Introduction

567 Statistical analysis of social networks

Peter Hoff

Statistics, University of Washington

Relationship: An irreducible property of two or more entities.

- Contrast to properties of entities alone (attributes).
- Relations are possibly affected, but not determined, by entity attributes.

- Entities: people, animals, groups, locations, organizations, regions, etc..
- Relationships: communication, acquaintanceship, sexual contact, trade, migration rate, alliance/conflict, etc..

Relationship: An irreducible property of two or more entities.

- Contrast to properties of entities alone (attributes).
- Relations are possibly affected, but not determined, by entity attributes.

- Entities: people, animals, groups, locations, organizations, regions, etc..
- Relationships: communication, acquaintanceship, sexual contact, trade, migration rate, alliance/conflict, etc..

Relationship: An irreducible property of two or more entities.

- Contrast to properties of entities alone (attributes).
- Relations are possibly affected, but not determined, by entity attributes.

- Entities: people, animals, groups, locations, organizations, regions, etc..
- Relationships: communication, acquaintanceship, sexual contact, trade, migration rate, alliance/conflict, etc..

Relationship: An irreducible property of two or more entities.

- Contrast to properties of entities alone (attributes).
- Relations are possibly affected, but not determined, by entity attributes.

- Entities: people, animals, groups, locations, organizations, regions, etc..
- Relationships: communication, acquaintanceship, sexual contact, trade, migration rate, alliance/conflict, etc..

Relationship: An irreducible property of two or more entities.

- Contrast to properties of entities alone (attributes).
- Relations are possibly affected, but not determined, by entity attributes.

- Entities: people, animals, groups, locations, organizations, regions, etc..
- Relationships: communication, acquaintanceship, sexual contact, trade, migration rate, alliance/conflict, etc..

Relationship: An irreducible property of two or more entities.

- Contrast to properties of entities alone (attributes).
- Relations are possibly affected, but not determined, by entity attributes.

- Entities: people, animals, groups, locations, organizations, regions, etc..
- Relationships: communication, acquaintanceship, sexual contact, trade, migration rate, alliance/conflict, etc..

Relational data:

A collection of entities and a set of measured relations between them.

- Entities: nodes, actors, egos, units.
- Relations: ties, links, edges.

- directed or undirected;
- valued or dichotomous (binary).

Relational data:

A collection of entities and a set of measured relations between them.

- Entities: nodes, actors, egos, units.
- Relations: ties, links, edges.

- directed or undirected;
- valued or dichotomous (binary).

Relational data:

A collection of entities and a set of measured relations between them.

- Entities: nodes, actors, egos, units.
- Relations: ties, links, edges.

- directed or undirected;
- valued or dichotomous (binary).

Relational data:

A collection of entities and a set of measured relations between them.

- Entities: nodes, actors, egos, units.
- Relations: ties, links, edges.

- directed or undirected;
- valued or dichotomous (binary).

Relational data:

A collection of entities and a set of measured relations between them.

- Entities: nodes, actors, egos, units.
- Relations: ties, links, edges.

- directed or undirected;
- valued or dichotomous (binary).

Relational data:

A collection of entities and a set of measured relations between them.

- Entities: nodes, actors, egos, units.
- Relations: ties, links, edges.

- directed or undirected;
- valued or dichotomous (binary).

• Social sciences (social theory, description, survey design)

- Machine learning (clustering, prediction, computation)
- Physics and applied math (agent-based models, emergent features)
- Statistics (statistical modeling, estimation and testing, design based inference)

- Social sciences (social theory, description, survey design)
- Machine learning (clustering, prediction, computation)
- Physics and applied math (agent-based models, emergent features)
- Statistics (statistical modeling, estimation and testing, design based inference)

- Social sciences (social theory, description, survey design)
- Machine learning (clustering, prediction, computation)
- Physics and applied math (agent-based models, emergent features)
- Statistics (statistical modeling, estimation and testing, design based inference)

- Social sciences (social theory, description, survey design)
- Machine learning (clustering, prediction, computation)
- Physics and applied math (agent-based models, emergent features)
- Statistics (statistical modeling, estimation and testing, design based inference)

1. Statistical modeling: evaluation and fitting of network models.

- Testing: evaluation of competing theories of network formation.
- Estimation: evaluation of parameters in a presumed network model.
- Description: summaries of main network patterns.
- Prediction: prediction of missing or future network relations.

2. Design-based inference: Network inference from sampled data.

- Design: survey and data-gathering procedures.
- Inference: generalization of sample data to the full network.

1. Statistical modeling: evaluation and fitting of network models.

- Testing: evaluation of competing theories of network formation.
- Estimation: evaluation of parameters in a presumed network model.
- Description: summaries of main network patterns.
- Prediction: prediction of missing or future network relations.

2. Design-based inference: Network inference from sampled data.

- Design: survey and data-gathering procedures.
- Inference: generalization of sample data to the full network.

- Testing: evaluation of competing theories of network formation.
- Estimation: evaluation of parameters in a presumed network model.
- Description: summaries of main network patterns.
- Prediction: prediction of missing or future network relations.
- 2. Design-based inference: Network inference from sampled data.
 - Design: survey and data-gathering procedures.
 - Inference: generalization of sample data to the full network.

- Testing: evaluation of competing theories of network formation.
- Estimation: evaluation of parameters in a presumed network model.
- Description: summaries of main network patterns.
- Prediction: prediction of missing or future network relations.
- 2. Design-based inference: Network inference from sampled data.
 - Design: survey and data-gathering procedures.
 - Inference: generalization of sample data to the full network.

- Testing: evaluation of competing theories of network formation.
- Estimation: evaluation of parameters in a presumed network model.
- Description: summaries of main network patterns.
- Prediction: prediction of missing or future network relations.
- 2. Design-based inference: Network inference from sampled data.
 - Design: survey and data-gathering procedures.
 - Inference: generalization of sample data to the full network.

- Testing: evaluation of competing theories of network formation.
- Estimation: evaluation of parameters in a presumed network model.
- Description: summaries of main network patterns.
- Prediction: prediction of missing or future network relations.
- 2. Design-based inference: Network inference from sampled data.
 - Design: survey and data-gathering procedures.
 - Inference: generalization of sample data to the full network.

1. Statistical modeling: evaluation and fitting of network models.

- Testing: evaluation of competing theories of network formation.
- Estimation: evaluation of parameters in a presumed network model.
- Description: summaries of main network patterns.
- Prediction: prediction of missing or future network relations.

2. Design-based inference: Network inference from sampled data.

- Design: survey and data-gathering procedures.
- Inference: generalization of sample data to the full network.

- Testing: evaluation of competing theories of network formation.
- Estimation: evaluation of parameters in a presumed network model.
- Description: summaries of main network patterns.
- Prediction: prediction of missing or future network relations.
- 2. Design-based inference: Network inference from sampled data.
 - Design: survey and data-gathering procedures.
 - Inference: generalization of sample data to the full network.

- Testing: evaluation of competing theories of network formation.
- Estimation: evaluation of parameters in a presumed network model.
- Description: summaries of main network patterns.
- Prediction: prediction of missing or future network relations.
- 2. Design-based inference: Network inference from sampled data.
 - Design: survey and data-gathering procedures.
 - Inference: generalization of sample data to the full network.

- Testing: evaluation of competing theories of network formation.
- Estimation: evaluation of parameters in a presumed network model.
- Description: summaries of main network patterns.
- Prediction: prediction of missing or future network relations.
- 2. Design-based inference: Network inference from sampled data.
 - Design: survey and data-gathering procedures.
 - Inference: generalization of sample data to the full network.

• "Add Health" - The National Longitudinal Study of Adolescent Health:

- A school-based study of adolescent health and social behaviors;
- www.cpc.unc.edu/projects/addhealth.

• Data from 160 schools across the US:

- The smallest had 69 adolescents in grades 7-12;
- The largest had thousands of participants.
- Relational data:
 - Participants nominated and ranked up to 5 boys and 5 girls as friends.

• "Add Health" - The National Longitudinal Study of Adolescent Health:

- A school-based study of adolescent health and social behaviors;
- www.cpc.unc.edu/projects/addhealth

• Data from 160 schools across the US:

- The smallest had 69 adolescents in grades 7-12;
- The largest had thousands of participants.
- Relational data:
 - Participants nominated and ranked up to 5 boys and 5 girls as friends.

- "Add Health" The National Longitudinal Study of Adolescent Health:
 - A school-based study of adolescent health and social behaviors;
 - www.cpc.unc.edu/projects/addhealth.
- Data from 160 schools across the US:
 - The smallest had 69 adolescents in grades 7-12;
 - The largest had thousands of participants.
- Relational data:
 - Participants nominated and ranked up to 5 boys and 5 girls as friends.

- "Add Health" The National Longitudinal Study of Adolescent Health:
 - A school-based study of adolescent health and social behaviors;
 - www.cpc.unc.edu/projects/addhealth.
- Data from 160 schools across the US:
 - The smallest had 69 adolescents in grades 7–12;
 - The largest had thousands of participants.
- Relational data:
 - Participants nominated and ranked up to 5 boys and 5 girls as friends.

- "Add Health" The National Longitudinal Study of Adolescent Health:
 - A school-based study of adolescent health and social behaviors;
 - www.cpc.unc.edu/projects/addhealth.
- Data from 160 schools across the US:
 - The smallest had 69 adolescents in grades 7-12;
 - The largest had thousands of participants.
- Relational data:
 - Participants nominated and ranked up to 5 boys and 5 girls as friends.

- "Add Health" The National Longitudinal Study of Adolescent Health:
 - A school-based study of adolescent health and social behaviors;
 - www.cpc.unc.edu/projects/addhealth.
- Data from 160 schools across the US:
 - The smallest had 69 adolescents in grades 7–12;
 - The largest had thousands of participants.
- Relational data:
 - Participants nominated and ranked up to 5 boys and 5 girls as friends.

- "Add Health" The National Longitudinal Study of Adolescent Health:
 - A school-based study of adolescent health and social behaviors;
 - www.cpc.unc.edu/projects/addhealth.
- Data from 160 schools across the US:
 - The smallest had 69 adolescents in grades 7-12;
 - The largest had thousands of participants.
- Relational data:
 - Participants nominated and ranked up to 5 boys and 5 girls as friends.

- "Add Health" The National Longitudinal Study of Adolescent Health:
 - A school-based study of adolescent health and social behaviors;
 - www.cpc.unc.edu/projects/addhealth.
- Data from 160 schools across the US:
 - The smallest had 69 adolescents in grades 7-12;
 - The largest had thousands of participants.
- Relational data:
 - Participants nominated and ranked up to 5 boys and 5 girls as friends.

Notice: Homophily by nodal attributes.
Example: AddHealth friendships

Notice: Homophily by nodal attributes.

Example: AddHealth friendships

Notice: Homophily by nodal attributes.

Example: AddHealth friendships

Question: Why might this plot be misleading?

Example: Protein interaction data

Notice: Network structure as compared to the friendship data.

- Reciprocity of ties
- Degree heterogeneity in the propensity to form or receive ties
 - sociability
 - popularity
- Homophily by actor attributes
 - higher propensity to form ties between actors with similar attributes
 - attributes may be observed or unobserved
- Transitivity of relationships
 - friends of friends have a higher propensity to be friends
- Balance of relationships
 - liking those who dislike whom you dislike
- Equivalence of nodes
 - some nodes may have identical or similar patterns of relationships

In addition to associations to nodal and dyadic attributes, many networks exhibit the following features:

• Reciprocity of ties

- Degree heterogeneity in the propensity to form or receive ties
 - sociability
 - popularity
- Homophily by actor attributes
 - higher propensity to form ties between actors with similar attributes
 - attributes may be observed or unobserved
- Transitivity of relationships
 - friends of friends have a higher propensity to be friends
- Balance of relationships
 - liking those who dislike whom you dislike
- Equivalence of nodes
 - some nodes may have identical or similar patterns of relationships

- Reciprocity of ties
- Degree heterogeneity in the propensity to form or receive ties
 - sociability
 - popularity
- Homophily by actor attributes
 - higher propensity to form ties between actors with similar attributes
 - attributes may be observed or unobserved
- Transitivity of relationships
 - friends of friends have a higher propensity to be friends
- Balance of relationships
 - liking those who dislike whom you dislike
- Equivalence of nodes
 - some nodes may have identical or similar patterns of relationships

- Reciprocity of ties
- Degree heterogeneity in the propensity to form or receive ties
 - sociability
 - popularity
- Homophily by actor attributes
 - higher propensity to form ties between actors with similar attributes
 - attributes may be observed or unobserved
- Transitivity of relationships
 - friends of friends have a higher propensity to be friends
- Balance of relationships
 - liking those who dislike whom you dislike
- Equivalence of nodes
 - some nodes may have identical or similar patterns of relationships

- Reciprocity of ties
- Degree heterogeneity in the propensity to form or receive ties
 - sociability
 - popularity
- Homophily by actor attributes
 - higher propensity to form ties between actors with similar attributes
 - attributes may be observed or unobserved
- Transitivity of relationships
 - friends of friends have a higher propensity to be friends
- Balance of relationships
 - liking those who dislike whom you dislike
- Equivalence of nodes
 - some nodes may have identical or similar patterns of relationships

- Reciprocity of ties
- Degree heterogeneity in the propensity to form or receive ties
 - sociability
 - popularity
- Homophily by actor attributes
 - higher propensity to form ties between actors with similar attributes
 - attributes may be observed or unobserved
- Transitivity of relationships
 - · friends of friends have a higher propensity to be friends
- Balance of relationships
 - liking those who dislike whom you dislike
- Equivalence of nodes
 - some nodes may have identical or similar patterns of relationships

- Reciprocity of ties
- Degree heterogeneity in the propensity to form or receive ties
 - sociability
 - popularity
- Homophily by actor attributes
 - higher propensity to form ties between actors with similar attributes
 - attributes may be observed or unobserved
- Transitivity of relationships
 - · friends of friends have a higher propensity to be friends
- Balance of relationships
 - liking those who dislike whom you dislike
- Equivalence of nodes
 - some nodes may have identical or similar patterns of relationships

- Reciprocity of ties
- Degree heterogeneity in the propensity to form or receive ties
 - sociability
 - popularity
- Homophily by actor attributes
 - higher propensity to form ties between actors with similar attributes
 - attributes may be observed or unobserved
- Transitivity of relationships
 - · friends of friends have a higher propensity to be friends
- Balance of relationships
 - liking those who dislike whom you dislike
- Equivalence of nodes
 - some nodes may have identical or similar patterns of relationships

- Reciprocity of ties
- Degree heterogeneity in the propensity to form or receive ties
 - sociability
 - popularity
- Homophily by actor attributes
 - higher propensity to form ties between actors with similar attributes
 - attributes may be observed or unobserved
- Transitivity of relationships
 - · friends of friends have a higher propensity to be friends
- Balance of relationships
 - liking those who dislike whom you dislike
- Equivalence of nodes
 - some nodes may have identical or similar patterns of relationships

On notion of statistical dependence is as follows:

Dependence:

Two outcomes are **dependent** if knowing one gives you information about the other.

Exercise:

How might network features give rise to statistical dependence?

Ubiquitous feature of network data:

On notion of statistical dependence is as follows:

Dependence:

Two outcomes are **dependent** if knowing one gives you information about the other.

Exercise:

How might network features give rise to statistical dependence?

Ubiquitous feature of network data:

On notion of statistical dependence is as follows:

Dependence:

Two outcomes are **dependent** if knowing one gives you information about the other.

Exercise:

How might network features give rise to statistical dependence?

Ubiquitous feature of network data:

On notion of statistical dependence is as follows:

Dependence:

Two outcomes are **dependent** if knowing one gives you information about the other.

Exercise:

How might network features give rise to statistical dependence?

Ubiquitous feature of network data:

- How can we describe features of social relations? (reciprocity/sociability/popularity/transitivity : descriptive statistics)
- How can we identify nodes with similar network roles? (stochastic equivalence : node partitioning)
- How do we relate the network to covariate information? (homophily : regression modeling)

- How can we describe features of social relations? (reciprocity/sociability/popularity/transitivity : descriptive statistics)
- 2. How can we identify nodes with similar network roles? (stochastic equivalence : node partitioning)
- 3. How do we relate the network to covariate information? (homophily : regression modeling)

- How can we describe features of social relations? (reciprocity/sociability/popularity/transitivity : descriptive statistics)
- 2. How can we identify nodes with similar network roles? (stochastic equivalence : node partitioning)
- 3. How do we relate the network to covariate information? (homophily : regression modeling)

- How can we describe features of social relations? (reciprocity/sociability/popularity/transitivity : descriptive statistics)
- 2. How can we identify nodes with similar network roles? (stochastic equivalence : node partitioning)
- 3. How do we relate the network to covariate information? (homophily : regression modeling)

- How can we describe features of social relations? (reciprocity/sociability/popularity/transitivity : descriptive statistics)
- 2. How can we identify nodes with similar network roles? (stochastic equivalence : node partitioning)
- 3. How do we relate the network to covariate information? (homophily : regression modeling)

- How can we describe features of social relations? (reciprocity/sociability/popularity/transitivity : descriptive statistics)
- 2. How can we identify nodes with similar network roles? (stochastic equivalence : node partitioning)
- 3. How do we relate the network to covariate information? (homophily : regression modeling)

 $y_{i,j}$ measures $i \rightarrow j$, $\mathbf{x}_{i,j}$ is a vector of explanatory variables.

	$\begin{pmatrix} y_{1,1} \\ y_{2,1} \end{pmatrix}$	<i>Y</i> 1,2	<i>Y</i> 1,3	NA	<i>У</i> 1,5 У2,5)		(X _{1,1}	x _{1,2}	X 1,3	X 1,4	X 1,5)
v –	<i>y</i> _{2,1} <i>y</i> _{3,1}	NA	у2,3 У3,3	у2,4 У3,4	NA		x _	x _{3,1}	x _{3,2}	x _{2,3} x _{3,3}	x _{2,4} x _{3,4}	x _{2,5} x _{3,5}	
• -	<i>y</i> 4,1	<i>Y</i> 4,2	<i>y</i> _{4,3}	<i>Y</i> 4,4	<i>y</i> 4,5		x =	$\mathbf{x}_{4,1}$	$\mathbf{x}_{4,2}$	x _{4,3}	$\mathbf{x}_{4,4}$	$\mathbf{x}_{4,5}$	•••
	(:	÷	÷	÷	÷)		(÷	÷	÷	÷	÷)

Consider a basic (generalized) linear model

$$y_{i,j} \sim \boldsymbol{\beta}^T \mathbf{x}_{i,j} + \mathbf{e}_{i,j}$$

A model can provide

- a measure of the association between **X** and **Y**: $\hat{oldsymbol{eta}}$, se $(\hat{oldsymbol{eta}})$
- imputations of missing observations: $p(y_{1,4}|\mathbf{Y}, \mathbf{X})$
- a probabilistic description of network features: $g(\mathbf{ ilde{Y}}), \ \mathbf{ ilde{Y}} \sim p(\mathbf{ ilde{Y}}|\mathbf{Y}, \mathbf{X})$

 $y_{i,j}$ measures $i \rightarrow j$, $\mathbf{x}_{i,j}$ is a vector of explanatory variables.

	$\begin{pmatrix} y_{1,1} \\ y_{2,1} \end{pmatrix}$	<i>Y</i> 1,2	<i>Y</i> 1,3	NA	<i>У</i> 1,5 У2,5)		(X _{1,1}	x _{1,2}	X 1,3	X 1,4	X 1,5)
v –	<i>y</i> _{2,1} <i>y</i> _{3,1}	NA	у2,3 У3,3	у2,4 У3,4	NA		x _	x _{3,1}	x _{3,2}	x _{2,3} x _{3,3}	x _{2,4} x _{3,4}	x _{2,5} x _{3,5}	
• -	<i>y</i> 4,1	<i>Y</i> 4,2	<i>y</i> _{4,3}	<i>Y</i> 4,4	<i>y</i> 4,5		x =	$\mathbf{x}_{4,1}$	$\mathbf{x}_{4,2}$	x _{4,3}	$\mathbf{x}_{4,4}$	$\mathbf{x}_{4,5}$	•••
	(:	÷	÷	÷	÷)		(÷	÷	÷	÷	÷)

Consider a basic (generalized) linear model

$$y_{i,j} \sim \boldsymbol{\beta}^T \mathbf{x}_{i,j} + e_{i,j}$$

A model can provide

- a measure of the association between **X** and **Y**: $\hat{\boldsymbol{\beta}}$, se($\hat{\boldsymbol{\beta}}$)
- imputations of missing observations: $p(y_{1,4}|\mathbf{Y},\mathbf{X})$
- a probabilistic description of network features: $g(\tilde{\mathbf{Y}}), \ \tilde{\mathbf{Y}} \sim p(\tilde{\mathbf{Y}} | \mathbf{Y}, \mathbf{X})$

 $y_{i,j}$ measures $i \rightarrow j$, $\mathbf{x}_{i,j}$ is a vector of explanatory variables.

	(Y1,1	<i>y</i> _{1,2}	<i>Y</i> 1,3	NA	<i>Y</i> 1,5)		x _{1,1}	$x_{1,2}$	x _{1,3}	$\mathbf{x}_{1,4}$	$x_{1,5}$	/
Y =	<i>y</i> _{2,1} <i>y</i> ₂	y 2,2	y 2,3	<i>Y</i> 2,4	<i>y</i> 2,5 NA		X =	x _{2,1}	x _{2,2}	x _{2,3}	x _{2,4}	x 2,5	
	<i>y</i> _{3,1}	NA	<i>y</i> _{3,3}	<i>Y</i> 3,4				$x_{3,1}$	x _{3,2}	x _{3,3}	x _{3,4}	$x_{3,5}$	
	<i>y</i> _{4,1}	<i>Y</i> 4,2	<i>Y</i> 4,3	<i>Y</i> 4,4	<i>Y</i> 4,5			$\mathbf{x}_{4,1}$	x _{4,2}	x _{4,3}	$\mathbf{x}_{4,4}$	$x_{4,5}$	
	(:	:	:	:	:)		(:	:	:	:	:)

Consider a basic (generalized) linear model

$$y_{i,j} \sim \boldsymbol{\beta}^T \mathbf{x}_{i,j} + \boldsymbol{e}_{i,j}$$

A model can provide

- a measure of the association between **X** and **Y**: $\hat{\boldsymbol{\beta}}$, se($\hat{\boldsymbol{\beta}}$)
- imputations of missing observations: $p(y_{1,4}|\mathbf{Y}, \mathbf{X})$
- a probabilistic description of network features: $g(\mathbf{ ilde{Y}}), \ \mathbf{ ilde{Y}} \sim p(\mathbf{ ilde{Y}}|\mathbf{Y}, \mathbf{X})$

 $y_{i,j}$ measures $i \rightarrow j$, $\mathbf{x}_{i,j}$ is a vector of explanatory variables.

	$\begin{pmatrix} y_{1,1} \\ y_{2,1} \end{pmatrix}$	<i>y</i> _{1,2}	<i>Y</i> 1,3	NA	<i>У</i> 1,5 У2,5)		(X _{1,1}	x _{1,2}	X 1,3	X 1,4	X 1,5)
v –	<i>y</i> _{2,1} <i>y</i> _{3,1}	NA	у2,3 У3,3	у2,4 У3,4	NA		x _	x _{3,1}	x _{3,2}	x _{2,3} x _{3,3}	x _{2,4} x _{3,4}	x _{2,5} x _{3,5}	
• -	<i>y</i> 4,1	<i>Y</i> 4,2	<i>y</i> _{4,3}	<i>Y</i> 4,4	<i>Y</i> 4,5		x =	$\mathbf{x}_{4,1}$	$\mathbf{x}_{4,2}$	x _{4,3}	$\mathbf{x}_{4,4}$	$\mathbf{x}_{4,5}$	•••
	(:	÷	÷	÷	÷)		(÷	÷	÷	÷	÷)

Consider a basic (generalized) linear model

$$y_{i,j} \sim \boldsymbol{\beta}^T \mathbf{x}_{i,j} + \boldsymbol{e}_{i,j}$$

A model can provide

- a measure of the association between **X** and **Y**: $\hat{\boldsymbol{\beta}}$, se($\hat{\boldsymbol{\beta}}$)
- imputations of missing observations: $p(y_{1,4}|\mathbf{Y}, \mathbf{X})$
- a probabilistic description of network features: $g(\tilde{\mathbf{Y}}), \ \tilde{\mathbf{Y}} \sim \rho(\tilde{\mathbf{Y}} | \mathbf{Y}, \mathbf{X})$

 $y_{i,j}$ measures $i \rightarrow j$, $\mathbf{x}_{i,j}$ is a vector of explanatory variables.

	$\begin{pmatrix} y_{1,1} \\ y_{2,1} \end{pmatrix}$	<i>Y</i> 1,2	<i>Y</i> 1,3	NA	<i>У</i> 1,5 У2 Б	···)		(X _{1,1}	x _{1,2}	X 1,3	X 1,4	X 1,5 X 2.5)
Y –	<i>y</i> _{2,1} <i>y</i> _{3,1}	NA	у2,3 У3,3	у2,4 У3,4	NA		x _	x _{3,1}	x _{3,2}	x _{2,3} x _{3,3}	x _{2,4} x _{3,4}	x _{2,5} x _{3,5}	
•	<i>Y</i> 4,1	<i>Y</i> 4,2	<i>y</i> _{4,3}	<i>Y</i> 4,4	<i>y</i> 4,5		~ –	$\mathbf{x}_{4,1}$	x _{4,2}	x _{4,3}	$\mathbf{x}_{4,4}$	x _{4,5}	
		÷	÷	÷	÷)		(:	÷	÷	÷	÷)

Consider a basic (generalized) linear model

$$y_{i,j} \sim \boldsymbol{\beta}^T \mathbf{x}_{i,j} + \boldsymbol{e}_{i,j}$$

A model can provide

- a measure of the association between **X** and **Y**: $\hat{\boldsymbol{\beta}}$, se $(\hat{\boldsymbol{\beta}})$
- imputations of missing observations: $p(y_{1,4}|\mathbf{Y}, \mathbf{X})$
- a probabilistic description of network features: $g(\mathbf{\tilde{Y}}), \ \mathbf{\tilde{Y}} \sim p(\mathbf{\tilde{Y}}|\mathbf{Y}, \mathbf{X})$

1. Representations of relational data

- matrix representations
- graph representations

2. Descriptive statistics and summaries

- matrix-based (row/column summaries, matrix decompositions)
- graph-based (degrees, dyads, triads, paths)
- covariates

3. Inference for complete relational data

- model comparison via hypothesis testing
- regression models
- p₁ and ERGM models
- social relations model
- latent variable models (random effects, latent factors and blockmodels)

4. Inference for incomplete or sampled relational data

- sampling designs (link tracing, egocentric)
- sample-based inference
- model-based inference

1. Representations of relational data

matrix representations

graph representations

2. Descriptive statistics and summaries

- matrix-based (row/column summaries, matrix decompositions)
- graph-based (degrees, dyads, triads, paths)
- covariates

3. Inference for complete relational data

- model comparison via hypothesis testing
- regression models
- p₁ and ERGM models
- social relations model
- latent variable models (random effects, latent factors and blockmodels)

4. Inference for incomplete or sampled relational data

- sampling designs (link tracing, egocentric)
- sample-based inference
- model-based inference

1. Representations of relational data

- matrix representations
- graph representations
- 2. Descriptive statistics and summaries
 - matrix-based (row/column summaries, matrix decompositions)
 - graph-based (degrees, dyads, triads, paths)
 - covariates

3. Inference for complete relational data

- model comparison via hypothesis testing
- regression models
- p₁ and ERGM models
- social relations model
- latent variable models (random effects, latent factors and blockmodels)

4. Inference for incomplete or sampled relational data

- sampling designs (link tracing, egocentric)
- sample-based inference
- model-based inference

1. Representations of relational data

- matrix representations
- graph representations

2. Descriptive statistics and summaries

- matrix-based (row/column summaries, matrix decompositions)
- graph-based (degrees, dyads, triads, paths)
- covariates

3. Inference for complete relational data

- model comparison via hypothesis testing
- regression models
- p₁ and ERGM models
- social relations model
- latent variable models (random effects, latent factors and blockmodels)

4. Inference for incomplete or sampled relational data

- sampling designs (link tracing, egocentric)
- sample-based inference
- model-based inference

- 1. Representations of relational data
 - matrix representations
 - graph representations
- 2. Descriptive statistics and summaries
 - matrix-based (row/column summaries, matrix decompositions)
 - graph-based (degrees, dyads, triads, paths)
 - covariates
- 3. Inference for complete relational data
 - model comparison via hypothesis testing
 - regression models
 - p₁ and ERGM models
 - social relations model
 - latent variable models (random effects, latent factors and blockmodels)
- 4. Inference for incomplete or sampled relational data
 - sampling designs (link tracing, egocentric)
 - sample-based inference
 - model-based inference
- 5. Longitudinal and multivariate relational data

- 1. Representations of relational data
 - matrix representations
 - graph representations
- 2. Descriptive statistics and summaries
 - matrix-based (row/column summaries, matrix decompositions)
 - graph-based (degrees, dyads, triads, paths)
 - covariates
- 3. Inference for complete relational data
 - model comparison via hypothesis testing
 - regression models.
 - p₁ and ERGM models
 - social relations model
 - latent variable models (random effects, latent factors and blockmodels)
- 4. Inference for incomplete or sampled relational data
 - sampling designs (link tracing, egocentric)
 - sample-based inference
 - model-based inference
- 5. Longitudinal and multivariate relational data

- 1. Representations of relational data
 - matrix representations
 - graph representations
- 2. Descriptive statistics and summaries
 - matrix-based (row/column summaries, matrix decompositions)
 - graph-based (degrees, dyads, triads, paths)
 - covariates
- 3. Inference for complete relational data
 - model comparison via hypothesis testing
 - regression models
 - p₁ and ERGM models
 - social relations model
 - latent variable models (random effects, latent factors and blockmodels)
- 4. Inference for incomplete or sampled relational data
 - sampling designs (link tracing, egocentric)
 - sample-based inference
 - model-based inference
- 5. Longitudinal and multivariate relational data

- 1. Representations of relational data
 - matrix representations
 - graph representations
- 2. Descriptive statistics and summaries
 - matrix-based (row/column summaries, matrix decompositions)
 - graph-based (degrees, dyads, triads, paths)
 - covariates

3. Inference for complete relational data

- model comparison via hypothesis testing
- regression models
- p₁ and ERGM models
- social relations model
- latent variable models (random effects, latent factors and blockmodels)
- 4. Inference for incomplete or sampled relational data
 - sampling designs (link tracing, egocentric)
 - sample-based inference
 - model-based inference
- 5. Longitudinal and multivariate relational data
- 1. Representations of relational data
 - matrix representations
 - graph representations
- 2. Descriptive statistics and summaries
 - matrix-based (row/column summaries, matrix decompositions)
 - graph-based (degrees, dyads, triads, paths)
 - covariates
- 3. Inference for complete relational data
 - model comparison via hypothesis testing
 - regression models
 - p₁ and ERGM models
 - social relations model
 - latent variable models (random effects, latent factors and blockmodels)
- 4. Inference for incomplete or sampled relational data
 - sampling designs (link tracing, egocentric)
 - sample-based inference
 - model-based inference
- 5. Longitudinal and multivariate relational data

- 1. Representations of relational data
 - matrix representations
 - graph representations
- 2. Descriptive statistics and summaries
 - matrix-based (row/column summaries, matrix decompositions)
 - graph-based (degrees, dyads, triads, paths)
 - covariates
- 3. Inference for complete relational data
 - model comparison via hypothesis testing
 - regression models
 - *p*₁ and ERGM models
 - social relations model
 - latent variable models (random effects, latent factors and blockmodels)
- 4. Inference for incomplete or sampled relational data
 - sampling designs (link tracing, egocentric)
 - sample-based inference
 - model-based inference
- 5. Longitudinal and multivariate relational data

- 1. Representations of relational data
 - matrix representations
 - graph representations
- 2. Descriptive statistics and summaries
 - matrix-based (row/column summaries, matrix decompositions)
 - graph-based (degrees, dyads, triads, paths)
 - covariates
- 3. Inference for complete relational data
 - model comparison via hypothesis testing
 - regression models
 - p₁ and ERGM models
 - social relations model
 - latent variable models (random effects, latent factors and blockmodels)
- 4. Inference for incomplete or sampled relational data
 - sampling designs (link tracing, egocentric)
 - sample-based inference
 - model-based inference
- 5. Longitudinal and multivariate relational data

- 1. Representations of relational data
 - matrix representations
 - graph representations
- 2. Descriptive statistics and summaries
 - matrix-based (row/column summaries, matrix decompositions)
 - graph-based (degrees, dyads, triads, paths)
 - covariates
- 3. Inference for complete relational data
 - model comparison via hypothesis testing
 - regression models
 - p₁ and ERGM models
 - social relations model
 - latent variable models (random effects, latent factors and blockmodels)
- 4. Inference for incomplete or sampled relational data
 - sampling designs (link tracing, egocentric)
 - sample-based inference
 - model-based inference
- 5. Longitudinal and multivariate relational data

- 1. Representations of relational data
 - matrix representations
 - graph representations
- 2. Descriptive statistics and summaries
 - matrix-based (row/column summaries, matrix decompositions)
 - graph-based (degrees, dyads, triads, paths)
 - covariates
- 3. Inference for complete relational data
 - model comparison via hypothesis testing
 - regression models
 - p₁ and ERGM models
 - social relations model
 - latent variable models (random effects, latent factors and blockmodels)
- 4. Inference for incomplete or sampled relational data
 - sampling designs (link tracing, egocentric)
 - sample-based inference
 - model-based inference
- 5. Longitudinal and multivariate relational data

- 1. Representations of relational data
 - matrix representations
 - graph representations
- 2. Descriptive statistics and summaries
 - matrix-based (row/column summaries, matrix decompositions)
 - graph-based (degrees, dyads, triads, paths)
 - covariates
- 3. Inference for complete relational data
 - model comparison via hypothesis testing
 - regression models
 - p₁ and ERGM models
 - social relations model
 - latent variable models (random effects, latent factors and blockmodels)
- 4. Inference for incomplete or sampled relational data
 - sampling designs (link tracing, egocentric)
 - sample-based inference
 - model-based inference
- 5. Longitudinal and multivariate relational data

- 1. Representations of relational data
 - matrix representations
 - graph representations
- 2. Descriptive statistics and summaries
 - matrix-based (row/column summaries, matrix decompositions)
 - graph-based (degrees, dyads, triads, paths)
 - covariates
- 3. Inference for complete relational data
 - model comparison via hypothesis testing
 - regression models
 - p₁ and ERGM models
 - social relations model
 - latent variable models (random effects, latent factors and blockmodels)
- 4. Inference for incomplete or sampled relational data
 - sampling designs (link tracing, egocentric)
 - sample-based inference
 - model-based inference
- 5. Longitudinal and multivariate relational data

- 1. Representations of relational data
 - matrix representations
 - graph representations
- 2. Descriptive statistics and summaries
 - matrix-based (row/column summaries, matrix decompositions)
 - graph-based (degrees, dyads, triads, paths)
 - covariates
- 3. Inference for complete relational data
 - model comparison via hypothesis testing
 - regression models
 - p₁ and ERGM models
 - social relations model
 - latent variable models (random effects, latent factors and blockmodels)
- 4. Inference for incomplete or sampled relational data
 - sampling designs (link tracing, egocentric)
 - sample-based inference
 - model-based inference
- 5. Longitudinal and multivariate relational data

- 1. Representations of relational data
 - matrix representations
 - graph representations
- 2. Descriptive statistics and summaries
 - matrix-based (row/column summaries, matrix decompositions)
 - graph-based (degrees, dyads, triads, paths)
 - covariates
- 3. Inference for complete relational data
 - model comparison via hypothesis testing
 - regression models
 - p₁ and ERGM models
 - social relations model
 - latent variable models (random effects, latent factors and blockmodels)
- 4. Inference for incomplete or sampled relational data
 - sampling designs (link tracing, egocentric)
 - sample-based inference
 - model-based inference
- 5. Longitudinal and multivariate relational data

- 1. Representations of relational data
 - matrix representations
 - graph representations
- 2. Descriptive statistics and summaries
 - matrix-based (row/column summaries, matrix decompositions)
 - graph-based (degrees, dyads, triads, paths)
 - covariates
- 3. Inference for complete relational data
 - model comparison via hypothesis testing
 - regression models
 - p₁ and ERGM models
 - social relations model
 - latent variable models (random effects, latent factors and blockmodels)
- 4. Inference for incomplete or sampled relational data
 - sampling designs (link tracing, egocentric)
 - sample-based inference
 - model-based inference

5. Longitudinal and multivariate relational data