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Network sampling methods

It is sometimes difficult to obtain a complete network dataset:

• the population nodeset is too large;

• gathering all relational information is too costly;

• population nodes are hard to reach.

In such cases, we need to think carefully how to

• gather the data (i.e. design the survey);

• make inference (i.e. estimate and evaluate parameters).
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Common sampling methods

1. node-induced subgraph sampling

2. edge-induced subgraph sampling

3. egocentric sampling

4. link tracing designs

5. censored nomination schemes
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Node-induced subgraph sampling

Procedure:

1. Uniformly sample a set s = {s1, . . . , sns} of nodes

s ⊂ {1, . . . , n}.

2. Observe relations ys between sampled nodes

Ys = {yi,j : i ∈ s, j ∈ s}.
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Node-induced subgraph sampling
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Node-induced subgraph sampling
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Node-induced subgraph sampling
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Estimation from sampled data

In what ways does Ys resemble Y?

For what functions g() will g(Ys) estimate g(Y)?

Consider the following setup:

• n × n sociomatrix Y

• n × n dyadic covariate Xd

• n × 1 nodal covariate Xn

Can we estimate the following from a sample?

ȳ = 1
n(n−1)

∑
i 6=j

yi,j , x̄d = 1
n(n−1)

∑
i 6=j

xd,i,j , x̄n = 1
n

∑
xn,i

yxd = 1
n(n−1)

∑
i 6=j

yi,jxd,i,j , yxn =
1

n(n − 1)

∑
i

xn,i ȳi·
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Node-induced subgraph sampling
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Node-induced subgraph sampling

For some functions g , the sample value g(Ys) is an unbiased estimator of the
population value g(Y):

g(Y) = an average of subgraphs of size k, for k ≤ ns

g(Y) = 1

(n2)

∑
i<j

h(yi,j , yj,i )

g(Y) = 1

(n3)

∑
i<j<k

h(yi,j , yj,i , yi,k , yk,i , yj,k , yk,j) if ns ≥ 3

Why does it work?:
Each subgraph of size k appears in the sample with equal probability (although
the subgraphs that appear are dependent).

Some functions of interest are not of this type:

• in and outdegree distributions;

• geodesics, distances, number of paths, etc.
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Edge-induced subgraph sampling

Procedure:

1. Uniformly sample a set e = {e1, . . . , ene} of edges

e ⊂ {(i , j) : yi,j = 1}

2. Let Ys be the edge-generated subgraph of e.
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Edge-induced subgraph sampling
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Edge-induced subgraph sampling
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Edge-induced subgraph sampling
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Edge-induced subgraph sampling

How well do these subgraphs represent Y?

Can you infer anything about Y from these data?
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Edge-induced subgraph sampling
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Egocentric sampling

Procedure:

1. Uniformly sample a set s1 = {s1,1, . . . , s1,ns} of nodes

s1 ⊂ {1, . . . , n}.

2. Observe the relations for each i ∈ s1, i.e. observe {yi,1, . . . , yi,n}.
3. Let s2 be the set of nodes having a link from anyone in s1. Observe the

relations of anyone in s2 to anyone in s1 ∪ s2.

Ys = {yi,j : i , j ∈ s1 ∪ s2}

For large graphs, these data can be obtained (with high probability) by asking
each i ∈ s1 the following:

1. Who are your friends?

2. Among your friends, which are friends with each other?
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Link-tracing designs

Snowball sampling: Iteratively repeat the egocentric sampler, obtaining the
stage-k nodes sk from the links of sk−1.

This is a type of link-tracing design. The links of the current nodes determine
who is next to be included in the sample.

How will such subgraphs Ys be similar to Y?
How will they differ?
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Egocentric sampling
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Egocentric sampling
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Inference with egocentric samples

• Ys is not generally representative of Y.

• For some statistics, weighted averages based on Ys can be unbiased
(Horwitz-Thompson estimator).

• For many statistics, part of Ys can be used to obtain good estimates:
• degree distributions can be estimated from degrees of egos;
• covariate distributions can be estimated from those of the egos;

However, use of data from s2 generally requires a reweighting scheme.
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Parameter estimation with incomplete sampled data

Model: Pr(Y = y|θ), θ ∈ Θ.

Complete data: Y

Observed data: Y[O], where O is a set of pairs of indices

O =


i1 j1
i2 j2
i3 j3
...

...
is js


How can we make inference for θ based on Y[O]?
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Study design and missing data

Node-induced subgraph sampling

1 2 3 4 5 6
1 NA 0 1 0 0 1
2 0 NA 1 0 0 1
3 1 0 NA 1 0 0
4 0 1 0 NA 0 0
5 0 0 1 0 NA 1
6 1 0 1 0 0 NA

39/58



Study design and missing data

Node-induced subgraph sampling

1 2 3 4 5 6
1 NA 0 1 0 0 1
2 0 NA 1 0 0 1
3 1 0 NA 1 0 0
4 0 1 0 NA 0 0
5 0 0 1 0 NA 1
6 1 0 1 0 0 NA

40/58



Study design and missing data

Node-induced subgraph sampling

1 2 3 4 5 6
1 NA 0 1 0 0 1
2 0 NA 1 0 0 1
3 1 0 NA 1 0 0
4 0 1 0 NA 0 0
5 0 0 1 0 NA 1
6 1 0 1 0 0 NA

41/58



Study design and missing data

Node-induced subgraph sampling: Observed data

1 2 3 4 5 6
1 NA NA NA NA NA NA
2 NA NA 1 NA 0 NA
3 NA 0 NA NA 0 NA
4 NA NA NA NA NA NA
5 NA 0 1 NA NA NA
6 NA NA NA NA NA NA
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Study design and missing data

Edge-induced subgraph sampling

1 2 3 4 5 6
1 NA 0 1 0 0 1
2 0 NA 1 0 0 1
3 1 0 NA 1 0 0
4 0 1 0 NA 0 0
5 0 0 1 0 NA 1
6 1 0 1 0 0 NA
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Study design and missing data

Edge-induced subgraph sampling: Observed data

1 2 3 4 5 6
1 NA NA NA NA NA 1
2 NA NA 1 NA NA NA
3 1 NA NA NA NA NA
4 NA NA NA NA NA NA
5 NA NA 1 NA NA NA
6 NA NA 1 NA NA NA
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Study design and missing data

Egocentric sampling

1 2 3 4 5 6
1 NA 0 1 0 0 1
2 0 NA 1 0 0 1
3 1 0 NA 1 0 0
4 0 1 0 NA 0 0
5 0 0 1 0 NA 1
6 1 0 1 0 0 NA
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Study design and missing data

Egocentric sampling

1 2 3 4 5 6
1 NA NA NA NA NA NA
2 0 NA 1 0 0 1
3 NA 0 NA NA NA 0
4 NA NA NA NA NA NA
5 NA NA NA NA NA NA
6 NA 0 1 NA NA NA

50/58



Parameter estimation with missing data

If the data are missing at random, i.e. the value of o, what you get to observe,

• doesn’t depend on θ

• doesn’t depend on values of Y,

then valid likelihood and Bayesian inference can be obtained from the
observed-data likelihood:

lMAR(θ : y[o]) = Pr(Y[o] = y[o] : θ)

=
∑
y[oc ]

Pr(Y = y : θ)

Inference based on l(θ : y[o]) is provided in amen:

• put NA’s in place of any non-observed relations.
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Missing at random designs

Which designs we’ve discussed correspond to MAR relations?

• Node-induced subgraph sampling?

• Edge-induced subgraph sampling?

• Egocentric sampling?
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Ignorable designs

While egocentric and other link-tracing designs are not MAR, they still can be
analyzed as if they were. The argument is as follows:

The “data” include

• O = o, the determination of which relations you get to see;

• Y[O] = y[o], the relationship values for the observable relations.

The likelihood is then

l(θ : o, y[o]) = Pr(Y[o] = y[o],O = o|θ)

= Pr(Y[o] = y[o]|θ)× Pr(O = o|θ,Y[o] = y[o])

= lMAR(θ : y[o])× Pr(O = o|θ,Y[o] = y[o])

If the design part doesn’t depend on θ, then the observed likelihood is
proportional to the MAR likelihood, and the design can be ignored.
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Ignorable designs

l(θ : o, y[o]) = lMAR(θ : y[o])× Pr(O = o|θ,Y[o] = y[o])

When is the design ignorable?

(MAR) If the probability that O equals o doesn’t depend on θ or Y (e.g.,
node-induced subgraph sampling), the design is ignorable.

ID If the probability that O equals o

• doesn’t depend on θ

• only depends on Y through Y[o].

then the design is ignorable.

The latter conditions are often met for link tracing designs, like egocentric and
snowball sampling.
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Simulation study - ID likelihoods

yi,j = β0 + βrxn,i + βcxn,j + βd,i,j + ai + bj + εi,j

fit.pop = fitted model based on complete network data

fit.samp = fitted model based on sampled network data

How do the parameter estimates of fit.samp compare to those of fit.pop?
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Node-induced subgraph sample

np = 32, ns = 10

β0

−4.0 −3.0 −2.0 −1.0
βr

0.0 0.1 0.2 0.3 0.4

βc

−0.2 −0.1 0.0 0.1 0.2 0.3
βd

0.0 0.5 1.0 1.5
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Egocentric sample

np = 32, ns1 = 4

β0

−3.2 −2.8 −2.4 −2.0
βr

0.05 0.15 0.25 0.35

βc

−0.10 −0.05 0.00 0.05
βd

0.4 0.6 0.8 1.0 1.2
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