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Beyond second order dependence

Second order dependence:
Variances, covariances and correlations all involve second order moments:

Covl[eij, ex,1] = Eleij, €x,i]

Higher order dependence:
Variances and covariances cannot represent higher order moments:

Eleijex,i€m,n] =7

Questions:
Are there higher order dependencies in network data?
Is the SRM covariance structure sufficient or deficient?
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Goodness of fit

Consider the following goodness of fit statistic:
tY) =D D G
ik
where ¥ i =1 X (yij + yj,i > 0).

t_trans

## function (Y)

## {

## YS <= 1 % (Y + t(Y) > 0)

## sm <- 0

## for (i in 1:nrow(¥S)) {

#i#t ci <- which(YS[i, ] > 0)

## sm <- sm + sum(YS[ci, cil], na.rm = TRUE)
## }

## sm/6

## }

## <environment: namespace:amen>

t(Y) counts the number of triangles in the graph.
e it overcounts - it is really six times the number of triangles;

e it counts triangles regardless of the direction of the ties.



GOF - sheep data
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GOF - sheep data
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GOF - sheep data
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mean (£fit$TT >= fit$tt)

## [1] 0.15



GOF - high tech managers
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GOF - high tech managers
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GOF - high tech managers

Density
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tH

mean (£fit$TT >= fit$tt)

## [1] 0.5625
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GOF - Dutch college friendships
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GOF - Dutch college friendships
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GOF - Dutch college friendships
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mean (£fit$TT >= fit$tt)

## [1] 0.13
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GOF - Conflict in the 90s
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GOF - Conflict in the 90s
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GOF - Conflict in the 90s
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tH

mean (fit$TT >= fit$tt)

## [1] 0.01
15/53



Excess triangles and transitivity

Some evidence that the SRM may not always be sufficient:

o Networks often have more “triangles” than predicted under the model.

This corresponds with several social theories about relations:

transitivity: a social preference to be friends with your friends’ friends.
balance: a social preference to be friends with your enemies’ enemies.
homophily: a social preference to be friends with others similar to you.

These social models may not be distinguishable from network data.

Exercise: Explain why each of these may lead to triangles in a network.
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Triads and triangles

A triad is an unordered subset of three nodes.
Consider for simplicity an undirected binary relation.

The node-generated subgraph of a triad is given by

O yij VYik
Y[(’7J7 k)7(la./7k)] = Yij O Yik
Yik yix O

3 relations and 2 possible states per relation = 23 = 8 possible triad states.

Exercise: Draw the triad states.
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Triads, two-stars and triangles

Consider a node i connected to both nodes j and k.

What are the possibilities for this triad?
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Triads, two-stars and triangles

For a given network, how much transitivity is there?
How many triangles occur, relative to how many are “possible”?

Triad census: A count of the number of each type of triad.

t(Y) = {# null, one edge, two-star, triangle }
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Triad census

t(Y) =(2,5,2,1)

type

W RN NN -
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triangle
one edge
one edge
two star
one edge
null

two star
one edge
null

one edge



Computing the triad census

For a given triad, the state is given by the number of edges:
0 edges: null
1 edge: one edge
2 edges: two star

3 edges: triangle

tcensus <- c(0, 0, 0, 0)
for (i in 1:(n - 2)) {
for (j in (i + 1):(n - 1)) {
for (k in (j + 1):n) {
Yijk <- Y[c(i, §, k), c(i, j, k)]
nedges <- sum(Yijk, na.rm = TRUE)/2
tcensus [nedges + 1] <- tcensus[nedges + 1] + 1

}

tcensus

## [1] 25 2 1
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Computing the triad census

Nested loops will be too slow for large graphs.
Here is a more efficient algorithm:
tt <- c(0, 0)
for (i in 1:n) {
i.alters <- which(Y[i, ] > 0)
tt <- tt + c(sum(1 - Y[i.alters, i.alters], na.rm = TRUE), sum(Y[i.alters,
i.alters], na.rm = TRUE))
tt/c(2, 6)
## [1] 2 1

This counts the two stars and the triangles.
The nulls and one-edges can be found by applying the algorithm to 1 — Y.
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triad_census(Y)

## [1] 25 2 1

triad_census(Yht)

triad_census(Ydc)

triad_census(Ysd)

triad_census(Y90)

Computing the triad census

# high tech managers

## [1] 376 509 343 102

# Dutch college

## [1] 2158 2016 624 162

# sheep dominance

235 955 1103 983

# 90s conflict

18221 1029 67



Evaluating transitivity

Transitivity: “more triangles than expected”
One measure of transitivity is to compare the number of triangles to the

number of possible triangles:

number of triangles: number of three-tie triads.

number of possible triangles: number of two- or three-tie triads.

#triangles
F##triangles or two-stars

transitivity index =

~ Pr(yk,j = 1|_y,"j =1 and Yik = 1)

This transitivity index can be viewed as how yx,; depends on y;; and y; .
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tc <- triad_census(Yht)
tc[4]/(tc[3] + tc[4])

## [1] 0.2292

tc <- triad_census(Ydc)
tc[4]/(tc[3] + tc[4])

## [1] 0.2061

tc <- triad_census(Ysd)
tc[4]/(tc[3] + tc[4])

## [1] 0.4712

tc <- triad_census(Y90)
tc[4]/(tc[3] + tc[4])

## [1] 0.06113

Transitivity index

# high tech managers

# Dutch college

# sheep dominance

# 90s conflict



Scaling the transitivity index

These results may seem counter-intuitive:
e Y90 seemed to be “more transitive” according to GOF plots;

® Y90 has the lowest transitivity index.

To what should the transitivity index be compared?
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tc <- triad_census(Yht)
tc[4]/(tc[3] + tc[4])

## [1] 0.2292

mean(Yht, na.rm = TRUE)
## [1] 0.2429

##

tc <- triad_census(Y90)
tc[4]/(tc[3] + tcl4l)

## [1] 0.06113
mean (Y90, na.rm = TRUE)

## [1] 0.0121

Transitivity index

# high tech managers

# 90s conflict



A scaled transitivity index

Intuitively, think of transitivity as the “effect” of y;; =1 and y;x =1 on yj «.
This can be measured with a log-odds ratio. Let

e P = transitive triads/( transitive + two-star triads) ;
°p

y.

odds(yj,k =1: Yij = l,y,',k = 1)
odds(yj« = 1)

p 1-p

1-p p

7 = log

= log
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A scaled transitivity index

tlor <- function(Y) {
p <- mean(Y, na.rm = TRUE)
tc <- triad_census(Y)
pt <- tcl4]/(tc[3] + tcl4]l)

od <- p/(1 - p)
odt <- pt/(1 - pt)

log(odt/od)
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A scaled transitivity index

tlor(Yht) # high tech managers
## [1] -0.07568

tlor(Ydc) # Dutch college

## [1] 0.2417

tlor(Ysd) # sheep dominance
## [1] 0.6438

tlor(Y90) # 90s conflict

## [1] 1.67

By this measure Y90 is the most transitive network, matching our intuition.
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Triad census for directed data

For undirected relations in a triad there are
e 23 = 8 possible graphs;
e 4 isomorhphic graphs.

For directed relations the situation is more complicated:

e 2% = 4 states per dyad, and 3 dyads, means
(2°)® = 2° = 64 possible states

e 16 isomorphic states.



Directed triad states

Each triad state is named according to its dyad census:

O /O
O 003 © O o © 102
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Transitivity

Transitive triple:
Consider a triple {/,j, k} for which i — j and j — k.
The triple is

transitive if i — k;
intransitive if i /4 k.

Social theory: Nodes seek out transitive relations, avoid intransitive ones.
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Transitivity

Based on the definition, 003, 012, 102 and the following triads are neither
transitive nor intransitive:

VANVAN

021D 021U
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Transitivity
Any triad with a null dyad cannot be transitive:

D et o

021C 111D 111U
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Transitivity

Triads with no null dyads can be intransitive, transitive or mixed:

030;\O 120C 210

Which of these is intransitive? Why are the others “mixed”?

36/53



Transitivity

The triads below are “transitive” in that they all have
e some transitivity;

® no intransitivity.

LN o

030T 120U 120D 300
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Modeling transitivity in ERGMs

Recall the basic ERGModel:

Pr(Y =y) = c(0) exp(brta(y) + - - - + Ot (y))
Evaluation of various forms of transitivity is accomplished by including such
sufficient statistics among ti(y), - - ., tk(y)-
Let's try this out through a model fitting exercise:
1. Y ~ edges + mutual
2. Y ~ edges + mutual + transitivity

where transitivity is some network statistic involving triples.



Monk data

Relation: y;; =1 if i “liked” j at any one of the three time periods.
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ERGM fit

fit_ergl <- ergm(Y ~ edges + mutual)

## Iteration 1 of at most 20:

## Convergence test P-value: 6.6e-01

## Convergence detected. Stopping.

## The log-likelihood improved by < 0.0001

## This model was fit using MCMC. To examine model diagnostics and check for degeneracy, use the mcmc.di,
summary (fit_ergl)

##
##
## Summary of model fit
##
##
## Formula: Y © edges + mutual

##

## Iterations: 20

##

## Monte Carlo MLE Results:

## Estimate Std. Error MCMC 7 p-value

## edges -1.761 0.205 0 <le-04 *xx*

## mutual 2.319 0.412 0 <le-04 xxx

## ———

## Signif. codes: O '#**' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

## Null Deviance: 424 on 306 degrees of freedom

## Residual Deviance: 333 on 304 degrees of freedom

##

## AIC: 337 BIC: 344 (Smaller is better.)
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GOF

gof_1 <- gof(fit_ergl, GOF = ~“idegree + odegree + triadcensus)

03
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02
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proportion of nodes

proportion of nodes

proportion of triads
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degree distributions: The fitted model generates degree distributions similar to
the observed;

triad census: The fitted model generates a triad census similar to the observed,
perhaps with a few discrepancies (021U,111D,111U and 201).



Incorporating transitivity in ERGMs

fit_erg2 <- ergm(Y ~ edges + mutual + transitive)
fit_erg3 <- ergm(Y ~ edges + mutual + triadcensus)
fit_ergd <- ergm(Y ~ edges + mutual + triadcensus(10))

transitive: Includes the network statistic
t(y) = number of transitive triples

where a “transitive triple is of the type” 030T, 120U, 120D or 300.
(note: none of these seemed to stand out for the monk GOF plots.)

triadcensus: Includes 15 network statistics counting the number of triples of
each type (excluding null triples).

triadcensus(k): Includes the network statistic

t(y) = number of triples of type k
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Counting transitive triples

fit_erg2 <- ergm(Y ~ edges + mutual + transitive)

## Iteration 1 of at most 20:
## Convergence test P-value: 0e+00
## The log-likelihood improved by 16.83
## Iteration 2 of at most 20:
## Convergence test P-value: 0e+00
## The log-likelihood improved by 16.83
## Iteration 3 of at most 20:
## Convergence test P-value: 0e+00
## The log-likelihood improved by 16.85
## Iteration 4 of at most 20:
## Convergence test P-value: 0e+00
## The log-likelihood improved by 16.87
## Iteration 5 of at most 20:
## Convergence test P-value: 0e+00
## The log-likelihood improved by 16.91
## Iteration 6 of at most 20:
## Convergence test P-value: 0e+00
## The log-likelihood improved by 16.98
## Iteration 7 of at most 20:
## Convergence test P-value: 0e+00
## The log-likelihood improved by 17.08
## Iteration 8 of at most 20:
## Convergence test P-value: 0e+00
## The log-likelihood improved by 17.24
## Iteration 9 of at most 20:
## Convergence test P-value: 0e+00
## The log-likelihood improved by 17.58
## Iteration 10 of at most 20:
## Convergence test P-value: 0e+00
## The log-likelihood improved by 13.87
## Iteration 11 of at most 20:

43/53 ## Convergence test P-value: 0e+00
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as

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
HH

Counting transitive triples

.matrix(simulate(fit_erg2))

ROMUL BONAVEN AMBROSE BERTH PETER LOUIS VICTOR
ROMUL 0 1 1 1 1
BONAVEN
AMBROSE
BERTH
PETER
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VICTOR
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PETER
LOUIS
VICTOR
WTINF

e
e
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e
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e
e
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1

PR REPRPREPRRRERPEPRRORRRRERR

1
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gof_2 <- gof(fit_erg2, GOF =

Goodness of fit

“idegree + odegree + triadcensus)
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Model degeneracy

This strange phenomonenon is (as far as | know) not a coding error:
e MLEs for ERGMs sometimes produce degenerate distributions;
o A degenerate distribution puts most of its probability on the null or full
graph;
e See “Assessing Degeneracy in Statistical Models of Social Networks”
(Handcock, 2003) for more details.

o Recent research on Bayesian ERGM estimation avoids such degeneracy.
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Incorporating transitivity in ERGMs

summary (fit_erg3)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
HH

Summary of model fit

Formula: Y ©

Iterations:
Monte Carlo

edges
mutual
triadcensus.
triadcensus.
triadcensus.
triadcensus.
triadcensus.
triadcensus.
triadcensus.
triadcensus.
triadcensus.
triadcensus.
triadcensus.
triadcensus.
triadcensus.
triadcensus.
+riadccenciie

20

MLE Results:

edges + mutual + triadcensus

Estimate Std. Error MCMC ¥

5.657
-13.175
-0.126
0.723
-1.445
-0.402
-0.481
0.519
-0.765
-1.684
—Inf
-0.116
0.231
-1.410
-0.982
-0.814
119

012

102

021D
021U
021C
111D
111U
030T
030C
201

120D
120U
120C
210

200 -1

0.

OO O O0OO0OO0OO0OOoOOo

O O OO OO

205
125
164
281
306
363
302
435
176
449

NA
207
474
511
466
320
Q19

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

%k k
%k k

*okk

*kok
%k k
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proportion of nodes

Incorporating transitivity in ERGMs
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e The degree distribution fit is improved, the triad fit is near perfect.
e s this latter fact surprising?

e The number of parameters in the model is quite large.
e 15 additional parameters to represent 3rd order dependence.

e What about a reduced model?



Backwards elimination

summary (fit_erg4)

##

##

## Summary of model fit

##

##

## Formula: Y ~ edges + mutual + triadcensus(c(2, 3, 6, 8, 10))
##

## Iterations: 20

##

## Monte Carlo MLE Results:

## Estimate Std. Error MCMC % p-value
## edges 1.152 1.639 45  0.483
## mutual -7.898 5.930 45 0.184
## triadcensus.102 0.772 0.381 42 0.043 *
## triadcensus.021D -0.798 0.464 22 0.087 .
## triadcensus.111D 0.792 0.351 31 0.025 *
## triadcensus.030T -0.706 0.625 21 0.259
## triadcensus.201 0.282 0.430 37 0.512
##H -—-

## Signif. codes: O 'sxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

## Null Deviance: 424 on 306 degrees of freedom
## Residual Deviance: 312 on 299 degrees of freedom
##

## AIC: 326 BIC: 352 (Smaller is better.)
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Backwards elimination

summary (fit_ergb)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Summary of model fit

Formula: Y
Iterations: 20

Monte Carlo MLE Results:

Estimate Std. Error MCMC %
edges -0.619 0.549 14
mutual -2.256 1.630 13
triadcensus.102 0.500 0.151 12
triadcensus.111D 0.542 0.192 1

Signif. codes: O 'x**' 0.001 '**' 0.01 '*'

Null Deviance: 424 on 306 degrees of
Residual Deviance: 317 on 302 degrees of
AIC: 325

BIC: 340 (Smaller is better.)

p-value
0.2603
0.1672
0.0010
0.0051

0.05 '.

freedom
freedom

edges + mutual + triadcensus(c(2, 6))

*%
*%

'0.1

1



Goodness of fit
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Fishing expeditions

Notice that mutual is no longer “significant”
o this does not mean that there is not much reciprocity in the network;

e it means reciprocity can be explained by a tendency for 102 and 111D
triples.

Is such a tendency meaningful /interpretable?

111D 102
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Fishing expeditions

Comments:
Iterative model selection procedures

e produce parsimonious descriptions of the network dataset;
e produce p-values and standard errors that may be misleading:
e in a large set of model statistics, some will appear significant due to chance.
Advice:
e descriptive modeling: choose a parsimonious, interpretable model.

o hypothesis testing: choose your models to reflect your hypotheses.
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