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Conflict data

Y<-conflict90s$conflicts
Xn<-conflict90s$nodevars
colnames (Xn)

## [1] "pop" "gdp" "polity"

Xn[,1:2]<-log(Xn[,1:2])

table(Y)

## Y

## 0 1 2 3 4 5 6
## 16567 154 22 14 7 2 2
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SRM fit to ordinal data

#### nodal covariates only
fit_n<-ame(Y,Xrow=Xn,Xcol=Xn,model="ord",nscan=10000)

summary (fit_n)

##

## beta:

## pmean psd z-stat p-val
## pop.row 0.256 0.121 2.114 0.034
## gdp.row -0.430 0.099 -4.334 0.000
## polity.row -0.014 0.017 -0.797 0.425
## pop.col 0.207 0.096 2.151 0.031
## gdp.col -0.371 0.078 -4.774 0.000
## polity.col -0.001 0.014 -0.062 0.950
##

## Sigma_ab pmean:

## a b

## a 1.134 0.801
## b 0.801 0.687
#it

## rho pmean:

## 0.804
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plot(fit_n)
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Triad dependence measure

gofstats

## function (Y)

## {

## sd.rowmean <- sd(rowMeans(Y, na.rm = TRUE), na.rm = TRUE)
#i# sd.colmean <- sd(colMeans(Y, na.rm = TRUE), na.rm = TRUE)
## dyad.dep <- cor(c(Y), c(t(Y)), use = "complete.obs")

## E <- Y - mean(Y, na.rm = TRUE)

## D <- 1 * (!is.na(E))

#1# E[is.na(E)] <- 0

## triad.dep <- sum(diag(E %*% E %*% E))/(sum(diag(D %*% D %*%
## D)) * sd(c(Y), na.rm = TRUE)"3)

## gof <- c(sd.rowmean, sd.colmean, dyad.dep, triad.dep)

#it names (gof) <- c("sd.rowmean", "sd.colmean", "dyad.dep", "triad.dep")
## gof

## 3

## <environment: namespace:amen>
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Triad dependence measure

Let E= (Y —117§.)/s,, thatis, e;; = (yi; — 7..)/s,.
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Let E= (Y —117§.)/s,, thatis, e;; = (yi; — 7..)/s,.
e y.. is the grand mean;
e s, is the sample standard deviation of the y;;'s

e ¢ is like a “scaled residual” from the simple mean model y;; = 1 + €; ;.

The sum of the diagonal of E® gives the scaled third-order moment:

trace(E®) = Z Z Z €i ;€ kEk,i
ik

The GOF statistic used in amen is the average of the e jej kex,i's:

D02 Dk i€ ke
# of ordered triads

t(Y) =
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Triad dependence and transitivity

This triadic dependence measure is related to transitivity for binary data:
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Triad dependence and transitivity

This triadic dependence measure is related to transitivity for binary data:

Transitive triple: An ordered triple (i,j, k) is transitive if i — j — k — i
(Vi = Yik = Yhi)-

trans(Y) = Z Z Z YijYikYk,i
i J k
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SRM fit to ordinal data with dyadic covariates

#### dyadic and nodal covariates
fit_dn<-ame(Y,Xdyad=Xd,Xrow=Xn,Xcol=Xn,model="ord",nscan=10000)

summary (fit_dn)

##

## beta:

## pmean psd z-stat p-val
## pop.row 0.212 0.095 2.230 0.026
## gdp.row 0.077 0.078 0.992 0.321
## polity.row -0.028 0.013 -2.045 0.041
## pop.col 0.205 0.092 2.232 0.026
## gdp.col -0.029 0.078 -0.376 0.707
## polity.col 0.002 0.012 0.130 0.896
## polity_int.dyad -0.003 0.001 -2.419 0.016
## imports.dyad -0.142 0.100 -1.415 0.157
## shared_igos.dyad -0.017 0.005 -3.383 0.001
## distance.dyad -1.837 0.101 -18.244 0.000
##

## Sigma_ab pmean:

## a b

## a 0.500 0.332

## b 0.332 0.462

##

## rho pmean:

## 0.566
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SRM fit to ordinal data with dyadic covariates

plot(fit_dn)
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GOF comparison
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Dyadic functions of nodal characteristics

Adding these dyadic covariates improved the fit with regard to t(Y).
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Dyadic functions of nodal characteristics

Adding these dyadic covariates improved the fit with regard to t(Y).

Note that each of these dyadic covariates was a function of nodal covariates:
* xj1 = fi(polity;, polity;)
* xij2 = f(igo;, igoj)

e x; ;3 = f3(location;, location;)
This suggests models of the form

Yi,j ~ Po + Bixi
xij = s(xi, X;)

where s(-,-) is some (non-additive) function of the nodal characteristics x;, x;.
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Homophily and stochastic equivalence

More generally, let
u; be a covariate of i as a sender of ties;

v; be covariate of j as a receiver of ties.

Yij ~ Po+ Br x s(ui, v;)
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Homophily and stochastic equivalence

More generally, let
u; be a covariate of i as a sender of ties;

v; be covariate of j as a receiver of ties.

Yij ~ Po+ Br x s(ui, v;)

Such a model can describe various types of higher-order dependence, including
transitivity

stochastic equivalence
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Transitivity via homophily

Homophily on covariates can explain transitivity:

Yij ~ Bo + B1 x s(xi, %)
If B1 > 0 and the y;;'s are binary, then

* yij=1=xi =X
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Transitivity via homophily

Homophily on covariates can explain transitivity:

yij ~ Bo+ Br x s(x;, %)
If B1 > 0 and the y;;'s are binary, then
o yiji=1=x =X,
o yik=1= X ~ xx;

OX,'%XJ'./ x,-zxk:>szxk_
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Transitivity via homophily

Homophily on covariates can explain transitivity:

Yij ~ Bo + B x s(xi, X))
If B1 > 0 and the y;;'s are binary, then
o yiji=1=x =X,
o y;7k=1$X,‘z\N.»Xk;
o Xi R Xj, Xi N Xk = Xj R Xk.

o Xj%Xk:>yj,k=1.

Similarly, homophily can explain triadic dependence for ordinal y; ;'s.
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Stochastic equivalence

Returning to the more general model:

yij~ Po+ p1 x s(ui,v))

If ui = uk then i and j are equivalent as senders in terms of the model.
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Stochastic equivalence

Returning to the more general model:

Yij ~ Bo+ P x s(ui, vy)
If ui = uk then i and j are equivalent as senders in terms of the model.
Example: Logistic regression

ePo+Bis(ui,vy)
Pr(Yij=1)= 1+ ePotBis(uny)
If uj = ux = u, then

ePo+Bis(ui,v)

PF(Y;’J' = 1) = = Pr(Yk,j = 1)7

1 + ePotBus(uiyy)

and nodes i and k are stochastically equivalent (as senders).
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Homophily and stochastic equivalence

In our hypothetical model of social relations, we've seen how nodal
characteristics relate to homophily and stochastic equivalence.
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Visualizing stochastic equivalence

VAR
%}41/’

-~,
b

For which network is homophily a plausible explanation?



17/39

Visualizing stochastic equivalence

For which network is homophily a plausible explanation?

Which network exhibits a large degree of stochastic equivalence?



Homophily and stochastic equivalence in real networks

o AddHealth friendships: friendships among 247 12th-graders
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Latent factor models

Homophily and stochastic equivalence from unobserved variables can be
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19/39



Latent factor models

Homophily and stochastic equivalence from unobserved variables can be
represented with a latent factor model:

;
yij ~ u; Dvj,

e u; is a vector of latent factors describing i as a sender of ties;

e v; is a vector of latent factors describing j as a receiver of ties;

19/39



Latent factor models

Homophily and stochastic equivalence from unobserved variables can be
represented with a latent factor model:

;
yij ~ u; Dvj,

e u; is a vector of latent factors describing i as a sender of ties;
e v; is a vector of latent factors describing j as a receiver of ties;

e D is a diagonal matrix of factor weights.

19/39



Latent factor models

Homophily and stochastic equivalence from unobserved variables can be
represented with a latent factor model:

;
yij ~ u; Dvj,

e u; is a vector of latent factors describing i as a sender of ties;
e v; is a vector of latent factors describing j as a receiver of ties;

e D is a diagonal matrix of factor weights.

19/39



Latent factor models

Homophily and stochastic equivalence from unobserved variables can be
represented with a latent factor model:

-
yij ~ u; Dy,
e u; is a vector of latent factors describing i as a sender of ties;

e v; is a vector of latent factors describing j as a receiver of ties;

e D is a diagonal matrix of factor weights.

Normal, binomial, ordinal data can be represented with this structure as follows:
T
zij=u; Dvj+¢i;
vij = &(zi)
where g is some increasing function:

e g(z) = z for normal data;

19/39



Latent factor models

Homophily and stochastic equivalence from unobserved variables can be
represented with a latent factor model:

-
yij ~ u; Dy,
e u; is a vector of latent factors describing i as a sender of ties;

e v; is a vector of latent factors describing j as a receiver of ties;

e D is a diagonal matrix of factor weights.

Normal, binomial, ordinal data can be represented with this structure as follows:
T
zij=u; Dvj+¢i;
vij = &(zi)
where g is some increasing function:

e g(z) = z for normal data;

e g(z) = 1(z > 0) for binomial data;

19/39



Latent factor models

Homophily and stochastic equivalence from unobserved variables can be
represented with a latent factor model:

T
Yij ~ uj Dvj,
e u; is a vector of latent factors describing i as a sender of ties;
e v; is a vector of latent factors describing j as a receiver of ties;
e D is a diagonal matrix of factor weights.
Normal, binomial, ordinal data can be represented with this structure as follows:
T
zij=u; Dvj+¢i;
vij = &(zi)
where g is some increasing function:
e g(z) = z for normal data;

e g(z) = 1(z > 0) for binomial data;

e g(z) = some increasing step function for ordinal data.

19/39



Latent factor models

Homophily and stochastic equivalence from unobserved variables can be
represented with a latent factor model:

T
Yij ~ uj Dvj,
e u; is a vector of latent factors describing i as a sender of ties;
e v; is a vector of latent factors describing j as a receiver of ties;
e D is a diagonal matrix of factor weights.
Normal, binomial, ordinal data can be represented with this structure as follows:
T
zij=u; Dvj+¢i;
vij = &(zi)
where g is some increasing function:
e g(z) = z for normal data;

e g(z) = 1(z > 0) for binomial data;

e g(z) = some increasing step function for ordinal data.

19/39



Latent factor models

Homophily and stochastic equivalence from unobserved variables can be
represented with a latent factor model:

T
Yij ~ uj Dvj,
e u; is a vector of latent factors describing i as a sender of ties;
e v; is a vector of latent factors describing j as a receiver of ties;
e D is a diagonal matrix of factor weights.
Normal, binomial, ordinal data can be represented with this structure as follows:
T
zij=u; Dvj+¢i;
vij = &(zi)
where g is some increasing function:
e g(z) = z for normal data;

e g(z) = 1(z > 0) for binomial data;

e g(z) = some increasing step function for ordinal data.

19/39



Understanding latent factors

Z=UDV+E

R
zij = u;Dvjte

R
o E drui,erAr‘f’ei,j
r=1

For example, in a 2 factor model, we have

zij = di(uin X vj1) + do(ui X vj2) + €ij

Interpretation
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Matrix decomposition interpretation

Recall from linear algebra:

e Every m x n matrix Z can be written
Z=uDV’

where D = diag(d,...,d,), U and V are orthonormal.
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Matrix decomposition interpretation

Recall from linear algebra:

e Every m X n matrix Z can be written
Z=uDVv’

where D = diag(d,...,d,), U and V are orthonormal.
e If UDV' is the svd of Z, then

z, = U[,l:k]D[lzk,lzk]Vﬂ—l:k]

is the least-squares rank-k approximation to Z.



Least squares matrix approximations
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Probit version

Vi

Zij

{eij}

LFM for symmetric data

of the symmetric latent factor model:

= gl(z), where g is a nondecreasing function

= u,-T/\uj +€ij, whereu; € RX, A=diag(A1, ..., Ak)
normal(0, 1)
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Probit version

Yij

Zj j

{eis}
Writing {z;}

LFM for symmetric data

of the symmetric latent factor model:

g(zij) where g is a nondecreasing function

= U,‘T/\Uj + €, whereu; € RX A=diag(A1, ..., Ak)
~ normal(0,1)
as a matrix ,

Z = UAU' +E
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Least squares approximations of increasing rank
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Returning to directed relations:

SRM: We have motivated the SRM in order to represent 2nd order
dependence:

Zjj = ﬁTXi,j +a+ b +e€ij
yij = &(zi;)

This model is made up of additive random effects.

LFM: We have motivated the LFM to model more complex structures:

zj=u/Dvj+ej
yij = &(zij)
This model is made up of multiplicative random effects.
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AME models

Returning to directed relations:

SRM: We have motivated the SRM in order to represent 2nd order
dependence:

e within row dependence, within column dependence;

e within dyad dependence.
zij=PB"x,+ai+b+ei
yvij = &(zi)
This model is made up of additive random effects.
LFM: We have motivated the LFM to model more complex structures:
e third order dependence and transitivity;
e stochastic equivalence.
zij=u/Dvj+ej
vij = 8(zij)

This model is made up of multiplicative random effects.
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AME models

Combining them gives an additive and multiplicative effects model

T T
zij =" xj+ai+ b+ u Dvj+ei

vij = g(zi))
ame (Y, Xdyad=NULL, Xrow=NULL, Xcol=NULL, rvar = !(model=="rrl")
cvar = TRUE, dcor = TRUE, R = 0, model="nrm",...)

Arguments:
Y: an n x n square relational matrix of relations. See model
below for various data types.

Xdyad: an n x n x pd array of covariates
Xrow: an n x pr matrix of nodal row covariates
Xcol: an n x pc matrix of nodal column covariates
rvar: logical: fit row random effects?
cvar: logical: fit column random effects?

dcor: logical: fit a dyadic correlation?

R: integer: dimension of the multiplicative effects (can be
zero)

model: character: one of "nrm","bin","ord","cbin","frn","rrl" - see



AME fit to ordinal data with nodal covariates

#### nodal covariates and latent factors
fit_nr2<-ame(Y,Xrow=Xn,Xcol=Xn,R=2,model="ord",nscan=10000)

summary (fit_nr2)

##

## beta:

## pmean psd z-stat p-val
## pop.row 0.236 0.101 2.329 0.020
## gdp.row -0.092 0.179 -0.516 0.606
## polity.row -0.030 0.015 -2.057 0.040
## pop.col 0.243 0.087 2.783 0.005
## gdp.col -0.173 0.136 -1.267 0.205
## polity.col -0.009 0.013 -0.652 0.515
##

## Sigma_ab pmean:

## a b

## a 0.307 0.167
## b 0.167 0.206
#it

## rho pmean:

## 0.838
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Plots of latent factors

circplot(Y,fit_nr2$U,fit_nr2$V)
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Blockmodels
A blockmodel is
e a partition of the nodes into classes;

e an estimation of the rate of ties between and within classes.

Such a model includes
e a classification function ¢ : {1,...,n} — {1,...,K},
i.e. ¢; = k means i is in block/group k.

e a between-group tie density matrix:

O =

Under this model,
Pr(Yij=1)=0c.q

Note: When the classes/blocks are defined by known binary covariates, the
blockmodel is essentially the same as binary regression with indicators for block
memberships.
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Stochastic equivalence and blockmodels

The blockmodel is a model of the form we've been discussing:

yij ~ Bo + Bis(xi, x;)
Let
® fo=0, p=1,
® Xi = Cj, Xj = Cj;
e 5(xi, %) = Oc.q
Stochastic equivalence:
All nodes within the same block are stochastically equivalent, under this model.

If ¢; = ck = ¢, then

Pr(Y,-,j = 1) = Pr(Yk,j = 1) = Qc,cj.
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In the simplest case of an undirected binary relation, we want to find

latent classes ci,...,cn € {1,...,K};

between-class rates © = {6, : 1 < k,/ < K}

that make the probability of our data large:

H 927161(1 - eqycj)l—y;,j
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e ;= number of pairs (7, ) for which ¢; = k and ¢; =/

33/39



Stochastic blockmodels

Consider the task of identifying stochastically equivalent classes from the data.
In the simplest case of an undirected binary relation, we want to find

latent classes ci,...,cn € {1,...,K};

between-class rates © = {6, : 1 < k,/ < K}

that make the probability of our data large:

Pr(Y =ylc,©) = [ 0441 — 0c,. )
i#

Hesk/ 1*9;(/"“/ sk,

k=1 I=1

where
e ny ;= number of pairs (i, /) for which ¢; = k and ¢; =/

e s, ;= number of pairs (i,/) for which ¢; = k and ¢; = and y;; = 1.

33/39



Stochastic blockmodels

Consider the task of identifying stochastically equivalent classes from the data.
In the simplest case of an undirected binary relation, we want to find

latent classes ci,...,cn € {1,...,K};

between-class rates © = {6, : 1 < k,/ < K}

that make the probability of our data large:

Pr(Y =ylc,©) = [ 0441 — 0c,. )
i

Hesk/ 1*9k1"k/ sk,

k=1 I=1

where
e ny ;= number of pairs (i, /) for which ¢; = k and ¢; =/

e s.,;= number of pairs (i, j) for which ¢; = k and ¢; =/ and y;; = 1.

33/39



Stochastic blockmodels

Consider the task of identifying stochastically equivalent classes from the data.
In the simplest case of an undirected binary relation, we want to find

latent classes ci,...,cn € {1,...,K};

between-class rates © = {6, : 1 < k,/ < K}

that make the probability of our data large:

Pr(Y =ylc,©) = [ 0441 — 0c,. )
i#j

= H@Skllfgk/"k/sk'

k=1 I=1

where
e n, ;= number of pairs (i, ) for which ¢; = k and ¢; =/
e s, ;= number of pairs (i, /) for which ¢; = k and ¢; =/ and y; ; = 1.

This model is sometimes called the stochastic blockmodel.
It is a blockmodel where the classes are estimated from the data.
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Stochastic blockmodel

You can't take derivative to find the MLEs of ci, ..., c,. Instead, use
o EM algorithm
e Gibbs sampling/MCMC

The basic model can be extended in various ways:

e covariates/regressors;
e directed data

e dyadic correlation;
e separate sender and receiver classes.

Much of this was done in Nowicki and Snijders (2001).

A variety of more complex variants have been recently developed.
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Stochastic blockmodel for Cold War data

A three-class model gives the following inferred classes:
rownames (Y) [latentclass==1]

## [1] HCHNII IIIRN!I HIRQH "PRK” "USR“

rownames (Y) [latentclass==2]

## [1] "AUL"™ "CAN" "GFR" "ITA" "NEW" "NOR" "NTH" "PHI" "ROK" "THI" "TUR"
## [12] "UKG" "USA"

and everyone else in class 3, with the following between-class means:
round (M, 2)

## [,11 [,2]1 [,3]

## [1,] 0.02 -0.89 0.50

## [2,] -0.89 4.47 1.07
## [3,] 0.50 1.07 0.86

These rates are on the probit scale (recall the data are ordinal).



Latent class for Cold War data
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The essential feature of the blockmodel is the representation

Yij ~ 95;‘75]'
where
e ¢j, ¢j are unobserved latent class variables;
e O is a matrix of between-class intensities.

This model structure can be expressed in matrix form as follows:

T
Oc;,c; = u; Ouj,
where
e ujis a K x 1 vector of all Os except uj[c]] = 1;

e O is the K x K matrix of between class intensities.

011 012 013 1
(0 o 1) 01 62 Ox 0] =6
031 03 O3 0

This model is a special case of the latent factor model.
Community detection methods are (more or less) special cases of blockmodels.
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