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Network connectivity

Density (or average degree) is a very coarse description of a graph.

Compare the n-star graph to the n-circle graph below:
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The two graphs have roughly the same density, but the structure is very
different.
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Evaluating connectivity

Recall, density is the average degree divided by (n − 1).

What is the average degree of the

• n-star graph?

• the n circle graph?

For the circle graph,

d̄ =
1

n

n∑
i=1

di =
1

n
2n = 2

For the star graph,

d̄ =
1

n

n∑
i=1

di

=
1

n
((n − 1) + 1 + · · ·+ 1)

=
1

n
((n − 1) + (n − 1))

= 2
n − 1

n
≈ 2 for large n
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Evaluating connectivity
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Which graph seems more “connected” ?

• The star graph?
• Each node is within at most two links of every other node.
• Transmitting information in this network is easier than in the circle graph.

• The circle graph?
• Removal of one node can completely disconnect the star graph.
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Evaluating connectivity

What summary statistics can distinguish between the graphs?
How about degree variability?

Circle graph: Var(d1, . . . , dn) = 0.

Star graph: Var(d1, . . . , dn) grows linearly with n.

So degree variance can distinguish between these graphs.
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Evaluating connectivity
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• What is the degree variance for each graph?

• Which one is more “connected”?
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Evaluating connectivity

Intuitively, a “highly connected” graph is one in which nodes can reach each
other via connections, or a “path.”

To evaluate connectivity (and a variety of other statistics) it will be useful to
calculate the length of the shortest path between each pair of nodes.
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Walks, trails and paths

Walk: A walk is any sequence of adjacent nodes.

Length of a walk: The number of nodes in the sequence, minus one.
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Identify the following walks on the graph:

• w = (2, 1, 6, 3, 4)

• w = (2, 1, 6, 3, 4, 1, 5)

• w = (2, 1, 2, 5, 1, 4)
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Walks, trails and paths

Trail: A trail is a walk on distinct edges.
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Which of the following are trails on the graph?

• w = (2, 1, 6, 3, 4)

• w = (2, 1, 6, 3, 4, 1, 5)

• w = (2, 1, 2, 5, 1, 4)
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Path: A path is a trail consisting of distinct nodes.
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Walks, trails and paths
By these definitions,

• each path is a trail,
• each trail is a walk.
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6

Depending on the application, we may be interested in the numbers and kinds
of walks, trails and paths between nodes:

• probability: random walks on graphs;
• transport along a network: trails on graphs;
• communication or disease transmission: number of paths between nodes.

To evaluate connectivity, identifying paths will be most useful.
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Reachability and connectedness

Reachable: Two nodes are reachable if there is a path between them.

Connected: A network is connected if every pair of nodes is reachable.

Component: A network component is a maximal connected subgraph.

A “maximal connected subgraph” is a connected node-generated subgraph that
becomes unconnected by the addition of another node.
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An unconnected graph
Symmetrized conflict data: with isolates removed

Y<-conflict90s$conflicts
Y<-1*( Y*t(Y)>0 )

deg<-apply(Y,1,sum,na.rm=TRUE)
Y<-Y[ deg>0 ,deg>0 ]

Identify all connected components:

AFG

ANG

BAH

BNG

BUI

CAN

CHN

COS

CUB CYP

DRC

EGY FRN

GHA

GRC

GUI

HON

IND

IRN

IRQ

ISR
ITA

JPN

LBR

LES

MYA

NIC
NTH

OMA

PAK

PHI PRK

QAT

ROK

RWA

SAF

SAU
SUD

SYR

TAW

TAZ

THI

TOG

TUR

UAE

UGA

UKG
USA
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Connectivity and cutpoints

How connected is a graph?

One notion of connectivity is robustness to removal of nodes or edges.

Cutpoint: Let G be a graph and G−i be the node-generated subgraph,
generated by {1, . . . , n} \ {i}. Then node i is a cutpoint if the number of
components of G−i is larger than the number of components of G.
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9

Exercise: Identify any cutpoints of the two graphs.
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Node connectivity

Node connectivity: The node connectivity of a graph k(G) is the minimum
number of nodes that must be removed to disconnect the graph.
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Exercise: Compute the node connectivities of the above graphs.
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Limitations of the node connectivity measure

This notion of connectivity is of limited use:

• perhaps most useful in terms of designing robust communication networks;

• less useful for describing the types of networks we’ve seen.

In particular, node connectivity is a very coarse measure

• it disregards the size of the graph;

• it disregards the number of cutpoints;

• it is of limited descriptive value for real social networks.

Exercise: What is the node connectivity of all real graphs we’ve seen so far?
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Average connectivity

Node connectivity is based on a “worst case scenario.”

A more representative measure might be some sort of average connectivity.

Connected nodes:
Nodes i ,j are connected if there is a path between them.

Dyadic connectivity:
k(i , j) = minimum number of removed nodes required to disconnect i , j .

Average connectivity:
k̄ =

∑
i<j k(i , j)/

(
n
2

)
• k̄ can be computed in polynomial time;

• bounds on k̄ in term of degree, path distances can be obtained.

(Beineke, Oellermann, Pippert 2002)
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Connectivity and bridges

A similar notion of connectivity is to considering robustness to edge removal.

Bridge: Let G be a graph and G−e be the graph minus the edge e. Then e is a
bridge if the number of components of G−e is greater than the number of
components of G.

1

2

3 4

5

6

7

8

9

1

2

3

4

5

6
7

8

9

1

2

3

4 5

6

Exercise: Identify some bridges in the above graphs.
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Connectivity and bridges
Identify bridges in the big connected component of the conflict network:

AFG

ANG

BAH

CAN

CHNCUB

CYP

DRC

EGY

FRN

GRC

IRN

IRQ

ISR

ITA

JPN

NTH

OMA

PHI

PRK

QAT

ROK

RWA

SAU

SUD

SYR
TAW

TUR

UAE

UGA

UKG

USA
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Edge connectivity

Edge connectivity:
The edge connectivity of a graph is the minimum number of that need to be
removed to disconnect the graph.

Like node connectivity, the edge connectivity is of limited use:

• for many real-life graphs, the edge connectivity is one;

• averaged versions of connectivity may be of more use.
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Geodesic distance

A geodesic in graph theory is just a shortest path between two nodes.

The geodesic distance d(i , j) between nodes i and j is the length of a shortest
path between i and j .

1

2
3

4 5

6

D =


0 1 2 1 1 1
1 0 3 2 1 2
2 3 0 1 3 1
1 2 1 0 2 2
1 1 3 2 0 2
1 2 1 2 2 0



Note: Geodesics are not unique. Consider paths connecting nodes 1 and 3.

21/55



Geodesic distance

A geodesic in graph theory is just a shortest path between two nodes.

The geodesic distance d(i , j) between nodes i and j is the length of a shortest
path between i and j .

1

2
3

4 5

6

D =


0 1 2 1 1 1
1 0 3 2 1 2
2 3 0 1 3 1
1 2 1 0 2 2
1 1 3 2 0 2
1 2 1 2 2 0



Note: Geodesics are not unique. Consider paths connecting nodes 1 and 3.

21/55



Geodesic distance

A geodesic in graph theory is just a shortest path between two nodes.

The geodesic distance d(i , j) between nodes i and j is the length of a shortest
path between i and j .

1

2
3

4 5

6

D =


0 1 2 1 1 1
1 0 3 2 1 2
2 3 0 1 3 1
1 2 1 0 2 2
1 1 3 2 0 2
1 2 1 2 2 0


Note: Geodesics are not unique. Consider paths connecting nodes 1 and 3.

21/55



Geodesic distance

A geodesic in graph theory is just a shortest path between two nodes.

The geodesic distance d(i , j) between nodes i and j is the length of a shortest
path between i and j .

1

2
3

4 5

6

D =


0 1 2 1 1 1
1 0 3 2 1 2
2 3 0 1 3 1
1 2 1 0 2 2
1 1 3 2 0 2
1 2 1 2 2 0


Note: Geodesics are not unique. Consider paths connecting nodes 1 and 3.

21/55



Nodal eccentricity

The eccentricity of a node is the largest distance from it to any other node:

ei = max
j

di,j .

1

2
3

4 5

6

e = (2, 3, 3, 2, 3, 2)
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Diameter

Eccentricities, like degrees, are node level statistics.

One common network level statistic based on distance is the diameter:

The diameter of a graph is the largest between-node distance:

diam(Y) = max
i,j

di,j

= max
i

max
j

di,j

= max
i

ei
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Diameter

1

2
3

4 5

6

For our simple six-node example graph,

diam(Y) = max{2, 3, 3, 2, 3, 2} = 3
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Diameter and average eccentricity

• For a connected graph, the diameter can range from 1 to n − 1.

• For an unconnected graph
• by convention the diameter is taken to be infinity;
• diameters of connected subgraphs can be computed.

• Like node connectivity, diameter is reflects a “worst case scenario.”
• Average eccentricity, ē =

∑
ei/n may be a more representative measure.

• When comparing graphs with different numbers of nodes, it is useful to
scale by n − 1.

A recommendation:
1

n − 1
ē =

1

n(n − 1)

∑
ei
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ē =

1

n(n − 1)

∑
ei

25/55



Diameter and average eccentricity

• For a connected graph, the diameter can range from 1 to n − 1.

• For an unconnected graph
• by convention the diameter is taken to be infinity;
• diameters of connected subgraphs can be computed.

• Like node connectivity, diameter is reflects a “worst case scenario.”
• Average eccentricity, ē =
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Counting walks between nodes

Enumerating the number and types of walks between nodes is useful:

• existence of walks between nodes tells us about connectivity.

• existence of walks of minimal length tells us about geodesics.

Walks of all lengths between nodes can be counted using matrix multiplication.
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Matrix multiplication

General matrix multiplication: Let

• X be an l ×m matrix ;

• Y be an m × n matrix.

The matrix product XY is the l × n matrix Z, with entries

zi,j =
m∑

k=1

xi,kyk,j

Useful note: The entries of Z are dot products of rows of X with columns of Y.

XY =

x1 →
x2 →
x3 →

(y1 y2 y3 y4

↓ ↓ ↓ ↓

)
=

x1 · y1 x1 · y2 x1 · y3 x1 · y4

x2 · y1 x2 · y2 x2 · y3 x2 · y4

x3 · y1 x3 · y2 x3 · y3 x3 · y4


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Computing comemberships with matrix multiplication

Let Y be an n ×m affiliation network:

yi,j = membership of person i in group j

Y =


0 1 0
0 1 1
1 1 0
0 0 0
0 1 1
1 0 0


Transpose: The transpose of an n ×m matrix Y is the m × n matrix X = YT

with entries xi,j = yj,i .

YT =

0 0 1 0 0 1
1 1 1 0 1 0
0 1 0 0 1 0


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Computing comemberships with matrix multiplication

Exercise: Complete the multiplication of Y by YT :

YYT =


0 1 0
0 1 1
1 1 0
0 0 0
0 1 1
1 0 0


0 0 1 0 0 1

1 1 1 0 1 0
0 1 0 0 1 0

 =


1

2
2

0
2

1


Letting X = YYT , we see xi,j is the number of comemberships of nodes i and j .
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Computing comemberships with matrix multiplication

Exercise: Compute YTY, and identify what it represents.

YTY =

0 0 1 0 0 1
1 1 1 0 1 0
0 1 0 0 1 0




0 1 0
0 1 1
1 1 0
0 0 0
0 1 1
1 0 0


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Multiplying binary sociomatrices
Repeated multiplication of a sociomatrix by itself identifies walks.

1

2
3

4 5

6

Y

## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 0 1 0 1 1 1
## [2,] 1 0 0 0 1 0
## [3,] 0 0 0 1 0 1
## [4,] 1 0 1 0 0 0
## [5,] 1 1 0 0 0 0
## [6,] 1 0 1 0 0 0

Y %*% Y

## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 4 1 2 0 1 0
## [2,] 1 2 0 1 1 1
## [3,] 2 0 2 0 0 0
## [4,] 0 1 0 2 1 2
## [5,] 1 1 0 1 2 1
## [6,] 0 1 0 2 1 2

Note: We have replaced the diagonal with zeros for this calculation.
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Multiplying binary sociomatrices

1

2
3

4 5

6

Y %*% Y

## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 4 1 2 0 1 0
## [2,] 1 2 0 1 1 1
## [3,] 2 0 2 0 0 0
## [4,] 0 1 0 2 1 2
## [5,] 1 1 0 1 2 1
## [6,] 0 1 0 2 1 2

• How many walks of length 2 are there from i to i?

• How many walks of length 2 are there from i to j?
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Multiplying binary sociomatrices

1

2
3

4 5

6

Y %*% Y %*% Y

## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 2 5 0 6 5 6
## [2,] 5 2 2 1 3 1
## [3,] 0 2 0 4 2 4
## [4,] 6 1 4 0 1 0
## [5,] 5 3 2 1 2 1
## [6,] 6 1 4 0 1 0

Result: Let W = Yk . Then

wi,j = # of walks of length k between i and j
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Application: Assessing reachability and Connectedness

Define X(k), k = 1, . . . n − 1 as follows:

X(1) = Y

X(2) = Y + Y2

...

X(k) = Y + Y2 + · · ·+ Yk

Note:

• X(1) counts the number of walks of length 1 between nodes;

• X(2) counts the number of walks of length ≤ 2 between nodes;

• X(k) counts the number of walks of length ≤ k between nodes.

34/55



Application: Assessing reachability and Connectedness

Define X(k), k = 1, . . . n − 1 as follows:

X(1) = Y

X(2) = Y + Y2

...

X(k) = Y + Y2 + · · ·+ Yk

Note:

• X(1) counts the number of walks of length 1 between nodes;

• X(2) counts the number of walks of length ≤ 2 between nodes;

• X(k) counts the number of walks of length ≤ k between nodes.

34/55



Application: Assessing reachability and Connectedness

Define X(k), k = 1, . . . n − 1 as follows:

X(1) = Y

X(2) = Y + Y2

...

X(k) = Y + Y2 + · · ·+ Yk

Note:

• X(1) counts the number of walks of length 1 between nodes;

• X(2) counts the number of walks of length ≤ 2 between nodes;

• X(k) counts the number of walks of length ≤ k between nodes.

34/55



Application: Assessing reachability and Connectedness

Define X(k), k = 1, . . . n − 1 as follows:

X(1) = Y

X(2) = Y + Y2

...

X(k) = Y + Y2 + · · ·+ Yk

Note:

• X(1) counts the number of walks of length 1 between nodes;

• X(2) counts the number of walks of length ≤ 2 between nodes;

• X(k) counts the number of walks of length ≤ k between nodes.

34/55



Application: Assessing reachability and Connectedness

Define X(k), k = 1, . . . n − 1 as follows:

X(1) = Y

X(2) = Y + Y2

...

X(k) = Y + Y2 + · · ·+ Yk

Note:

• X(1) counts the number of walks of length 1 between nodes;

• X(2) counts the number of walks of length ≤ 2 between nodes;

• X(k) counts the number of walks of length ≤ k between nodes.

34/55



Application: Assessing reachability and Connectedness

Define X(k), k = 1, . . . n − 1 as follows:

X(1) = Y

X(2) = Y + Y2

...

X(k) = Y + Y2 + · · ·+ Yk

Note:

• X(1) counts the number of walks of length 1 between nodes;

• X(2) counts the number of walks of length ≤ 2 between nodes;

• X(k) counts the number of walks of length ≤ k between nodes.

34/55



Application: Assessing reachability and Connectedness

Recall:
If two nodes are reachable, there must be a path (walk) between them of
length less than or equal to n − 1.

Result:
Nodes i and j are reachable if X(n−1)

[i,j] > 0.

Recall:
A graph is connected if all pairs are reachable.

Result:
A graph is connected if X(n−1)

[i,j] > 0 for all i , j .
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Finding geodesics

Each path is a walk, so

di,j = length of the shortest path between i and j

= length of the shortest walk between i and j

= first k for which Yk
[i,j] > 0

This suggests an algorithm for finding geodesic distances.

36/55



Finding geodesics

Each path is a walk, so

di,j = length of the shortest path between i and j

= length of the shortest walk between i and j

= first k for which Yk
[i,j] > 0

This suggests an algorithm for finding geodesic distances.

36/55



Finding geodesics

Each path is a walk, so

di,j = length of the shortest path between i and j

= length of the shortest walk between i and j

= first k for which Yk
[i,j] > 0

This suggests an algorithm for finding geodesic distances.

36/55



Finding geodesics

Each path is a walk, so

di,j = length of the shortest path between i and j

= length of the shortest walk between i and j

= first k for which Yk
[i,j] > 0

This suggests an algorithm for finding geodesic distances.

36/55



Finding geodesics

Each path is a walk, so

di,j = length of the shortest path between i and j

= length of the shortest walk between i and j

= first k for which Yk
[i,j] > 0

This suggests an algorithm for finding geodesic distances.

36/55



Finding geodesics

Each path is a walk, so

di,j = length of the shortest path between i and j

= length of the shortest walk between i and j

= first k for which Yk
[i,j] > 0

This suggests an algorithm for finding geodesic distances.

36/55



Finding geodesics

Each path is a walk, so

di,j = length of the shortest path between i and j

= length of the shortest walk between i and j

= first k for which Yk
[i,j] > 0

This suggests an algorithm for finding geodesic distances.

36/55



Finding geodesics

Each path is a walk, so

di,j = length of the shortest path between i and j

= length of the shortest walk between i and j

= first k for which Yk
[i,j] > 0

This suggests an algorithm for finding geodesic distances.

36/55



Finding geodesic distances

1

2
3

4 5

6

Y

## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 0 1 0 1 1 1
## [2,] 1 0 0 0 1 0
## [3,] 0 0 0 1 0 1
## [4,] 1 0 1 0 0 0
## [5,] 1 1 0 0 0 0
## [6,] 1 0 1 0 0 0

D =


0 1 ? 1 1 1
1 0 ? ? 1 ?
? ? 0 1 ? 1
1 ? 1 0 ? ?
1 1 ? ? 0 ?
1 ? 1 ? ? 0


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Finding geodesic distances

1

2
3

4 5

6

Y %*% Y

## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 4 1 2 0 1 0
## [2,] 1 2 0 1 1 1
## [3,] 2 0 2 0 0 0
## [4,] 0 1 0 2 1 2
## [5,] 1 1 0 1 2 1
## [6,] 0 1 0 2 1 2

D =


0 1 2 1 1 1
1 0 ? 2 1 2
2 ? 0 1 ? 1
1 2 1 0 2 2
1 1 ? 2 0 2
1 ? 1 2 2 0


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Finding geodesic distances

1

2
3

4 5

6

Y %*% Y %*% Y

## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 2 5 0 6 5 6
## [2,] 5 2 2 1 3 1
## [3,] 0 2 0 4 2 4
## [4,] 6 1 4 0 1 0
## [5,] 5 3 2 1 2 1
## [6,] 6 1 4 0 1 0

D =


0 1 2 1 1 1
1 0 3 2 1 2
2 3 0 1 3 1
1 2 1 0 2 2
1 1 3 2 0 2
1 3 1 2 2 0


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R-function netdist

netdist

## function (Y, countdown = FALSE)
## {
## Y <- 1 * (Y > 0)
## n <- dim(Y)[1]
## Y0 <- Y
## diag(Y0) <- 0
## Ys <- Y0
## D <- Y
## D[Y == 0] <- n + 1
## diag(D) <- 0
## s <- 2
## while (any(D == n + 1) & s < n) {
## Ys <- 1 * (Ys %*% Y0 > 0)
## D[Ys == 1] <- ((s + D[Ys == 1]) - abs(s - D[Ys == 1]))/2
## s <- s + 1
## if (countdown) {
## cat(n - s, "\n")
## }
## }
## D[D == n + 1] <- Inf
## D
## }
## <environment: namespace:rda>
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R-function netdist

netdist(Y)

## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 0 1 2 1 1 1
## [2,] 1 0 3 2 1 2
## [3,] 2 3 0 1 3 1
## [4,] 1 2 1 0 2 2
## [5,] 1 1 3 2 0 2
## [6,] 1 2 1 2 2 0
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Application: Multidimensional scaling

Often we have data on distances or dissimilarities between a set of objects.

• Machine learning: di,j = |xi − xj |, xi = vector of characteristics of object i .

• Social networks: di,j = geodesic distance between i and j .

It is often useful to embed these distances in a low-dimensional space.

• visualization: convert distances to a map in 2 dimensions for plotting.

• data reduction: convert n × n dissimilarity matrix to an n × p matrix of
positions.
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Application: Multidimensional scaling

Y<-el2sm(addhealth9$E)
Y<-1*( Y>0 | t(Y)>0 )
D<-netdist(Y)

iso<-which(apply(D==Inf,2,sum) == nrow(Y)-1 )
Y<-Y[-iso,-iso]
D<-D[-iso,-iso]

X<-cmdscale(D)

head(X)

## [,1] [,2]
## 1 -0.5547701 -0.27287140
## 2 -0.8151498 -0.58111897
## 3 1.7920205 -0.22866851
## 4 -0.9555775 0.09652415
## 5 0.4975752 0.44596394
## 6 1.2961508 -0.67148355
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Application: Multidimensional scaling
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Application: Multidimensional scaling

Compare to Fruchterman-Reingold:
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Application: MDS for conflict data

Y<-conflict90s$conflicts
Y<-1*( Y>0 | t(Y)>0 )
bigcc<-concomp(Y)[[1]]

Y<-Y[ bigcc ,bigcc ]
D<-netdist(Y)

X<-cmdscale(D)

head(X)

## [,1] [,2]
## AFG 0.8961192 -0.4593871
## ALB -1.4510858 -0.4221417
## ANG 0.7930768 2.7900261
## ARG -0.8675232 -0.3523978
## AUL -0.9023903 -0.4603945
## BAH -0.9136724 -0.3166990
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Application: MDS for conflict data
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Application: MDS for conflict data
Compare to Fruchterman-Reingold:
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TOG

TRI

TUR

UAE

UGAUKG

USA

VEN

YEM
ZAM

ZIM

48/55



Application: Finding connected components
The distance matrix, or X(n−1), identifies connected components of a graph.

1 2

3

4

5
6

7 8

9

10

11
12

Y

## 1 2 3 4 5 6 7 8 9 10 11 12
## 1 0 1 1 0 0 0 0 0 0 0 0 0
## 2 1 0 1 0 0 0 0 0 0 0 0 0
## 3 1 1 0 1 0 0 0 0 0 0 0 0
## 4 0 0 1 0 1 1 0 0 0 0 0 0
## 5 0 0 0 1 0 1 0 0 0 0 0 0
## 6 0 0 0 1 1 0 0 0 0 0 0 0
## 7 0 0 0 0 0 0 0 1 1 0 0 0
## 8 0 0 0 0 0 0 1 0 1 0 0 0
## 9 0 0 0 0 0 0 1 1 0 1 0 0
## 10 0 0 0 0 0 0 0 0 1 0 1 1
## 11 0 0 0 0 0 0 0 0 0 1 0 1
## 12 0 0 0 0 0 0 0 0 0 1 1 0
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Application: Finding connected components
The distance matrix, or X(n−1), identifies connected components of a graph.

1 2

3

4

5
6

7 8

9

10

11
12

Y + Y%*%Y

## 1 2 3 4 5 6 7 8 9 10 11 12
## 1 2 2 2 1 0 0 0 0 0 0 0 0
## 2 2 2 2 1 0 0 0 0 0 0 0 0
## 3 2 2 3 1 1 1 0 0 0 0 0 0
## 4 1 1 1 3 2 2 0 0 0 0 0 0
## 5 0 0 1 2 2 2 0 0 0 0 0 0
## 6 0 0 1 2 2 2 0 0 0 0 0 0
## 7 0 0 0 0 0 0 2 2 2 1 0 0
## 8 0 0 0 0 0 0 2 2 2 1 0 0
## 9 0 0 0 0 0 0 2 2 3 1 1 1
## 10 0 0 0 0 0 0 1 1 1 3 2 2
## 11 0 0 0 0 0 0 0 0 1 2 2 2
## 12 0 0 0 0 0 0 0 0 1 2 2 2
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Application: Finding connected components
The distance matrix, or X(n−1), identifies connected components of a graph.

1 2

3

4

5
6

7 8

9

10

11
12

Y + Y%*%Y + Y%*%Y%*%Y

## 1 2 3 4 5 6 7 8 9 10 11 12
## 1 4 5 6 2 1 1 0 0 0 0 0 0
## 2 5 4 6 2 1 1 0 0 0 0 0 0
## 3 6 6 5 6 2 2 0 0 0 0 0 0
## 4 2 2 6 5 6 6 0 0 0 0 0 0
## 5 1 1 2 6 4 5 0 0 0 0 0 0
## 6 1 1 2 6 5 4 0 0 0 0 0 0
## 7 0 0 0 0 0 0 4 5 6 2 1 1
## 8 0 0 0 0 0 0 5 4 6 2 1 1
## 9 0 0 0 0 0 0 6 6 5 6 2 2
## 10 0 0 0 0 0 0 2 2 6 5 6 6
## 11 0 0 0 0 0 0 1 1 2 6 4 5
## 12 0 0 0 0 0 0 1 1 2 6 5 4
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R-function concomp

concomp

## function (Y)
## {
## Y0 <- 1 * (Y > 0)
## diag(Y0) <- 1
## Y1 <- Y0
## for (i in 1:dim(Y0)[1]) {
## Y1 <- 1 * (Y1 %*% Y0 > 0)
## }
## cc <- list()
## idx <- 1:dim(Y1)[1]
## while (dim(Y1)[1] > 0) {
## c1 <- which(Y1[1, ] == 1)
## cc <- c(cc, list(idx[c1]))
## Y1 <- Y1[-c1, -c1, drop = FALSE]
## idx <- idx[-c1]
## }
## cc[order(-sapply(cc, length))]
## }
## <environment: namespace:rda>
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R-function concomp

concomp(Y)

## [[1]]
## [1] 1 2 3 4 5 6
##
## [[2]]
## [1] 7 8 9 10 11 12

connodes<-concomp(Y)

Y[ connodes[[1]],connodes[[1]] ]

## 1 2 3 4 5 6
## 1 0 1 1 0 0 0
## 2 1 0 1 0 0 0
## 3 1 1 0 1 0 0
## 4 0 0 1 0 1 1
## 5 0 0 0 1 0 1
## 6 0 0 0 1 1 0
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Walks, trails and paths for directed graphs

All these concepts generalize to directed graphs:

Directed walk: A sequence of nodes i1, . . . , iK such that yik ,ik+1 = 1 for
k = 1, . . . ,K − 1.

Powers of the sociomatrix correspond to counts of directed walks.

X(k) = Y + Y2 + · · ·+ Yk

x
(k)
i,j = # of directed walks from i to j of length k or less
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Example: Praise among monks

ROMUL

AMBROSE

BERTH

PETER

LOUIS
VICTOR

netdist(Yr)

## ROMUL AMBROSE BERTH PETER LOUIS VICTOR
## ROMUL 0 Inf Inf Inf Inf Inf
## AMBROSE Inf 0 Inf Inf Inf Inf
## BERTH 2 1 0 1 1 2
## PETER 1 2 1 0 1 2
## LOUIS 2 3 2 1 0 1
## VICTOR 2 2 1 1 1 0
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