence can generate groups of similar nodes;
- both features can be represented by the "model" $y_{i,j} \sim \beta_0 + \beta_1 \times s(u_i, v_i)$

- Generate derived dyadic variables $s(u_i, v_i)$ from nodal covariates u_i, v_j .
 - indicators for categorical variables: s(u_i, v_j) = 1(u_i = v_j);
 interactions for continuous variables: s(u_i, v_j) = u_iv_j.
- If insufficient for model fit. estimate additional latent factors from data:
 - stochastic blockmodel: latent categorical variables;
 - latent factor model: latent continuous variables.

Features of real datasets:

- third-order triadic dependence;
- groups of nodes with similar roles.

Explanations of features:

- homophily on covariates can generate triadic dependence;
- stochastic equivalence can generate groups of similar nodes;
- both features can be represented by the "model" $y_{i,j} \sim \beta_0 + \beta_1 \times s(u_i, v_i)$

- Generate derived dyadic variables $s(u_i, v_i)$ from nodal covariates u_i, v_j .
 - indicators for categorical variables: s(u_i, v_j) = 1(u_i = v_j);
 interactions for continuous variables: s(u_i, v_j) = u_iv_j.
- If insufficient for model fit. estimate additional latent factors from data:
 - stochastic blockmodel: latent categorical variables;
 - latent factor model: latent continuous variables.