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Network connectivity

Density (or average degree) is a very coarse description of a graph.
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Network connectivity

Density (or average degree) is a very coarse description of a graph.

Compare the n-star graph to the n-circle graph below:

The two graphs have roughly the same density, but the structure is very
different.
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Evaluating connectivity
Recall, density is the average degree divided by (n — 1).
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Evaluating connectivity
Recall, density is the average degree divided by (n — 1).

What is the average degree of the
e n-star graph?
e the n circle graph?

For the circle graph,

For the star graph,

= (-1 +14 D)
= (1) +(n—1))

_on=

~ 2 for large n
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Which graph seems more “connected” ?

e The star graph?
e Each node is within at most two links of every other node.
e Transmitting information in this network is easier than in the circle graph.

e The circle graph?
e Removal of one node can completely disconnect the star graph.
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Evaluating connectivity

What summary statistics can distinguish between the graphs?
How about degree variability?
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Evaluating connectivity

What summary statistics can distinguish between the graphs?
How about degree variability?

Circle graph: Var(di,...,d,) =0.
Star graph: Var(d,...,d,) grows linearly with n.

So degree variance can distinguish between these graphs.
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e What is the degree variance for each graph?
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Evaluating connectivity

7

e What is the degree variance for each graph?

e Which one is more “connected”?
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Evaluating connectivity

Intuitively, a “highly connected” graph is one in which nodes can reach each
other via connections, or a “path.”
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Evaluating connectivity

Intuitively, a “highly connected” graph is one in which nodes can reach each
other via connections, or a “path.”

To evaluate connectivity (and a variety of other statistics) it will be useful to
calculate the length of the shortest path between each pair of nodes.
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Walks, trails and paths

Walk: A walk is any sequence of adjacent nodes.
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Length of a walk: The number of nodes in the sequence, minus one.

Identify the following walks on the graph:
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Length of a walk: The number of nodes in the sequence, minus one.

Identify the following walks on the graph:
e w=(21,6,3,4)
e W= (2717673747175)
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Walks, trails and paths

Trail: A trail is a walk on distinct edges.

9/55



Walks, trails and paths

Trail: A trail is a walk on distinct edges.

Which of the following are trails on the graph?
e w=(21,6,3,4)

9/55



Walks, trails and paths

Trail: A trail is a walk on distinct edges.

Which of the following are trails on the graph?
e w=(21,6,3,4)
o w=(21,6,34,15)
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Walks, trails and paths
By these definitions,
e each path is a trail,
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Walks, trails and paths
By these definitions,
e each path is a trail,
e each trail is a walk.

Depending on the application, we may be interested in the numbers and kinds
of walks, trails and paths between nodes:

e probability: random walks on graphs;

e transport along a network: trails on graphs;

e communication or disease transmission: number of paths between nodes.
To evaluate connectivity, identifying paths will be most useful.



Reachability and connectedness

Reachable: Two nodes are reachable if there is a path between them.
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Reachability and connectedness

Reachable: Two nodes are reachable if there is a path between them.
Connected: A network is connected if every pair of nodes is reachable.

Component: A network component is a maximal connected subgraph.

A “maximal connected subgraph” is a connected node-generated subgraph that
becomes unconnected by the addition of another node.
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An unconnected graph
Symmetrized conflict data: with isolates removed

Y<-conflict90s$conflicts
Y<-1%( Y*t(Y)>0 )

deg<-apply(Y,1,sum,na.rm=TRUE)
Y<-Y[ deg>0 ,deg>0 ]

Identify all connected components:
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Connectivity and cutpoints

How connected is a graph?
One notion of connectivity is robustness to removal of nodes or edges.

Cutpoint: Let G be a graph and G_; be the node-generated subgraph,
generated by {1,...,n} \ {i}. Then node i is a cutpoint if the number of
components of G_; is larger than the number of components of G.

Exercise: ldentify any cutpoints of the two graphs.
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Node connectivity

Node connectivity: The node connectivity of a graph k(G) is the minimum
number of nodes that must be removed to disconnect the graph.

Exercise: Compute the node connectivities of the above graphs.
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Limitations of the node connectivity measure

This notion of connectivity is of limited use:

e perhaps most useful in terms of designing robust communication networks;
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Limitations of the node connectivity measure

This notion of connectivity is of limited use:
e perhaps most useful in terms of designing robust communication networks;

o less useful for describing the types of networks we've seen.

In particular, node connectivity is a very coarse measure
e it disregards the size of the graph;
o it disregards the number of cutpoints;

e it is of limited descriptive value for real social networks.

Exercise: What is the node connectivity of all real graphs we've seen so far?
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Average connectivity

Node connectivity is based on a “worst case scenario.”
A more representative measure might be some sort of average connectivity.

Connected nodes:
Nodes i,j are connected if there is a path between them.
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Average connectivity

Node connectivity is based on a “worst case scenario.”
A more representative measure might be some sort of average connectivity.

Connected nodes:
Nodes i,j are connected if there is a path between them.

Dyadic connectivity:
k(i,j) = minimum number of removed nodes required to disconnect i/, j.

Average connectivity:

k= Zi<j k(’v./)/(g)

e k can be computed in polynomial time;

e bounds on k in term of degree, path distances can be obtained.

(Beineke, Oellermann, Pippert 2002)



Connectivity and bridges

A similar notion of connectivity is to considering robustness to edge removal.

Bridge: Let G be a graph and G_. be the graph minus the edge e. Then e is a
bridge if the number of components of G_. is greater than the number of
components of G.

Exercise: Identify some bridges in the above graphs.
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Connectivity and bridges
Identify bridges in the big connected component of the conflict network:
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Edge connectivity

Edge connectivity:
The edge connectivity of a graph is the minimum number of that need to be
removed to disconnect the graph.

Like node connectivity, the edge connectivity is of limited use:

e for many real-life graphs, the edge connectivity is one;
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Geodesic distance

A geodesic in graph theory is just a shortest path between two nodes.

The geodesic distance d(i,j) between nodes i and j is the length of a shortest
path between i and j.
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Geodesic distance

A geodesic in graph theory is just a shortest path between two nodes.

The geodesic distance d(i,j) between nodes i and j is the length of a shortest
path between i and j.
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Note: Geodesics are not unique. Consider paths connecting nodes 1 and 3.
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Nodal eccentricity

The eccentricity of a node is the largest distance from it to any other node:

e = maxd; ;.
J

1 e=1(2,3,3,23,2)
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Diameter

Eccentricities, like degrees, are node level statistics.
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Diameter

Eccentricities, like degrees, are node level statistics.
One common network level statistic based on distance is the diameter:

The diameter of a graph is the largest between-node distance:
diam(Y) = max d, ;
i

= maxmaxd,;
i

= max e;
1
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Diameter

For our simple six-node example graph,

diam(Y) = max{2,3,3,2,3,2} = 3
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Diameter and average eccentricity

e For a connected graph, the diameter can range from 1 to n — 1.
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Diameter and average eccentricity

e For a connected graph, the diameter can range from 1 to n — 1.

e For an unconnected graph
e by convention the diameter is taken to be infinity;
e diameters of connected subgraphs can be computed.
e Like node connectivity, diameter is reflects a “worst case scenario.”

o Average eccentricity, € = ) e;/n may be a more representative measure.
e When comparing graphs with different numbers of nodes, it is useful to

scale by n — 1.

A recommendation:

1 _ 1
€= n(n—l)zei

n—1
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Counting walks between nodes

Enumerating the number and types of walks between nodes is useful:

e existence of walks between nodes tells us about connectivity.

26/55



Counting walks between nodes

Enumerating the number and types of walks between nodes is useful:

o existence of walks between nodes tells us about connectivity.

e existence of walks of minimal length tells us about geodesics.

26/55



Counting walks between nodes

Enumerating the number and types of walks between nodes is useful:

o existence of walks between nodes tells us about connectivity.

e existence of walks of minimal length tells us about geodesics.

26/55



Counting walks between nodes

Enumerating the number and types of walks between nodes is useful:

o existence of walks between nodes tells us about connectivity.

e existence of walks of minimal length tells us about geodesics.

Walks of all lengths between nodes can be counted using matrix multiplication.
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Matrix multiplication

General matrix multiplication: Let

e X be an / X m matrix ;
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Matrix multiplication

General matrix multiplication: Let

e X be an / X m matrix ;

e Y be an m X n matrix.

The matrix product XY is the / X n matrix Z, with entries
m
Zjj = in,k}’k,j
k=1

Useful note: The entries of Z are dot products of rows of X with columns of Y.

X2-Yy1 X2-Yy2 X2°Yy3 X2-Yya

X1 —
(yl Y2 Y3 ya
X3-Yy1 X3-y2 X3-y3 X3-Yya

XV=ix =7 7T 1 1

) X1-Yy1 Xi-Yy2 X1-Y3 Xi1-Ya
X3 —



Computing comemberships with matrix multiplication

Let Y be an n x m affiliation network:

Yij = membership of person i in group j

= OO+ OO
O ORr R
o R OO+
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Computing comemberships with matrix multiplication

Let Y be an n x m affiliation network:

Yij = membership of person i in group j

o oOrR OO
OFROKR K
O OO

Transpose: The transpose of an n x m matrix Y is the m x n matrix X =Y "
with entries x;; = y; ;.

Y’ =

o+~ O
== o
[«
o O o
=)
O O =
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Computing comemberships with matrix multiplication

Exercise: Complete the multiplication of Y by Y:
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Computing comemberships with matrix multiplication

Exercise: Complete the multiplication of Y by Y:

0 1 0 1
. (1)18 0 01 0 01 22
YY' = 111 01 0)=
000010010 0
0 1 1 2
1 0 0
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Computing comemberships with matrix multiplication

Exercise: Complete the multiplication of Y by Y:

= OO+~ OO

O R O R KFH =

O~ OO+ O

o~ O

== O
[T
o O o
=)

Letting X = YY7, we see x;; is the number of comemberships of nodes i and j.
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Computing comemberships with matrix multiplication

Exercise: Compute Y'Y, and identify what it represents.

<
4

<

Il

[N ]

=)

O = =

o O o

=)

O O =
_ OO+ OO
O OKFHKFKH
O OO~ O
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Multiplying binary sociomatrices
Repeated multiplication of a sociomatrix by itself identifies walks.
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Multiplying binary sociomatrices

Repeated multiplication of a sociomatrix by itself identifies walks.

##

##
#it
##
##

[,11 [,2] [,3]1 [,4]1 [,5] [,6]

[1,]
[2,]
[3,]
[4,]
[5,]
[6,]

Note:

0

B R RO

We have replaced the diagonal with zeros for this calculation.

1

(el el Ne)

0

= O OO

1

[e NN e

1

O O O O

O OO O

Y %% Y

##
##
##
##
##
##
##

[1,]
[2,]
[3,1]
4,1
[5,]
[6,]

[,11 [,2] [,3]1 [,4]1 [,5] [,6]

4

O ON

1

=== ON

2

O O oOoONOo

0

N = NO =

1

BN RO R

N = NORO
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Multiplying binary sociomatrices

Y k% Y

3 ## [1,]
# [2,]

1 ## [3,]

# [4,]

## [5,]

## [6,]

e How many walks of length 2 are there from i to i?

[,11 [,2] [,3]1 [,4]1 [,5] [,6]

4

Or ONH

1

== ON

2

O O ONO

0

N =N O =

1

RN RO R

N = NORO
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Multiplying binary sociomatrices

Y %xh Y

3 ## [1,]
## [2,]

1 ## [3,]

## [4,]

## [5,]

## [6,]

e How many walks of length 2 are there from i to i?

e How many walks of length 2 are there from i to j?

[,11 [,2] [,3]1 [,4]1 [,5] [,6]

4

O+ ON

1

== ON

2

O O oOoNOo

0

N =N O =

1
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Multiplying binary sociomatrices

Y Sk Y %Y

2 ## [,11 [,2]
## [1,] 2
## [2,]
1 ## [3,]
## [4,]
## [5,]
## [6,]

oo o m
= WwENNDO

[,3] [,4] [,5] [,6]

0

BN ON

6

O = O b -

5

=N RN W

O, Ob L O
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Multiplying binary sociomatrices

Y Sk Y %Y

2 ## [,11 [,2] [,31 [,4] [,8] [,6]

3 ## [1,] 2
## [2,]

1 ## [3,]

## [4,]

## [5,]

## [6,]

oo ;m
= WwENNDO

Result: Let W = YX. Then

w;j = # of walks of length k between i and j

0

BN ON

6

O = O b -

5

=N NDW

O OhrLrO®



Application: Assessing reachability and Connectedness

Define XY k =1,...n—1 as follows:
xW =y
X® =y 4y

XW =¥ ¥4 YR
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Application: Assessing reachability and Connectedness

Recall:
If two nodes are reachable, there must be a path (walk) between them of
length less than or equal to n — 1.
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Application: Assessing reachability and Connectedness

Recall:
If two nodes are reachable, there must be a path (walk) between them of
length less than or equal to n — 1.

Result:

Nodes i and j are reachable if Xfl."ﬁl) > 0.
Recall:

A graph is connected if all pairs are reachable.

Result:
A graph is connected if Xffﬁl) > 0 for all i,j.



!ln!mg geo!esms

Each path is a walk, so

d;j = length of the shortest path between i and j
= length of the shortest walk between i and j
= first k for which Y ; >0

This suggests an algorithm for finding geodesic distances.

36/55



!ln!mg geo!esms

Each path is a walk, so

di.; = length of the shortest path between i and j
= length of the shortest walk between i and j
= first k for which Y ; >0

This suggests an algorithm for finding geodesic distances.

36/55



Finding geodesics

Each path is a walk, so

d;j = length of the shortest path between i and j

36/55



Finding geodesics

Each path is a walk, so

d;j = length of the shortest path between i and j

36/55



Finding geodesics

Each path is a walk, so

d;j = length of the shortest path between i and j

= length of the shortest walk between i and j

36/55



Finding geodesics

Each path is a walk, so

d;j = length of the shortest path between i and j

= length of the shortest walk between i and j

36/55



Finding geodesics

Each path is a walk, so

d;j = length of the shortest path between i and j

= length of the shortest walk between i and j

= first k for which Yf; ; >0

36/55



Finding geodesics

Each path is a walk, so

d;j = length of the shortest path between i and j
= length of the shortest walk between i and j

= first k for which Yf; ; >0
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Finding geodesic distances

6
Y
2 ## [,11 [,2] [,3] [,4] [,5] [,6]
3 ## [1,] 0 1 0 1 1 1
## [2,] 0 0 0 1 0
1 ## [3,] 0 0 0 1 0 1
## [4,] 1 0 1 0 0 0
## [5,] 1 1 0 0 0 0
## [6,] 1 0 1 0 0 0
4 5
01 7?2 1 1 1
1 0 ? 7 1 7
? 7 01 7 1
D=
1?1 0 7 7
11 7? 7?2 0 7
1?21 7?2 70
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Finding geodesic distances

6
Y %*% Y
2 #i# [,11 [,2] [,3] [,4] [,5] [,6]
3 ## [1,] 4 1 2 0 1 0
## [2,] 1 2 0 1 1 1
1 ## [3,] 2 0 2 0 0 0
## [4,] 0 1 0 2 1 2
## [5,] 1 1 0 1 2 1
## [6,] 0 1 0 2 1 2
4 5

01 2 1 1 1

1 0 7?2 2 1 2

2 7 1 71

D= 0

1 21 0 2 2

11 7?2 2 0 2

1 7?27 1 2 2 0
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Finding geodesic distances

6
Y %*%h Y %% Y
2 ## [,11 [,21 [,3] [,4] [,5] [,6]
3 ## [1,] 2 5 0 6 5 6
## [2,] 5 2 2 1 3 1
1 ## [3,] 0 2 0 4 2 4
## [4,] 6 1 4 0 1 0
## [5,] 5 3 2 1 2 1
## [6,] 6 1 4 0 1 0
4 5
01 2 1 1 1
1 0 3 2 1 2
p_|2 30131
11 2 1.0 2 2
11 3 2 0 2
1 3 1 2 2 0

39/55



R-function netdist

netdist

## function (Y, countdown = FALSE)

## {

## Y <= 1% (Y >0)

## n <- dim(Y) [1]

## YO <- Y

## diag(Y0) <- 0

## Ys <- YO

## D<-Y

## D[Y == 0] <- n + 1

it diag(D) <- 0

## s <- 2

#i#t while (any(D == n + 1) & s < n) {
## Ys <= 1 * (Ys %*% YO > 0)
## D[Ys == 1] <- ((s + D[Y¥s == 1]) - abs(s - D[¥s == 1]))/2
## s <-s +1

## if (countdown) {

## cat(n - s, "\n")

## ¥

## ¥

## D[D == n + 1] <- Inf

## D

## }

## <environment: namespace:rda>
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R-function netdist

netdist (Y)

## [,11 [,2]1 [,3] [,4] [,5] [,6]
## [1,] 0 1 2 1 1 1
## [2,] 0 3 2 1 2
## [3,] 2 3 0 1 & 1
## [4,] 1 2 1 0 2 2
## [5,] 1 1 3 2 0 2
## [6,] 1 2 1 2 2 0



Application: Multidimensional scaling

Often we have data on distances or dissimilarities between a set of objects.
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Application: Multidimensional scaling

Often we have data on distances or dissimilarities between a set of objects.

e Machine learning: d;j = |x; — x|, x; = vector of characteristics of object i.

e Social networks: d;; = geodesic distance between i and j.

It is often useful to embed these distances in a low-dimensional space.
e visualization: convert distances to a map in 2 dimensions for plotting.

e data reduction: convert n X n dissimilarity matrix to an n x p matrix of
positions.
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Application: Multidimensional scaling

Y<-el2sm(addhealth9$E)
Y<-1%( Y>0 | t(Y)>0 )
D<-netdist (Y)

iso<-which(apply(D==Inf,2,sum) == nrow(Y)-1 )
Y<-Y[-iso,-iso]

D<-D[-iso,-iso]

X<-cmdscale (D)

head (X)

## [,1] [,2]
## 1 -0.5547701 -0.27287140
## 2 -0.8151498 -0.58111897
## 3 1.7920205 -0.22866851
## 4 -0.9555775 0.09652415
## 5 0.4975752 0.44596394
## 6 1.2961508 -0.67148355
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Application: Multidimensional scaling
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Application: Multidimensional scaling

Compare to Fruchterman-Reingold:

45 /55



46 /55

Application

Y<-conflict90s$conflicts
Y<-1%( Y>0 | t(Y)>0 )
bigcc<-concomp(Y) [[1]]

Y<-Y[ bigcc ,bigcc ]
D<-netdist(Y)

X<-cmdscale (D)
head (X)

## [,1] [,2]
## AFG 0.8961192 -0.4593871
## ALB -1.4510858 -0.4221417
## ANG 0.7930768 2.7900261
## ARG -0.8675232 -0.3523978
## AUL -0.9023903 -0.4603945
## BAH -0.9136724 -0.3166990

: MDS for conflict data
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Application: MDS for conflict data
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Application: MDS for conflict data

Compare to Fruchterman-Reingold:

CAM

BEL
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YEM
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EN
MYA SEN <
CHL A QAT
el BAH
ALB
BNG
NIR
CHES ISR
PARGTH TR
IND
R ARG UASGY
TUR SYdbn
cye HALERNAN RN
PNG s
oM PN
INS PRK
AFG
CHN cbs
TAW ROk
VEN
PHI
MON
TRIGUY
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Application: Finding connected components
The distance matrix, or X"~ identifies connected components of a graph.

10

12

11

123456789 10 11 12
011000000 0 O O

##
##

1

101000000 0 O O

## 2

110100000 0 0 O

## 3

##4 001011000 0 O O

#5 000101000 O O O

#6 000110000 O O O

#7 000000011

0O 0 0
0O 0 O

#8 000000101

0
1

0
1

1
0

#9 000000110

## 10000000001

1
1

## 11 000000000

0

1

# 12000000000



Application: Finding connected components
The distance matrix, or X"~ identifies connected components of a graph.

10

12

11

Y + Y/*AY

123456789 10 11 12
222100000 0 0 O

##
##

1

#2 222100000 0 0 O

## 3 223111000 0 0 O

## 4

111322000 0 0 O

#5 001222000 0 0 O

##6 001222000 0 O O

#7 000000222

0
0
1

0
0
1

1
1

1
3 2 2

## 8 000000222

### 9 000000223

## 10000000111

2 2 2
2 2 2

## 11 000000001

## 12000000001



Application: Finding connected components
The distance matrix, or X"~ identifies connected components of a graph.

10

12

11

Y o+ YURAY + YURLYY*%Y

123456789 10 11 12
456211000 0 0 O

##2 546211000 0 0 O

##
##

1

## 3 665622000 0 0 O

## 4 226566000 0 0 O

112645000 0 0 O

## 5

112654000 0 0 O

#7 000000456 2

## 6

1
1

1
1

## 8 000000546 2

# 9 000000665 6 2 2

# 10000000226 5 6 6

# 11000000112 6 4 5

## 12000000112 6 5 4



concomp

R-function concomp

## function (Y)

## {
##
##
##

YO <- 1 % (Y > 0)

diag(Y0) <- 1

Y1 <- YO

for (i in 1:dim(Y0)[1]) {
Y1 <= 1 * (Y1 %*% YO > 0)

}

cc <= 1list()

idx <- 1:dim(Y1)[1]

while (dim(Y1)[1] > 0) {
cl <- which(Y1[1, ] == 1)
cc <- c(cc, list(idx[c1]))
Y1 <- Yi[-c1l, -ci1, drop = FALSE]
idx <- idx[-c1]

}

cclorder(-sapply(cc, length))]

## <environment: namespace:rda>
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concomp (Y)

##
##
##
##
##

connodes<-concomp(Y)

[[111

[11 123456

[[2]]
[1]

7 8 910 11 12

R-function concomp

Y[ connodes[[1]],connodes[[1]] 1]

##
##
##
##
##
##
##

OO WN -

O OO K K O

OO O OFN
OO, OR P W
B = OF OO B»
HORrOOOWM
Or P OOOO®



Walks, trails and paths for directed graphs

All these concepts generalize to directed graphs:
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Directed walk: A sequence of nodes i1, ..., ix such that y; ; , =1 for
k=1,...,K—-1.
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Walks, trails and paths for directed graphs

All these concepts generalize to directed graphs:

Directed walk: A sequence of nodes i1, ..., ix such that y; ; , =1 for
k=1,...,K—-1.

Powers of the sociomatrix correspond to counts of directed walks.

XO =y 4 ¥4 Y

x,.(;) = # of directed walks from i to j of length k or less



Example: Praise among monks

AMB

netdist(Yr)

## ROMUL AMBROSE BERTH PETER LOUIS VICTOR
## ROMUL 0 Inf Inf Inf Inf Inf
## AMBROSE Inf 0 Inf Inf Inf Inf
## BERTH 2 1 0 1 1 2
## PETER 1 2 1 0 1 2
## LOUIS 2 & 2 1 0 1
## VICTOR 2 2 1 1 1 0
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