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Different perspectives on network analysis

Social sciences (social theory, description, survey design)

Machine learning (clustering, prediction, computation)

Physics and applied math (agent-based models, emergent features)

Statistics (statistical modeling, estimation and testing, design based inference)
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Example: AddHealth friendships

e “Add Health” - The National Longitudinal Study of Adolescent Health:

o A school-based study of adolescent health and social behaviors;
® www.cpc.unc.edu/projects/addhealth.

e Data from 160 schools across the US:

e The smallest had 69 adolescents in grades 7-12;
e The largest had thousands of participants.

e Relational data:
e Participants nominated and ranked up to 5 boys and 5 girls as friends.
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Example: AddHealth friendships

grade 7
- grade 8
« grade 9
« grade 10
- grade 11
« grade 12

« white
« black
« hispanic
- other

Notice: Homophily by nodal attributes.




Example: AddHealth friendships

« male
« female

Question: Why might this plot be misleading?
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Example: Protein interaction data
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Notice: Network structure as compared to the friendship data.
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Dependent relational data

On notion of statistical dependence is as follows:

Dependence:

Two outcomes are dependent if knowing one gives you information about
the other.

Exercise:
How might network features give rise to statistical dependence?

Ubiquitous feature of network data:
Statistical dependence among relational measurements.
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Consider a basic (generalized) linear model
Yij ~ B xij+ e
A model can provide
e a measure of the association between X and Y: 3, se(3)

e imputations of missing observations: p(y1,4]Y, X)

* a probabilistic description of network features: g(¥), Y ~ p(Y|Y,X)

A recurring challenge will be to sufficiently account for dependence in the data.

14/15



15/15

ourse outline

. Representations of relational data

e matrix representations
e graph representations

. Descriptive statistics and summaries

. Inference for complete relational data

. Inference for incomplete or sampled relational data

. Longitudinal and multivariate relational data




Course outline

1. Representations of relational data
e matrix representations

15/15



Course outline

1. Representations of relational data

e matrix representations
e graph representations

15/15



Course outline

1. Representations of relational data

e matrix representations
e graph representations

2. Descriptive statistics and summaries

15/15



Course outline

1. Representations of relational data

e matrix representations
e graph representations

2. Descriptive statistics and summaries
e matrix-based (row/column summaries, matrix decompositions)

15/15



Course outline

1. Representations of relational data
e matrix representations
e graph representations
2. Descriptive statistics and summaries

e matrix-based (row/column summaries, matrix decompositions)
e graph-based (degrees, dyads, triads, paths)

15/15



Course outline

1. Representations of relational data
e matrix representations
e graph representations
2. Descriptive statistics and summaries

e matrix-based (row/column summaries, matrix decompositions)
o graph-based (degrees, dyads, triads, paths)
e covariates

15/15



Course outline

1. Representations of relational data
e matrix representations
e graph representations
2. Descriptive statistics and summaries

e matrix-based (row/column summaries, matrix decompositions)
o graph-based (degrees, dyads, triads, paths)
e covariates

3. Inference for complete relational data

15/15



Course outline

1. Representations of relational data
e matrix representations
e graph representations
2. Descriptive statistics and summaries

e matrix-based (row/column summaries, matrix decompositions)
o graph-based (degrees, dyads, triads, paths)
e covariates

3. Inference for complete relational data
e model comparison via hypothesis testing

15/15



Course outline

1. Representations of relational data
e matrix representations
e graph representations
2. Descriptive statistics and summaries
e matrix-based (row/column summaries, matrix decompositions)
o graph-based (degrees, dyads, triads, paths)
e covariates
3. Inference for complete relational data

e model comparison via hypothesis testing
e regression models

15/15



Course outline

1. Representations of relational data
e matrix representations
e graph representations
2. Descriptive statistics and summaries

e matrix-based (row/column summaries, matrix decompositions)
o graph-based (degrees, dyads, triads, paths)
e covariates

3. Inference for complete relational data

e model comparison via hypothesis testing
e regression models
e p; and ERGM models

15/15



Course outline

1. Representations of relational data
e matrix representations
e graph representations
2. Descriptive statistics and summaries

e matrix-based (row/column summaries, matrix decompositions)
o graph-based (degrees, dyads, triads, paths)
e covariates

3. Inference for complete relational data

e model comparison via hypothesis testing
e regression models

e p; and ERGM models

e social relations model

15/15



Course outline

1. Representations of relational data

e matrix representations
e graph representations

2. Descriptive statistics and summaries
e matrix-based (row/column summaries, matrix decompositions)
o graph-based (degrees, dyads, triads, paths)
e covariates

3. Inference for complete relational data
e model comparison via hypothesis testing
e regression models
p1 and ERGM models
social relations model
latent variable models (random effects, latent factors and blockmodels)

15/15



Course outline

1. Representations of relational data

e matrix representations
e graph representations

2. Descriptive statistics and summaries
e matrix-based (row/column summaries, matrix decompositions)
o graph-based (degrees, dyads, triads, paths)
e covariates

3. Inference for complete relational data
e model comparison via hypothesis testing
e regression models
p1 and ERGM models
social relations model
latent variable models (random effects, latent factors and blockmodels)

4. Inference for incomplete or sampled relational data

15/15



Course outline

1. Representations of relational data
e matrix representations
e graph representations
2. Descriptive statistics and summaries
e matrix-based (row/column summaries, matrix decompositions)
o graph-based (degrees, dyads, triads, paths)
e covariates
3. Inference for complete relational data

e model comparison via hypothesis testing

e regression models

e p; and ERGM models

e social relations model

e latent variable models (random effects, latent factors and blockmodels)

4. Inference for incomplete or sampled relational data
e sampling designs (link tracing, egocentric)

15/15



Course outline

1. Representations of relational data
e matrix representations
e graph representations
2. Descriptive statistics and summaries

e matrix-based (row/column summaries, matrix decompositions)
o graph-based (degrees, dyads, triads, paths)
e covariates

3. Inference for complete relational data

e model comparison via hypothesis testing

e regression models

e p; and ERGM models

e social relations model

e latent variable models (random effects, latent factors and blockmodels)

4. Inference for incomplete or sampled relational data

e sampling designs (link tracing, egocentric)
e sample-based inference

15/15



Course outline

1. Representations of relational data
e matrix representations
e graph representations
2. Descriptive statistics and summaries

e matrix-based (row/column summaries, matrix decompositions)
o graph-based (degrees, dyads, triads, paths)
e covariates

3. Inference for complete relational data

e model comparison via hypothesis testing

e regression models

e p; and ERGM models

e social relations model

e latent variable models (random effects, latent factors and blockmodels)

4. Inference for incomplete or sampled relational data

e sampling designs (link tracing, egocentric)
e sample-based inference
e model-based inference

15/15



Course outline

1. Representations of relational data
e matrix representations
e graph representations
2. Descriptive statistics and summaries

e matrix-based (row/column summaries, matrix decompositions)
o graph-based (degrees, dyads, triads, paths)
e covariates

3. Inference for complete relational data

e model comparison via hypothesis testing

e regression models

e p; and ERGM models

e social relations model

e latent variable models (random effects, latent factors and blockmodels)

4. Inference for incomplete or sampled relational data

e sampling designs (link tracing, egocentric)
e sample-based inference
e model-based inference

5. Longitudinal and multivariate relational data

15/15



