Paths and connectivity 567 Statistical analysis of social networks

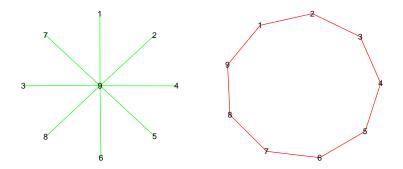
Peter Hoff

Statistics, University of Washington

Network connectivity

Density (or average degree) is a very coarse description of a graph.

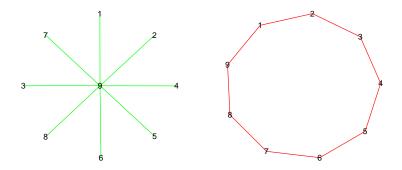
Compare the *n*-star graph to the *n*-circle graph below:



The two graphs have roughly the same density, but the structure is very different.

Network connectivity

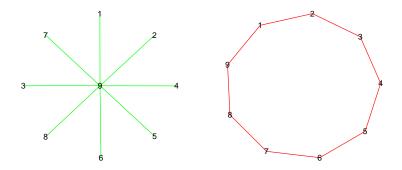
Density (or average degree) is a very coarse description of a graph. Compare the *n*-star graph to the *n*-circle graph below:



The two graphs have roughly the same density, but the structure is very different.

Network connectivity

Density (or average degree) is a very coarse description of a graph. Compare the *n*-star graph to the *n*-circle graph below:



The two graphs have roughly the same density, but the structure is very different.

Recall, density is the average degree divided by (n-1).

What is the average degree of the

- n-star graph?
- the *n* circle graph?

For the circle graph,

$$\bar{d} = \frac{1}{n} \sum_{i=1}^{n} d_i = \frac{1}{n} 2n = 2$$

$$\bar{d} = \frac{1}{n} \sum_{i=1}^{n} d_i$$

= $\frac{1}{n} ((n-1) + 1 + \dots + 1)$
= $\frac{1}{n} ((n-1) + (n-1))$
= $2 \frac{n-1}{n} \approx 2$ for large n

Recall, density is the average degree divided by (n-1).

What is the average degree of the

- *n*-star graph?
- the *n* circle graph?

For the circle graph,

$$\bar{d} = \frac{1}{n} \sum_{i=1}^{n} d_i = \frac{1}{n} 2n = 2$$

$$\bar{d} = \frac{1}{n} \sum_{i=1}^{n} d_i$$

= $\frac{1}{n} ((n-1) + 1 + \dots + 1)$
= $\frac{1}{n} ((n-1) + (n-1))$
= $2 \frac{n-1}{n} \approx 2$ for large n

Recall, density is the average degree divided by (n-1).

What is the average degree of the

- *n*-star graph?
- the *n* circle graph?

For the circle graph,

$$\bar{d} = \frac{1}{n} \sum_{i=1}^{n} d_i = \frac{1}{n} 2n = 2$$

$$\bar{d} = \frac{1}{n} \sum_{i=1}^{n} d_i$$

= $\frac{1}{n} ((n-1) + 1 + \dots + 1)$
= $\frac{1}{n} ((n-1) + (n-1))$
= $2 \frac{n-1}{n} \approx 2$ for large n

Recall, density is the average degree divided by (n-1).

What is the average degree of the

- *n*-star graph?
- the *n* circle graph?

For the circle graph,

$$\bar{d} = \frac{1}{n} \sum_{i=1}^{n} d_i = \frac{1}{n} 2n = 2$$

$$\bar{d} = \frac{1}{n} \sum_{i=1}^{n} d_i$$

= $\frac{1}{n} ((n-1) + 1 + \dots + 1)$
= $\frac{1}{n} ((n-1) + (n-1))$
= $2 \frac{n-1}{n} \approx 2$ for large n

Recall, density is the average degree divided by (n-1).

What is the average degree of the

- *n*-star graph?
- the *n* circle graph?

For the circle graph,

$$\bar{d} = \frac{1}{n} \sum_{i=1}^{n} d_i = \frac{1}{n} 2n = 2$$

$$\bar{d} = \frac{1}{n} \sum_{i=1}^{n} d_i$$

= $\frac{1}{n} ((n-1) + 1 + \dots + 1)$
= $\frac{1}{n} ((n-1) + (n-1))$
= $2 \frac{n-1}{n} \approx 2$ for large n

Recall, density is the average degree divided by (n-1).

What is the average degree of the

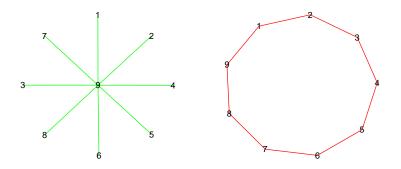
- *n*-star graph?
- the *n* circle graph?

For the circle graph,

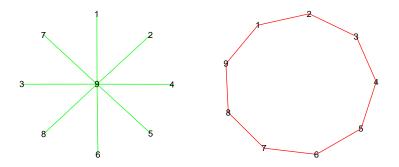
$$\bar{d} = \frac{1}{n} \sum_{i=1}^{n} d_i = \frac{1}{n} 2n = 2$$

$$\bar{d} = \frac{1}{n} \sum_{i=1}^{n} d_i$$

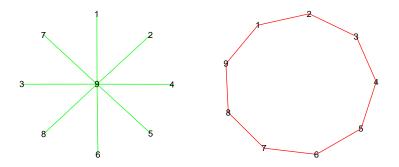
= $\frac{1}{n} ((n-1) + 1 + \dots + 1)$
= $\frac{1}{n} ((n-1) + (n-1))$
= $2 \frac{n-1}{n} \approx 2$ for large n



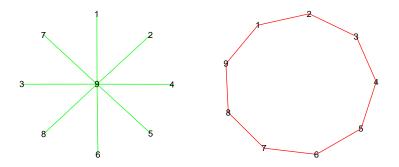
- The star graph?
 - Each node is within at most two links of every other node.
 - Transmitting information in this network is easier than in the circle graph.
- The circle graph?
 - Removal of one node can completely disconnect the star graph.



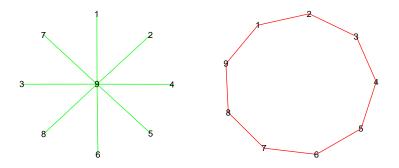
- The star graph?
 - Each node is within at most two links of every other node.
 - Transmitting information in this network is easier than in the circle graph.
- The circle graph?
 - Removal of one node can completely disconnect the star graph.



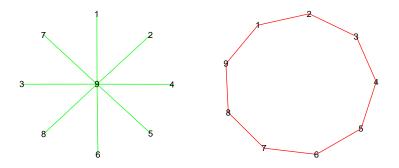
- The star graph?
 - Each node is within at most two links of every other node.
 - Transmitting information in this network is easier than in the circle graph.
- The circle graph?
 - Removal of one node can completely disconnect the star graph.



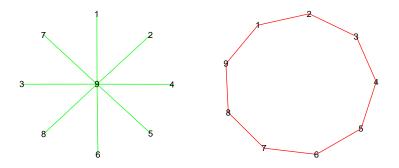
- The star graph?
 - Each node is within at most two links of every other node.
 - Transmitting information in this network is easier than in the circle graph.
- The circle graph?
 - Removal of one node can completely disconnect the star graph.



- The star graph?
 - Each node is within at most two links of every other node.
 - Transmitting information in this network is easier than in the circle graph.
- The circle graph?
 - Removal of one node can completely disconnect the star graph.



- The star graph?
 - Each node is within at most two links of every other node.
 - Transmitting information in this network is easier than in the circle graph.
- The circle graph?
 - Removal of one node can completely disconnect the star graph.



- The star graph?
 - Each node is within at most two links of every other node.
 - Transmitting information in this network is easier than in the circle graph.
- The circle graph?
 - Removal of one node can completely disconnect the star graph.

What summary statistics can distinguish between the graphs? How about degree variability?

Circle graph: $Var(d_1, \ldots, d_n) = 0$.

Star graph: $Var(d_1, \ldots, d_n)$ grows linearly with *n*.

So degree variance can distinguish between these graphs.

What summary statistics can distinguish between the graphs? How about degree variability?

Circle graph: $Var(d_1, \ldots, d_n) = 0.$

Star graph: $Var(d_1, \ldots, d_n)$ grows linearly with n.

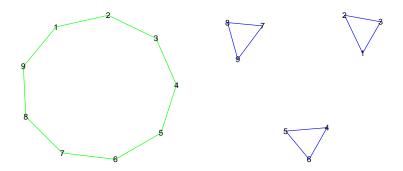
So degree variance can distinguish between these graphs.

What summary statistics can distinguish between the graphs? How about degree variability?

Circle graph: $Var(d_1, \ldots, d_n) = 0$.

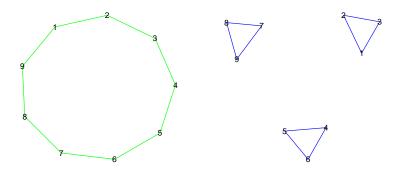
Star graph: $Var(d_1, \ldots, d_n)$ grows linearly with *n*.

So degree variance can distinguish between these graphs.

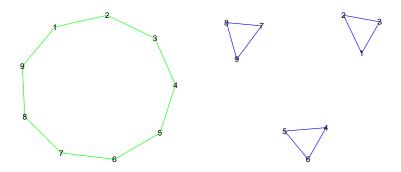


• What is the degree variance for each graph?

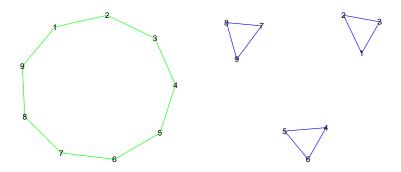
• Which one is more "connected"?



- What is the degree variance for each graph?
- Which one is more "connected"?



- What is the degree variance for each graph?
- Which one is more "connected"?



- What is the degree variance for each graph?
- Which one is more "connected"?

Intuitively, a "highly connected" graph is one in which nodes can reach each other via connections, or a "path."

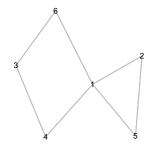
To evaluate connectivity (and a variety of other statistics) it will be useful to calculate the length of the shortest path between each pair of nodes.

Intuitively, a "highly connected" graph is one in which nodes can reach each other via connections, or a "path."

To evaluate connectivity (and a variety of other statistics) it will be useful to calculate the length of the shortest path between each pair of nodes.

Walk: A walk is any sequence of adjacent nodes.

Length of a walk: The number of nodes in the sequence, minus one.

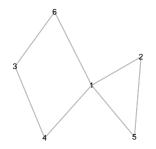


•
$$w = (2, 1, 6, 3, 4)$$

- w = (2, 1, 6, 3, 4, 1, 5)
- w = (2, 1, 2, 5, 1, 4)

Walk: A walk is any sequence of adjacent nodes.

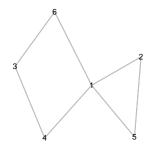
Length of a walk: The number of nodes in the sequence, minus one.



- w = (2, 1, 6, 3, 4)
- w = (2, 1, 6, 3, 4, 1, 5)
- w = (2, 1, 2, 5, 1, 4)

Walk: A walk is any sequence of adjacent nodes.

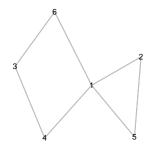
Length of a walk: The number of nodes in the sequence, minus one.



- w = (2, 1, 6, 3, 4)
- w = (2, 1, 6, 3, 4, 1, 5)
- w = (2, 1, 2, 5, 1, 4)

Walk: A walk is any sequence of adjacent nodes.

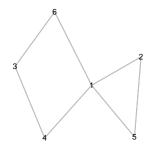
Length of a walk: The number of nodes in the sequence, minus one.



- w = (2, 1, 6, 3, 4)
- w = (2, 1, 6, 3, 4, 1, 5)
- w = (2, 1, 2, 5, 1, 4)

Walk: A walk is any sequence of adjacent nodes.

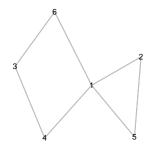
Length of a walk: The number of nodes in the sequence, minus one.



- w = (2, 1, 6, 3, 4)
- w = (2, 1, 6, 3, 4, 1, 5)
- w = (2, 1, 2, 5, 1, 4)

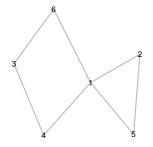
Walk: A walk is any sequence of adjacent nodes.

Length of a walk: The number of nodes in the sequence, minus one.



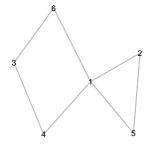
- w = (2, 1, 6, 3, 4)
- w = (2, 1, 6, 3, 4, 1, 5)
- w = (2, 1, 2, 5, 1, 4)

Trail: A trail is a walk on distinct edges.



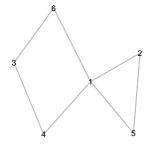
- w = (2, 1, 6, 3, 4)
- w = (2, 1, 6, 3, 4, 1, 5)
- w = (2, 1, 2, 5, 1, 4)

Trail: A trail is a walk on distinct edges.



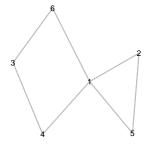
- w = (2, 1, 6, 3, 4)
- w = (2, 1, 6, 3, 4, 1, 5)
- w = (2, 1, 2, 5, 1, 4)

Trail: A trail is a walk on distinct edges.



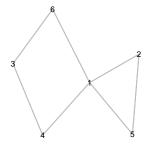
- w = (2, 1, 6, 3, 4)
- w = (2, 1, 6, 3, 4, 1, 5)
- w = (2, 1, 2, 5, 1, 4)

Trail: A trail is a walk on distinct edges.



- w = (2, 1, 6, 3, 4)
- w = (2, 1, 6, 3, 4, 1, 5)
- w = (2, 1, 2, 5, 1, 4)

Trail: A trail is a walk on distinct edges.

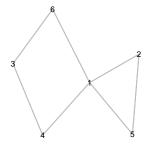


•
$$w = (2, 1, 6, 3, 4)$$

•
$$w = (2, 1, 6, 3, 4, 1, 5)$$

•
$$w = (2, 1, 2, 5, 1, 4)$$

Trail: A trail is a walk on distinct edges.

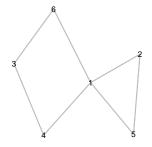


•
$$w = (2, 1, 6, 3, 4)$$

•
$$w = (2, 1, 6, 3, 4, 1, 5)$$

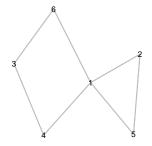
•
$$w = (2, 1, 2, 5, 1, 4)$$

Path: A path is a trail consisting of distinct nodes.



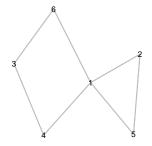
- w = (2, 1, 6, 3, 4)
- w = (2, 1, 6, 3, 4, 1, 5)
- w = (2, 1, 2, 5, 1, 4)

Path: A path is a trail consisting of distinct nodes.



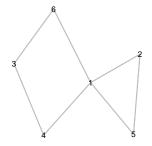
- w = (2, 1, 6, 3, 4)
- w = (2, 1, 6, 3, 4, 1, 5)
- w = (2, 1, 2, 5, 1, 4)

Path: A path is a trail consisting of distinct nodes.



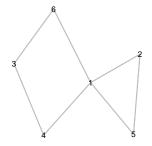
- w = (2, 1, 6, 3, 4)
- w = (2, 1, 6, 3, 4, 1, 5)
- w = (2, 1, 2, 5, 1, 4)

Path: A path is a trail consisting of distinct nodes.



- w = (2, 1, 6, 3, 4)
- w = (2, 1, 6, 3, 4, 1, 5)
- w = (2, 1, 2, 5, 1, 4)

Path: A path is a trail consisting of distinct nodes.

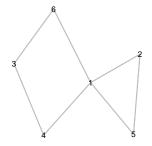


•
$$w = (2, 1, 6, 3, 4)$$

•
$$w = (2, 1, 6, 3, 4, 1, 5)$$

•
$$w = (2, 1, 2, 5, 1, 4)$$

Path: A path is a trail consisting of distinct nodes.



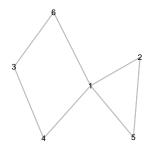
•
$$w = (2, 1, 6, 3, 4)$$

•
$$w = (2, 1, 6, 3, 4, 1, 5)$$

•
$$w = (2, 1, 2, 5, 1, 4)$$

By these definitions,

- · each path is a trail,
- each trail is a walk.

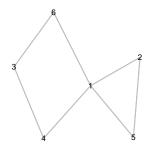


Depending on the application, we may be interested in the numbers and kinds of walks, trails and paths between nodes:

- probability: random walks on graphs;
- transport along a network: trails on graphs;
- communication or disease transmission: number of paths between nodes.
- To evaluate connectivity, identifying paths will be most useful.

By these definitions,

- each path is a trail,
- each trail is a walk.

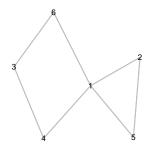


Depending on the application, we may be interested in the numbers and kinds of walks, trails and paths between nodes:

- probability: random walks on graphs;
- transport along a network: trails on graphs;
- communication or disease transmission: number of paths between nodes.
- To evaluate connectivity, identifying paths will be most useful.

By these definitions,

- each path is a trail,
- each trail is a walk.

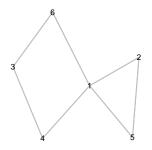


Depending on the application, we may be interested in the numbers and kinds of walks, trails and paths between nodes:

- probability: random walks on graphs;
- transport along a network: trails on graphs;
- communication or disease transmission: number of paths between nodes.
- To evaluate connectivity, identifying paths will be most useful.

By these definitions,

- each path is a trail,
- each trail is a walk.

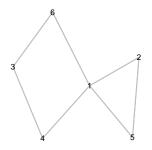


Depending on the application, we may be interested in the numbers and kinds of walks, trails and paths between nodes:

- probability: random walks on graphs;
- transport along a network: trails on graphs;
- communication or disease transmission: number of paths between nodes.

By these definitions,

- each path is a trail,
- each trail is a walk.

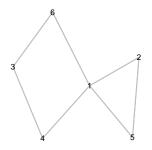


Depending on the application, we may be interested in the numbers and kinds of walks, trails and paths between nodes:

- probability: random walks on graphs;
- transport along a network: trails on graphs;
- communication or disease transmission: number of paths between nodes.

By these definitions,

- each path is a trail,
- each trail is a walk.

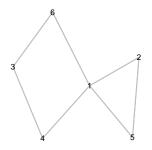


Depending on the application, we may be interested in the numbers and kinds of walks, trails and paths between nodes:

- probability: random walks on graphs;
- transport along a network: trails on graphs;
- communication or disease transmission: number of paths between nodes.

By these definitions,

- each path is a trail,
- each trail is a walk.

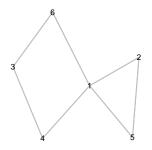


Depending on the application, we may be interested in the numbers and kinds of walks, trails and paths between nodes:

- probability: random walks on graphs;
- transport along a network: trails on graphs;
- communication or disease transmission: number of paths between nodes.

By these definitions,

- each path is a trail,
- each trail is a walk.



Depending on the application, we may be interested in the numbers and kinds of walks, trails and paths between nodes:

- probability: random walks on graphs;
- transport along a network: trails on graphs;
- communication or disease transmission: number of paths between nodes.

Reachability and connectedness

Reachable: Two nodes are reachable if there is a path between them.

Connected: A network is connected if every pair of nodes is reachable.

Component: A network **component** is a maximal connected subgraph.

A "maximal connected subgraph" is a connected node-generated subgraph that becomes unconnected by the addition of another node.

Reachability and connectedness

Reachable: Two nodes are **reachable** if there is a path between them. **Connected:** A network is **connected** if every pair of nodes is reachable.

Component: A network **component** is a maximal connected subgraph.

A "maximal connected subgraph" is a connected node-generated subgraph that becomes unconnected by the addition of another node.

Reachability and connectedness

Reachable: Two nodes are reachable if there is a path between them.

Connected: A network is connected if every pair of nodes is reachable.

Component: A network component is a maximal connected subgraph.

A "maximal connected subgraph" is a connected node-generated subgraph that becomes unconnected by the addition of another node.

An unconnected graph

Symmetrized conflict data: with isolates removed

```
Y<-conflict90s$conflicts
Y<-1*( Y*t(Y)>0 )
```

```
deg<-apply(Y,1,sum,na.rm=TRUE)
Y<-Y[ deg>0 ,deg>0 ]
```

Identify all connected components:

How connected is a graph?

One notion of connectivity is robustness to removal of nodes or edges.

Cutpoint: Let \mathcal{G} be a graph and \mathcal{G}_{-i} be the node-generated subgraph, generated by $\{1, \ldots, n\} \setminus \{i\}$. Then node *i* is a **cutpoint** if the number of components of \mathcal{G}_{-i} is larger than the number of components of \mathcal{G} .

How connected is a graph?

One notion of connectivity is robustness to removal of nodes or edges.

Cutpoint: Let \mathcal{G} be a graph and \mathcal{G}_{-i} be the node-generated subgraph, generated by $\{1, \ldots, n\} \setminus \{i\}$. Then node *i* is a **cutpoint** if the number of components of \mathcal{G}_{-i} is larger than the number of components of \mathcal{G} .

How connected is a graph?

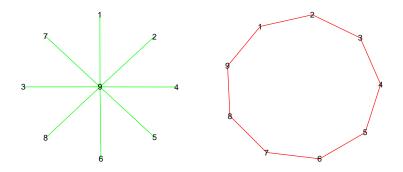
One notion of connectivity is robustness to removal of nodes or edges.

Cutpoint: Let \mathcal{G} be a graph and \mathcal{G}_{-i} be the node-generated subgraph, generated by $\{1, \ldots, n\} \setminus \{i\}$. Then node *i* is a **cutpoint** if the number of components of \mathcal{G}_{-i} is larger than the number of components of \mathcal{G} .

How connected is a graph?

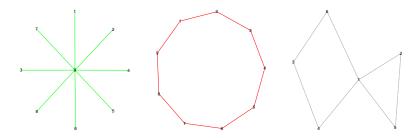
One notion of connectivity is robustness to removal of nodes or edges.

Cutpoint: Let \mathcal{G} be a graph and \mathcal{G}_{-i} be the node-generated subgraph, generated by $\{1, \ldots, n\} \setminus \{i\}$. Then node *i* is a **cutpoint** if the number of components of \mathcal{G}_{-i} is larger than the number of components of \mathcal{G} .



Node connectivity

Node connectivity: The node connectivity of a graph $k(\mathcal{G})$ is the minimum number of nodes that must be removed to disconnect the graph.



Exercise: Compute the node connectivities of the above graphs.

This notion of connectivity is of limited use:

- perhaps most useful in terms of designing robust communication networks;
- less useful for describing the types of networks we've seen.

In particular, node connectivity is a very coarse measure

- it disregards the size of the graph;
- it disregards the number of cutpoints;
- it is of limited descriptive value for real social networks.

This notion of connectivity is of limited use:

- · perhaps most useful in terms of designing robust communication networks;
- less useful for describing the types of networks we've seen.

In particular, node connectivity is a very coarse measure

- it disregards the size of the graph;
- it disregards the number of cutpoints;
- it is of limited descriptive value for real social networks.

This notion of connectivity is of limited use:

- · perhaps most useful in terms of designing robust communication networks;
- less useful for describing the types of networks we've seen.

In particular, node connectivity is a very coarse measure

- it disregards the size of the graph;
- it disregards the number of cutpoints;
- it is of limited descriptive value for real social networks.

This notion of connectivity is of limited use:

- perhaps most useful in terms of designing robust communication networks;
- less useful for describing the types of networks we've seen.

In particular, node connectivity is a very coarse measure

- it disregards the size of the graph;
- it disregards the number of cutpoints;
- it is of limited descriptive value for real social networks.

This notion of connectivity is of limited use:

- · perhaps most useful in terms of designing robust communication networks;
- less useful for describing the types of networks we've seen.

In particular, node connectivity is a very coarse measure

- it disregards the size of the graph;
- it disregards the number of cutpoints;
- it is of limited descriptive value for real social networks.

This notion of connectivity is of limited use:

- · perhaps most useful in terms of designing robust communication networks;
- less useful for describing the types of networks we've seen.

In particular, node connectivity is a very coarse measure

- it disregards the size of the graph;
- it disregards the number of cutpoints;
- it is of limited descriptive value for real social networks.

This notion of connectivity is of limited use:

- · perhaps most useful in terms of designing robust communication networks;
- less useful for describing the types of networks we've seen.

In particular, node connectivity is a very coarse measure

- it disregards the size of the graph;
- it disregards the number of cutpoints;
- it is of limited descriptive value for real social networks.

This notion of connectivity is of limited use:

- perhaps most useful in terms of designing robust communication networks;
- less useful for describing the types of networks we've seen.

In particular, node connectivity is a very coarse measure

- it disregards the size of the graph;
- it disregards the number of cutpoints;
- it is of limited descriptive value for real social networks.

Node connectivity is based on a "worst case scenario."

A more representative measure might be some sort of average connectivity.

Connected nodes: Nodes i,j are connected if there is a path between them.

Dyadic connectivity: k(i,j) = minimum number of removed nodes required to disconnect *i*, *j*.

Average connectivity: $\bar{k} = \sum_{i < j} k(i, j) / {n \choose 2}$

- k
 can be computed in polynomial time;
- bounds on \bar{k} in term of degree, path distances can be obtained.

(Beineke, Oellermann, Pippert 2002)

Node connectivity is based on a "worst case scenario."

A more representative measure might be some sort of average connectivity.

Connected nodes:

Nodes i, j are connected if there is a path between them.

Dyadic connectivity:

k(i,j) = minimum number of removed nodes required to disconnect *i*, *j*.

Average connectivity: $\bar{k} = \sum_{i < j} k(i, j) / {n \choose 2}$

- k
 can be computed in polynomial time;
- bounds on \bar{k} in term of degree, path distances can be obtained.

(Beineke, Oellermann, Pippert 2002)

Node connectivity is based on a "worst case scenario."

A more representative measure might be some sort of average connectivity.

Connected nodes:

Nodes i, j are connected if there is a path between them.

Dyadic connectivity:

k(i,j) = minimum number of removed nodes required to disconnect *i*, *j*.

Average connectivity: $\bar{k} = \sum_{i < j} k(i, j) / {n \choose 2}$

• \bar{k} can be computed in polynomial time;

• bounds on \bar{k} in term of degree, path distances can be obtained.

(Beineke, Oellermann, Pippert 2002)

Node connectivity is based on a "worst case scenario."

A more representative measure might be some sort of average connectivity.

Connected nodes:

Nodes i, j are connected if there is a path between them.

Dyadic connectivity:

k(i,j) = minimum number of removed nodes required to disconnect *i*, *j*.

Average connectivity: $\bar{k} = \sum_{i < j} k(i, j) / {n \choose 2}$

- \bar{k} can be computed in polynomial time;
- bounds on \bar{k} in term of degree, path distances can be obtained.

(Beineke, Oellermann, Pippert 2002)

Node connectivity is based on a "worst case scenario."

A more representative measure might be some sort of average connectivity.

Connected nodes:

Nodes i, j are connected if there is a path between them.

Dyadic connectivity:

k(i,j) = minimum number of removed nodes required to disconnect *i*, *j*.

Average connectivity: $\bar{k} = \sum_{i < j} k(i, j) / {n \choose 2}$

- \bar{k} can be computed in polynomial time;
- bounds on \bar{k} in term of degree, path distances can be obtained.

(Beineke, Oellermann, Pippert 2002)

Node connectivity is based on a "worst case scenario."

A more representative measure might be some sort of average connectivity.

Connected nodes:

Nodes i, j are connected if there is a path between them.

Dyadic connectivity:

k(i,j) = minimum number of removed nodes required to disconnect *i*, *j*.

Average connectivity: $\bar{k} = \sum_{i < j} k(i, j) / {n \choose 2}$

- \bar{k} can be computed in polynomial time;
- bounds on \bar{k} in term of degree, path distances can be obtained.

(Beineke, Oellermann, Pippert 2002)

Connectivity and bridges

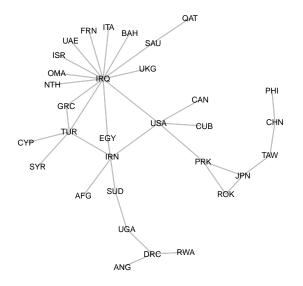
A similar notion of connectivity is to considering robustness to edge removal.

Bridge: Let \mathcal{G} be a graph and \mathcal{G}_{-e} be the graph minus the edge e. Then e is a bridge if the number of components of \mathcal{G}_{-e} is greater than the number of components of \mathcal{G} .

Exercise: Identify some bridges in the above graphs.

Connectivity and bridges

Identify bridges in the big connected component of the conflict network:



Edge connectivity:

The edge connectivity of a graph is the minimum number of that need to be removed to disconnect the graph.

- for many real-life graphs, the edge connectivity is one;
- averaged versions of connectivity may be of more use.

Edge connectivity:

The edge connectivity of a graph is the minimum number of that need to be removed to disconnect the graph.

- for many real-life graphs, the edge connectivity is one;
- averaged versions of connectivity may be of more use.

Edge connectivity:

The edge connectivity of a graph is the minimum number of that need to be removed to disconnect the graph.

- for many real-life graphs, the edge connectivity is one;
- averaged versions of connectivity may be of more use.

Edge connectivity:

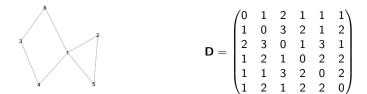
The edge connectivity of a graph is the minimum number of that need to be removed to disconnect the graph.

- for many real-life graphs, the edge connectivity is one;
- averaged versions of connectivity may be of more use.

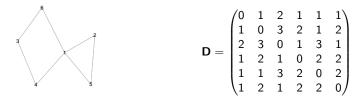
The geodesic distance d(i, j) between nodes i and j is the length of a shortest path between i and j.

The geodesic distance d(i,j) between nodes i and j is the length of a shortest path between i and j.

The geodesic distance d(i, j) between nodes i and j is the length of a shortest path between i and j.



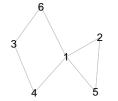
The geodesic distance d(i,j) between nodes i and j is the length of a shortest path between i and j.



Nodal eccentricity

The eccentricity of a node is the largest distance from it to any other node:

$$e_i = \max_j d_{i,j}.$$



$$\mathbf{e} = (2, 3, 3, 2, 3, 2)$$

Eccentricities, like degrees, are node level statistics.

One common network level statistic based on distance is the diameter:

The diameter of a graph is the largest between-node distance:

 $diam(\mathbf{Y}) = \max_{\substack{i,j \\ i \neq j}} d_{i,j}$ $= \max_{i} \max_{j} d_{i,j}$ $= \max_{i} e_{i}$

Eccentricities, like degrees, are node level statistics.

One common network level statistic based on distance is the diameter:

The diameter of a graph is the largest between-node distance:

 $diam(\mathbf{Y}) = \max_{\substack{i,j \\ i \neq j}} d_{i,j}$ $= \max_{i} \max_{j} d_{i,j}$ $= \max_{i} e_{i}$

Eccentricities, like degrees, are node level statistics.

One common network level statistic based on distance is the diameter:

The diameter of a graph is the largest between-node distance:

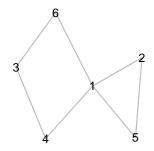
$$\begin{aligned} \text{diam}(\mathbf{Y}) &= \max_{i,j} d_{i,j} \\ &= \max_{i} \max_{j} \max_{i} d_{i,j} \\ &= \max_{i} e_{i} \end{aligned}$$

Eccentricities, like degrees, are node level statistics.

One common network level statistic based on distance is the diameter:

The diameter of a graph is the largest between-node distance:

$$egin{aligned} \mathsf{diam}(\mathbf{Y}) &= \max_{\substack{i,j \ i,j}} d_{i,j} \ &= \max_i \max_j d_{i,j} \ &= \max_i e_i \end{aligned}$$



For our simple six-node example graph,

$$diam(\mathbf{Y}) = max\{2, 3, 3, 2, 3, 2\} = 3$$

• For a connected graph, the diameter can range from 1 to n-1.

- For an unconnected graph
 - by convention the diameter is taken to be infinity;
 - diameters of connected subgraphs can be computed.
- Like node connectivity, diameter is reflects a "worst case scenario."
 - Average eccentricity, $\bar{e} = \sum e_i / n$ may be a more representative measure.
 - When comparing graphs with different numbers of nodes, it is useful to scale by n - 1.

$$\frac{1}{n-1}\bar{e}=\frac{1}{n(n-1)}\sum e_i$$

• For a connected graph, the diameter can range from 1 to n-1.

- For an unconnected graph
 - by convention the diameter is taken to be infinity;
 - diameters of connected subgraphs can be computed.
- Like node connectivity, diameter is reflects a "worst case scenario."
 - Average eccentricity, $\bar{e} = \sum e_i / n$ may be a more representative measure.
 - When comparing graphs with different numbers of nodes, it is useful to scale by n 1.

$$\frac{1}{n-1}\bar{e}=\frac{1}{n(n-1)}\sum e_i$$

- For a connected graph, the diameter can range from 1 to n-1.
- For an unconnected graph
 - by convention the diameter is taken to be infinity;
 - diameters of connected subgraphs can be computed.
- Like node connectivity, diameter is reflects a "worst case scenario."
 - Average eccentricity, $\bar{e} = \sum e_i / n$ may be a more representative measure.
 - When comparing graphs with different numbers of nodes, it is useful to scale by n 1.

$$\frac{1}{n-1}\bar{e}=\frac{1}{n(n-1)}\sum e_i$$

- For a connected graph, the diameter can range from 1 to n-1.
- For an unconnected graph
 - by convention the diameter is taken to be infinity;
 - diameters of connected subgraphs can be computed.
- Like node connectivity, diameter is reflects a "worst case scenario."
 - Average eccentricity, $\bar{e} = \sum e_i / n$ may be a more representative measure.
 - When comparing graphs with different numbers of nodes, it is useful to scale by n 1.

$$\frac{1}{n-1}\bar{e}=\frac{1}{n(n-1)}\sum e_i$$

- For a connected graph, the diameter can range from 1 to n-1.
- For an unconnected graph
 - by convention the diameter is taken to be infinity;
 - diameters of connected subgraphs can be computed.
- Like node connectivity, diameter is reflects a "worst case scenario."
 - Average eccentricity, $\overline{e} = \sum e_i / n$ may be a more representative measure.
 - When comparing graphs with different numbers of nodes, it is useful to scale by n-1.

$$\frac{1}{n-1}\bar{e}=\frac{1}{n(n-1)}\sum e_i$$

- For a connected graph, the diameter can range from 1 to n-1.
- For an unconnected graph
 - by convention the diameter is taken to be infinity;
 - diameters of connected subgraphs can be computed.
- Like node connectivity, diameter is reflects a "worst case scenario."
 - Average eccentricity, $\bar{e} = \sum e_i/n$ may be a more representative measure.
 - When comparing graphs with different numbers of nodes, it is useful to scale by n-1.

$$\frac{1}{n-1}\bar{e}=\frac{1}{n(n-1)}\sum e_i$$

- For a connected graph, the diameter can range from 1 to n-1.
- For an unconnected graph
 - by convention the diameter is taken to be infinity;
 - diameters of connected subgraphs can be computed.
- Like node connectivity, diameter is reflects a "worst case scenario."
 - Average eccentricity, $\bar{e} = \sum e_i/n$ may be a more representative measure.
 - When comparing graphs with different numbers of nodes, it is useful to scale by n 1.

$$\frac{1}{n-1}\bar{e}=\frac{1}{n(n-1)}\sum e_i$$

- For a connected graph, the diameter can range from 1 to n-1.
- For an unconnected graph
 - by convention the diameter is taken to be infinity;
 - diameters of connected subgraphs can be computed.
- Like node connectivity, diameter is reflects a "worst case scenario."
 - Average eccentricity, $\bar{e} = \sum e_i/n$ may be a more representative measure.
 - When comparing graphs with different numbers of nodes, it is useful to scale by n 1.

$$\frac{1}{n-1}\bar{e}=\frac{1}{n(n-1)}\sum e_i$$

- For a connected graph, the diameter can range from 1 to n-1.
- For an unconnected graph
 - by convention the diameter is taken to be infinity;
 - diameters of connected subgraphs can be computed.
- Like node connectivity, diameter is reflects a "worst case scenario."
 - Average eccentricity, $\bar{e} = \sum e_i/n$ may be a more representative measure.
 - When comparing graphs with different numbers of nodes, it is useful to scale by n 1.

$$\frac{1}{n-1}\bar{e}=\frac{1}{n(n-1)}\sum e_i$$

Enumerating the number and types of walks between nodes is useful:

- existence of walks between nodes tells us about connectivity.
- existence of walks of minimal length tells us about geodesics.

Enumerating the number and types of walks between nodes is useful:

- existence of walks between nodes tells us about connectivity.
- existence of walks of minimal length tells us about geodesics.

Enumerating the number and types of walks between nodes is useful:

- existence of walks between nodes tells us about connectivity.
- existence of walks of minimal length tells us about geodesics.

Enumerating the number and types of walks between nodes is useful:

- existence of walks between nodes tells us about connectivity.
- existence of walks of minimal length tells us about geodesics.

Matrix multiplication

General matrix multiplication: Let

- **X** be an $l \times m$ matrix ;
- Y be an $m \times n$ matrix.

The matrix product **XY** is the $l \times n$ matrix **Z**, with entries

$$z_{i,j} = \sum_{k=1}^m x_{i,k} y_{k,j}$$

$$\mathbf{XY} = \begin{pmatrix} \mathbf{x}_1 & \rightarrow \\ \mathbf{x}_2 & \rightarrow \\ \mathbf{x}_3 & \rightarrow \end{pmatrix} \begin{pmatrix} \mathbf{y}_1 & \mathbf{y}_2 & \mathbf{y}_3 & \mathbf{y}_4 \\ \downarrow & \downarrow & \downarrow & \downarrow \end{pmatrix} = \begin{pmatrix} \mathbf{x}_1 \cdot \mathbf{y}_1 & \mathbf{x}_1 \cdot \mathbf{y}_2 & \mathbf{x}_1 \cdot \mathbf{y}_3 & \mathbf{x}_1 \cdot \mathbf{y}_4 \\ \mathbf{x}_2 \cdot \mathbf{y}_1 & \mathbf{x}_2 \cdot \mathbf{y}_2 & \mathbf{x}_2 \cdot \mathbf{y}_3 & \mathbf{x}_2 \cdot \mathbf{y}_4 \\ \mathbf{x}_3 \cdot \mathbf{y}_1 & \mathbf{x}_3 \cdot \mathbf{y}_2 & \mathbf{x}_3 \cdot \mathbf{y}_3 & \mathbf{x}_3 \cdot \mathbf{y}_4 \end{pmatrix}$$

Matrix multiplication

General matrix multiplication: Let

- X be an *I* × *m* matrix ;
- Y be an $m \times n$ matrix.

The matrix product **XY** is the $l \times n$ matrix **Z**, with entries

$$z_{i,j} = \sum_{k=1}^m x_{i,k} y_{k,j}$$

$$\mathbf{XY} = \begin{pmatrix} \mathbf{x}_1 & \rightarrow \\ \mathbf{x}_2 & \rightarrow \\ \mathbf{x}_3 & \rightarrow \end{pmatrix} \begin{pmatrix} \mathbf{y}_1 & \mathbf{y}_2 & \mathbf{y}_3 & \mathbf{y}_4 \\ \downarrow & \downarrow & \downarrow & \downarrow \end{pmatrix} = \begin{pmatrix} \mathbf{x}_1 \cdot \mathbf{y}_1 & \mathbf{x}_1 \cdot \mathbf{y}_2 & \mathbf{x}_1 \cdot \mathbf{y}_3 & \mathbf{x}_1 \cdot \mathbf{y}_4 \\ \mathbf{x}_2 \cdot \mathbf{y}_1 & \mathbf{x}_2 \cdot \mathbf{y}_2 & \mathbf{x}_2 \cdot \mathbf{y}_3 & \mathbf{x}_2 \cdot \mathbf{y}_4 \\ \mathbf{x}_3 \cdot \mathbf{y}_1 & \mathbf{x}_3 \cdot \mathbf{y}_2 & \mathbf{x}_3 \cdot \mathbf{y}_3 & \mathbf{x}_3 \cdot \mathbf{y}_4 \end{pmatrix}$$

Matrix multiplication

General matrix multiplication: Let

- X be an *I* × *m* matrix ;
- Y be an $m \times n$ matrix.

The matrix product **XY** is the $l \times n$ matrix **Z**, with entries

$$z_{i,j} = \sum_{k=1}^m x_{i,k} y_{k,j}$$

$$\mathbf{XY} = \begin{pmatrix} \mathbf{x}_1 & \rightarrow \\ \mathbf{x}_2 & \rightarrow \\ \mathbf{x}_3 & \rightarrow \end{pmatrix} \begin{pmatrix} \mathbf{y}_1 & \mathbf{y}_2 & \mathbf{y}_3 & \mathbf{y}_4 \\ \downarrow & \downarrow & \downarrow & \downarrow \end{pmatrix} = \begin{pmatrix} \mathbf{x}_1 \cdot \mathbf{y}_1 & \mathbf{x}_1 \cdot \mathbf{y}_2 & \mathbf{x}_1 \cdot \mathbf{y}_3 & \mathbf{x}_1 \cdot \mathbf{y}_4 \\ \mathbf{x}_2 \cdot \mathbf{y}_1 & \mathbf{x}_2 \cdot \mathbf{y}_2 & \mathbf{x}_2 \cdot \mathbf{y}_3 & \mathbf{x}_2 \cdot \mathbf{y}_4 \\ \mathbf{x}_3 \cdot \mathbf{y}_1 & \mathbf{x}_3 \cdot \mathbf{y}_2 & \mathbf{x}_3 \cdot \mathbf{y}_3 & \mathbf{x}_3 \cdot \mathbf{y}_4 \end{pmatrix}$$

General matrix multiplication: Let

- X be an *I* × *m* matrix ;
- Y be an $m \times n$ matrix.

The matrix product **XY** is the $l \times n$ matrix **Z**, with entries

$$z_{i,j} = \sum_{k=1}^m x_{i,k} y_{k,j}$$

$$\mathbf{XY} = \begin{pmatrix} \mathbf{x}_1 & \rightarrow \\ \mathbf{x}_2 & \rightarrow \\ \mathbf{x}_3 & \rightarrow \end{pmatrix} \begin{pmatrix} \mathbf{y}_1 & \mathbf{y}_2 & \mathbf{y}_3 & \mathbf{y}_4 \\ \downarrow & \downarrow & \downarrow & \downarrow \end{pmatrix} = \begin{pmatrix} \mathbf{x}_1 \cdot \mathbf{y}_1 & \mathbf{x}_1 \cdot \mathbf{y}_2 & \mathbf{x}_1 \cdot \mathbf{y}_3 & \mathbf{x}_1 \cdot \mathbf{y}_4 \\ \mathbf{x}_2 \cdot \mathbf{y}_1 & \mathbf{x}_2 \cdot \mathbf{y}_2 & \mathbf{x}_2 \cdot \mathbf{y}_3 & \mathbf{x}_2 \cdot \mathbf{y}_4 \\ \mathbf{x}_3 \cdot \mathbf{y}_1 & \mathbf{x}_3 \cdot \mathbf{y}_2 & \mathbf{x}_3 \cdot \mathbf{y}_3 & \mathbf{x}_3 \cdot \mathbf{y}_4 \end{pmatrix}$$

General matrix multiplication: Let

- X be an *I* × *m* matrix ;
- Y be an $m \times n$ matrix.

The matrix product **XY** is the $l \times n$ matrix **Z**, with entries

$$z_{i,j} = \sum_{k=1}^m x_{i,k} y_{k,j}$$

Useful note: The entries of Z are dot products of rows of X with columns of Y.

$$\mathbf{XY} = \begin{pmatrix} \mathbf{x}_1 & \rightarrow \\ \mathbf{x}_2 & \rightarrow \\ \mathbf{x}_3 & \rightarrow \end{pmatrix} \begin{pmatrix} \mathbf{y}_1 & \mathbf{y}_2 & \mathbf{y}_3 & \mathbf{y}_4 \\ \downarrow & \downarrow & \downarrow & \downarrow \end{pmatrix} = \begin{pmatrix} \mathbf{x}_1 \cdot \mathbf{y}_1 & \mathbf{x}_1 \cdot \mathbf{y}_2 & \mathbf{x}_1 \cdot \mathbf{y}_3 & \mathbf{x}_1 \cdot \mathbf{y}_4 \\ \mathbf{x}_2 \cdot \mathbf{y}_1 & \mathbf{x}_2 \cdot \mathbf{y}_2 & \mathbf{x}_2 \cdot \mathbf{y}_3 & \mathbf{x}_2 \cdot \mathbf{y}_4 \\ \mathbf{x}_3 \cdot \mathbf{y}_1 & \mathbf{x}_3 \cdot \mathbf{y}_2 & \mathbf{x}_3 \cdot \mathbf{y}_3 & \mathbf{x}_3 \cdot \mathbf{y}_4 \end{pmatrix}$$

Let **Y** be an $n \times m$ affiliation network:

 $y_{i,j}$ = membership of person *i* in group *j*

$$\mathbf{Y} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

Transpose: The transpose of an $n \times m$ matrix **Y** is the $m \times n$ matrix **X** = **Y**^T with entries $x_{i,j} = y_{j,i}$.

$$\mathbf{Y}^{\mathsf{T}} = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \end{pmatrix}$$

Let **Y** be an $n \times m$ affiliation network:

 $y_{i,j}$ = membership of person *i* in group *j*

$$\mathbf{Y} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

Transpose: The transpose of an $n \times m$ matrix **Y** is the $m \times n$ matrix $\mathbf{X} = \mathbf{Y}^T$ with entries $x_{i,j} = y_{j,i}$.

$$\mathbf{Y}^{T} = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \end{pmatrix}$$

Exercise: Complete the multiplication of **Y** by \mathbf{Y}^{T} :

$$\mathbf{Y}\mathbf{Y}^{T} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & & & & & \\ & 2 & & & \\ & & 2 & & \\ & & & 0 & & \\ & & & & 2 & \\ & & & & & 1 \end{pmatrix}$$

Letting $\mathbf{X} = \mathbf{Y}\mathbf{Y}^{T}$, we see $x_{i,j}$ is the number of comemberships of nodes *i* and *j*.

Exercise: Complete the multiplication of **Y** by \mathbf{Y}^{T} :

$$\mathbf{Y}\mathbf{Y}^{T} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & & & & & \\ & 2 & & & & \\ & & 2 & & & \\ & & & 0 & & \\ & & & & 2 & \\ & & & & & 1 \end{pmatrix}$$

Letting $\mathbf{X} = \mathbf{Y}\mathbf{Y}^{T}$, we see $x_{i,j}$ is the number of comemberships of nodes *i* and *j*.

Exercise: Complete the multiplication of **Y** by \mathbf{Y}^{T} :

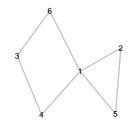
$$\mathbf{Y}\mathbf{Y}^{\mathsf{T}} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & & & & & \\ & 2 & & & & \\ & & 2 & & & \\ & & & 0 & & \\ & & & & 2 & \\ & & & & & & 1 \end{pmatrix}$$

Letting $\mathbf{X} = \mathbf{Y}\mathbf{Y}^{\mathsf{T}}$, we see $x_{i,j}$ is the number of comemberships of nodes *i* and *j*.

Exercise: Compute $\mathbf{Y}^T \mathbf{Y}$, and identify what it represents.

$$\mathbf{Y}^{\mathsf{T}}\mathbf{Y} = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

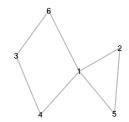
Repeated multiplication of a sociomatrix by itself identifies walks.



					∕∗% Υ			

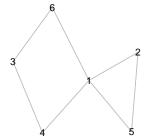
Note: We have replaced the diagonal with zeros for this calculation.

Repeated multiplication of a sociomatrix by itself identifies walks.



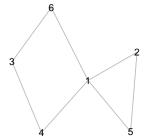
Y									Y 🕺	%∗% Y							
##		[,1]	[,2]	[,3]	[,4]	[,5]	[,6	6]	##		[,1]	[,2]	[,3]	[,4]	[,5]	[,6	5]
##	[1,]	0	1	0	1	1		1	##	[1,]	4	1	2	0	1		0
##	[2,]	1	0	0	0	1		0	##	[2,]	1	2	0	1	1		1
##	[3,]	0	0	0	1	0		1	##	[3,]		0	2	0	0		0
##	[4,]	1	0	1	0	0		0	##	[4,]	0	1	0	2	1		2
##	[5,]	1	1	0	0	0		0	##	[5,]	1	1	0	1	2		1
##	[6,]	1	0	1	0	0		0	##	[6,]	0	1	0	2	1		2

Note: We have replaced the diagonal with zeros for this calculation.



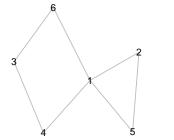
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Y %*% Y						
	<pre>## [1,] ## [2,] ## [3,] ## [4,] ## [5,]</pre>	4 1 2 0 1	1 2 0 1	2 0 2 0 0	0 1 0 2 1	1 1 0 1 2	0 1 0 2

- How many walks of length 2 are there from *i* to *i*?
- How many walks of length 2 are there from *i* to *j*?



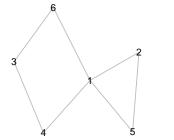
Y	%*% Y					
## ## ## ##	[1,] [2,] [3,] [4,] [5,] [6,]	[,1] 4 1 2 0 1 0	1	[,3] 2 0 2 0 0 0	[,5] 1 0 1 2 1	[,6] 0 1 0 2 1 2

- How many walks of length 2 are there from *i* to *i*?
- How many walks of length 2 are there from *i* to *j*?



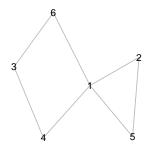
Υ γ	*% Y						
##		[,1] 4			[,4]		[,6]
	[1,] [2,]	4	1 2	2 0	0 1	1 1	1
	[3,]	2	0	2		0	0
	[4,]	0	1	0	2	1	2
	[5,] [6,]	1 0	1 1	0	1 2	2 1	1 2

- How many walks of length 2 are there from *i* to *i*?
- How many walks of length 2 are there from *i* to *j*?



Υ γ	*% Y						
##		[,1] 4			[,4]		[,6]
	[1,] [2,]	4	1 2	2 0	0 1	1 1	1
	[3,]	2	0	2		0	0
	[4,]	0	1	0	2	1	2
	[5,] [6,]	1 0	1 1	0	1 2	2 1	1 2

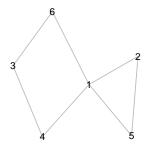
- How many walks of length 2 are there from *i* to *i*?
- How many walks of length 2 are there from *i* to *j*?



Y %*%	Y %*% }	ľ				
##			[,3]	[,4]	[,5]	[,6]
## [1,] 2	5	0	6	5	6
## [2]	,] 5	2	2	1	3	1
## [3	.] 0	2	0	4	2	4
## [4]	,] 6	1	4	0	1	0
## [5]	,] 5	3	2	1	2	1
## [6	,] 6	1	4	0	1	0

Result: Let $W = Y^k$. Then

 $w_{i,j} = \#$ of walks of length k between i and j



$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Y %*% Y %*% Y										
	## ## ## ## ##	[1,] [2,] [3,] [4,] [5,]	2 5 0 6 5	5 2 2 1 3	0 2 0 4	6 1 4 0	5 3 2 1 2	6 1 4			

Result: Let $\mathbf{W} = \mathbf{Y}^k$. Then

 $w_{i,j} = \#$ of walks of length k between i and j

Define $\mathbf{X}^{(k)}, k = 1, \dots n - 1$ as follows:

$$\mathbf{X}^{(1)} = \mathbf{Y}$$
$$\mathbf{X}^{(2)} = \mathbf{Y} + \mathbf{Y}^{2}$$
$$\vdots$$
$$\mathbf{X}^{(k)} = \mathbf{Y} + \mathbf{Y}^{2} + \dots + \mathbf{Y}^{k}$$

- X⁽¹⁾ counts the number of walks of length 1 between nodes;
- $\mathbf{X}^{(2)}$ counts the number of walks of length \leq 2 between nodes.
- $\mathbf{X}^{(k)}$ counts the number of walks of length $\leq k$ between nodes.

Define $\mathbf{X}^{(k)}, k = 1, \dots n - 1$ as follows:

$$\mathbf{X}^{(1)} = \mathbf{Y}$$
$$\mathbf{X}^{(2)} = \mathbf{Y} + \mathbf{Y}^{2}$$
$$\vdots$$
$$\mathbf{X}^{(k)} = \mathbf{Y} + \mathbf{Y}^{2} + \dots + \mathbf{Y}^{k}$$

- X⁽¹⁾ counts the number of walks of length 1 between nodes;
- $\mathbf{X}^{(2)}$ counts the number of walks of length ≤ 2 between nodes;
- $\mathbf{X}^{(k)}$ counts the number of walks of length $\leq k$ between nodes.

Define $\mathbf{X}^{(k)}, k = 1, \dots n - 1$ as follows:

$$\mathbf{X}^{(1)} = \mathbf{Y}$$
$$\mathbf{X}^{(2)} = \mathbf{Y} + \mathbf{Y}^{2}$$
$$\vdots$$
$$\mathbf{X}^{(k)} = \mathbf{Y} + \mathbf{Y}^{2} + \dots + \mathbf{Y}^{k}$$

- X⁽¹⁾ counts the number of walks of length 1 between nodes;
- $\mathbf{X}^{(2)}$ counts the number of walks of length ≤ 2 between nodes;
- $\mathbf{X}^{(k)}$ counts the number of walks of length $\leq k$ between nodes.

Define $\mathbf{X}^{(k)}, k = 1, \dots n - 1$ as follows:

$$\mathbf{X}^{(1)} = \mathbf{Y}$$
$$\mathbf{X}^{(2)} = \mathbf{Y} + \mathbf{Y}^{2}$$
$$\vdots$$
$$\mathbf{X}^{(k)} = \mathbf{Y} + \mathbf{Y}^{2} + \dots + \mathbf{Y}^{k}$$

- X⁽¹⁾ counts the number of walks of length 1 between nodes;
- $\mathbf{X}^{(2)}$ counts the number of walks of length \leq 2 between nodes;
- $\mathbf{X}^{(k)}$ counts the number of walks of length $\leq k$ between nodes.

Define $\mathbf{X}^{(k)}, k = 1, \dots n - 1$ as follows:

$$\mathbf{X}^{(1)} = \mathbf{Y}$$
$$\mathbf{X}^{(2)} = \mathbf{Y} + \mathbf{Y}^{2}$$
$$\vdots$$
$$\mathbf{X}^{(k)} = \mathbf{Y} + \mathbf{Y}^{2} + \dots + \mathbf{Y}^{k}$$

- X⁽¹⁾ counts the number of walks of length 1 between nodes;
- $\mathbf{X}^{(2)}$ counts the number of walks of length \leq 2 between nodes;
- $\mathbf{X}^{(k)}$ counts the number of walks of length $\leq k$ between nodes.

Define $\mathbf{X}^{(k)}, k = 1, \dots n - 1$ as follows:

$$\mathbf{X}^{(1)} = \mathbf{Y}$$
$$\mathbf{X}^{(2)} = \mathbf{Y} + \mathbf{Y}^{2}$$
$$\vdots$$
$$\mathbf{X}^{(k)} = \mathbf{Y} + \mathbf{Y}^{2} + \dots + \mathbf{Y}^{k}$$

- X⁽¹⁾ counts the number of walks of length 1 between nodes;
- $\mathbf{X}^{(2)}$ counts the number of walks of length \leq 2 between nodes;
- $\mathbf{X}^{(k)}$ counts the number of walks of length $\leq k$ between nodes.

If two nodes are reachable, there must be a path (walk) between them of length less than or equal to n - 1.

Result: Nodes *i* and *j* are reachable if $\mathbf{X}_{[i,j]}^{(n-1)} > 0$.

Recall:

A graph is connected if all pairs are reachable.

Result: A graph is connected if $\mathbf{X}_{[i,j]}^{(n-1)} > 0$ for all i, j.

If two nodes are reachable, there must be a path (walk) between them of length less than or equal to n - 1.

Result:

```
Nodes i and j are reachable if \mathbf{X}_{[i,j]}^{(n-1)} > 0.
```

Recall: A graph is connected if all pairs are reachable

Result:

A graph is connected if $\mathbf{X}_{[i,j]}^{(n-1)} > 0$ for all i, j.

If two nodes are reachable, there must be a path (walk) between them of length less than or equal to n - 1.

Result:

```
Nodes i and j are reachable if \mathbf{X}_{[i,j]}^{(n-1)} > 0.
```

Recall:

A graph is connected if all pairs are reachable.

Result: A graph is connected if $\mathbf{X}_{[i,j]}^{(n-1)} > 0$ for all i, j.

If two nodes are reachable, there must be a path (walk) between them of length less than or equal to n - 1.

Result:

```
Nodes i and j are reachable if \mathbf{X}_{[i,j]}^{(n-1)} > 0.
```

Recall:

A graph is connected if all pairs are reachable.

Result:

A graph is connected if $\mathbf{X}_{[i,j]}^{(n-1)} > 0$ for all i, j.

Each path is a walk, so

- $d_{i,j}$ = length of the shortest path between *i* and *j*
 - = length of the shortest walk between *i* and *j*
 - = first k for which $\mathbf{Y}_{[i,j]}^k > 0$

Each path is a walk, so

- $d_{i,j}$ = length of the shortest path between *i* and *j*
 - = length of the shortest walk between *i* and *j*
 - = first k for which $\mathbf{Y}_{[i,j]}^k > 0$

Each path is a walk, so

 $\begin{aligned} d_{i,j} &= \text{ length of the shortest path between } i \text{ and } j \\ &= \text{ length of the shortest walk between } i \text{ and } j \\ &= \text{ first } k \text{ for which } \mathbf{Y}_{[i,j]}^k > 0 \end{aligned}$

Each path is a walk, so

 $\begin{aligned} d_{i,j} &= \text{ length of the shortest path between } i \text{ and } j \\ &= \text{ length of the shortest walk between } i \text{ and } j \\ &= \text{ first } k \text{ for which } \mathbf{Y}_{[i,j]}^k > 0 \end{aligned}$

Each path is a walk, so

- $d_{i,j} =$ length of the shortest path between i and j
 - = length of the shortest walk between *i* and *j*
 - = first k for which $\mathbf{Y}_{[i,j]}^k > 0$

Each path is a walk, so

- $d_{i,j} =$ length of the shortest path between i and j
 - = length of the shortest walk between *i* and *j*
 - = first k for which $\mathbf{Y}_{[i,j]}^k > 0$

Each path is a walk, so

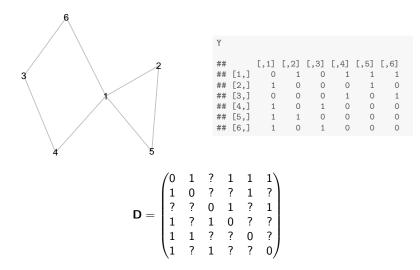
- $d_{i,j} =$ length of the shortest path between *i* and *j*
 - = length of the shortest walk between *i* and *j*
 - = first k for which $\mathbf{Y}_{[i,j]}^k > 0$

Each path is a walk, so

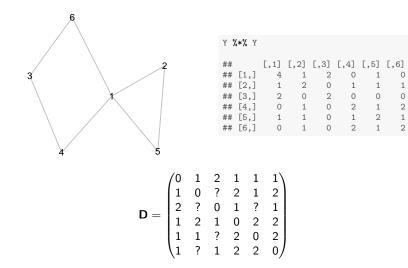
- $d_{i,j} =$ length of the shortest path between *i* and *j*
 - = length of the shortest walk between *i* and *j*

= first k for which
$$\mathbf{Y}_{[i,j]}^k > 0$$

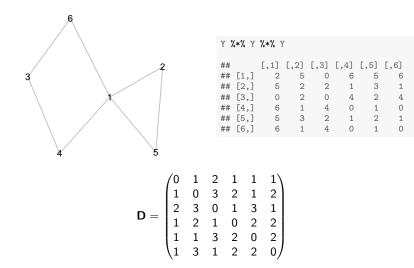
Finding geodesic distances



Finding geodesic distances



Finding geodesic distances



R-function netdist

```
netdist
## function (Y. countdown = FALSE)
## {
## Y < -1 * (Y > 0)
## n <- dim(Y)[1]
## YO <- Y
    diag(Y0) <- 0
##
##
    Ys <- Y0
## D <- Y
## D[Y == 0] <- n + 1
## diag(D) <- 0
##
     s <- 2
##
     while (any(D == n + 1) & s < n) {
         Ys <- 1 * (Ys %*% YO > 0)
##
          D[Y_{s} == 1] <- ((s + D[Y_{s} == 1]) - abs(s - D[Y_{s} == 1]))/2
##
##
          s <- s + 1
         if (countdown) {
##
             cat(n - s, "\n")
##
          }
##
##
      }
##
    D[D == n + 1] <- Inf
##
      D
## }
## <environment: namespace:rda>
```

R-function netdist

net	netdist(Y)									
##		[,1]	[,2]	[,3]	[,4]	[,5]	[,6]			
##	[1,]	0	1	2	1	1	1			
##	[2,]	1	0	3	2	1	2			
##	[3,]	2	3	0	1	3	1			
##	[4,]	1	2	1	0	2	2			
##	[5,]	1	1	3	2	0	2			
##	[6,]	1	2	1	2	2	0			

Often we have data on distances or dissimilarities between a set of objects.

- Machine learning: $d_{i,j} = |\mathbf{x}_i \mathbf{x}_j|$, $x_i =$ vector of characteristics of object *i*.
- Social networks: $d_{i,j}$ = geodesic distance between *i* and *j*.
- It is often useful to embed these distances in a low-dimensional space.
 - visualization: convert distances to a map in 2 dimensions for plotting.
 - data reduction: convert n × n dissimilarity matrix to an n × p matrix of positions.

Often we have data on distances or dissimilarities between a set of objects.

- Machine learning: $d_{i,j} = |\mathbf{x}_i \mathbf{x}_j|$, $x_i =$ vector of characteristics of object *i*.
- Social networks: $d_{i,j}$ = geodesic distance between *i* and *j*.

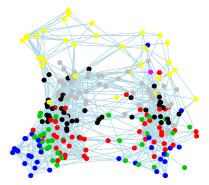
It is often useful to embed these distances in a low-dimensional space.

- visualization: convert distances to a map in 2 dimensions for plotting.
- data reduction: convert n × n dissimilarity matrix to an n × p matrix of positions.

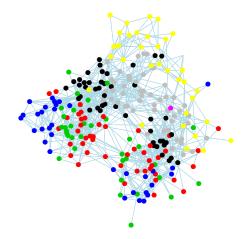
Often we have data on distances or dissimilarities between a set of objects.

- Machine learning: $d_{i,j} = |\mathbf{x}_i \mathbf{x}_j|$, $x_i =$ vector of characteristics of object *i*.
- Social networks: $d_{i,j}$ = geodesic distance between *i* and *j*.
- It is often useful to embed these distances in a low-dimensional space.
 - visualization: convert distances to a map in 2 dimensions for plotting.
 - data reduction: convert n × n dissimilarity matrix to an n × p matrix of positions.

```
Y<-el2sm(addhealth9$E)
Y < -1*(Y > 0 | t(Y) > 0)
D<-netdist(Y)
iso<-which(apply(D==Inf,2,sum) == nrow(Y)-1 )</pre>
Y<-Y[-iso,-iso]
D<-D[-iso,-iso]
X<-cmdscale(D)
head(X)
           [,1] [,2]
##
## 1 -0.5547701 -0.27287140
## 2 -0.8151498 -0.58111897
## 3 1.7920205 -0.22866851
## 4 -0.9555775 0.09652415
## 5 0.4975752 0.44596394
## 6 1.2961508 -0.67148355
```



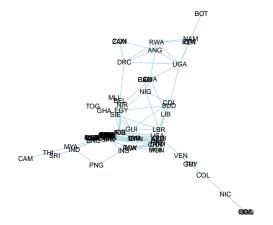
Compare to Fruchterman-Reingold:



Application: MDS for conflict data

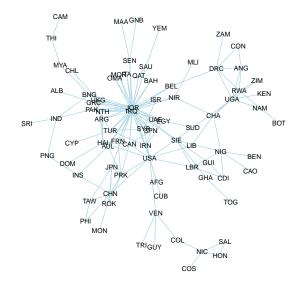
```
Y<-conflict90s$conflicts
Y < -1*(Y > 0 | t(Y) > 0)
bigcc<-concomp(Y)[[1]]</pre>
Y<-Y[ bigcc ,bigcc ]
D \leq -netdist(Y)
X<-cmdscale(D)
head(X)
##
             [.1]
                   [,2]
## AFG 0.8961192 -0.4593871
## ALB -1.4510858 -0.4221417
## ANG 0.7930768 2.7900261
## ARG -0.8675232 -0.3523978
## AUL -0.9023903 -0.4603945
## BAH -0.9136724 -0.3166990
```

Application: MDS for conflict data



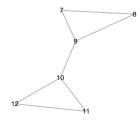
Application: MDS for conflict data

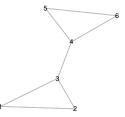
Compare to Fruchterman-Reingold:



Application: Finding connected components

The distance matrix, or $\mathbf{X}^{(n-1)}$, identifies connected components of a graph.





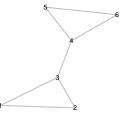
Y														
##		1	2	3	4	5	6	7	8	9	10	11	12	
##	1	0	1	1	0	0	0	0	0	0	0	0	0	
##	2	1	0	1	0	0	0	0	0	0	0	0	0	
##	3	1	1	0	1	0	0	0	0	0	0	0	0	
##	4	0	0	1	0	1	1	0	0	0	0	0	0	
##	5	0	0	0	1	0	1	0	0	0	0	0	0	
##	6	0	0	0	1	1	0	0	0	0	0	0	0	
##	7	0	0	0	0	0	0	0	1	1	0	0	0	
##	8	0	0	0	0	0	0	1	0	1	0	0	0	
##	9	0	0	0	0	0	0	1	1	0	1	0	0	
##	10	0	0	0	0	0	0	0	0	1	0	1	1	
##	11	0	0	0	0	0	0	0	0	0	1	0	1	
##	12	0	0	0	0	0	0	0	0	0	1	1	0	
	*** *** *** *** *** *** *** *** *** **	## ## 1 ## 2 ## 3 ## 4 ## 5 ## 6 ## 7 ## 8 ## 9 ## 10 ## 11	## 1 ## 1 ## 2 ## 3 ## 4 0 ## ## 5 ## 6 ## 7 0 ## ## 9 ## 9 ## 10 ## 11	$\begin{array}{cccccccccccccccccccccccccccccccccccc$										

49/55

Application: Finding connected components

The distance matrix, or $\mathbf{X}^{(n-1)}$, identifies connected components of a graph.





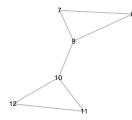
Y + Y%*%Y

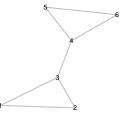
##		1	2	3	4	5	6	7	8	9	10	11	12	
##	1	2	2	2	1	0	0	0	0	0	0	0	0	
##	2	2	2	2	1	0	0	0	0	0	0	0	0	
##	3	2	2	3	1	1	1	0	0	0	0	0	0	
##	4	1	1	1	3	2	2	0	0	0	0	0	0	
##	5	0	0	1	2	2	2	0	0	0	0	0	0	
##	6	0	0	1	2	2	2	0	0	0	0	0	0	
##	7	0	0	0	0	0	0	2	2	2	1	0	0	
##	8	0	0	0	0	0	0	2	2	2	1	0	0	
##	9	0	0	0	0	0	0	2	2	3	1	1	1	
##	10	0	0	0	0	0	0	1	1	1	3	2	2	
##	11	0	0	0	0	0	0	0	0	1	2	2	2	
##	12	0	0	0	0	0	0	0	0	1	2	2	2	

50/55

Application: Finding connected components

The distance matrix, or $\mathbf{X}^{(n-1)}$, identifies connected components of a graph.





Y + Y%*%Y + Y%*%Y%*%Y

##		1	2	3	4	5	6	7	8	9	10	11	12	
##	1	4	5	6	2	1	1	0	0	0	0	0	0	
##	2	5	4	6	2	1	1	0	0	0	0	0	0	
##	3	6	6	5	6	2	2	0	0	0	0	0	0	
##	4	2	2	6	5	6	6	0	0	0	0	0	0	
##	5	1	1	2	6	4	5	0	0	0	0	0	0	
##	6	1	1	2	6	5	4	0	0	0	0	0	0	
##	7	0	0	0	0	0	0	4	5	6	2	1	1	
##	8	0	0	0	0	0	0	5	4	6	2	1	1	
##	9	0	0	0	0	0	0	6	6	5	6	2	2	
##	10	0	0	0	0	0	0	2	2	6	5	6	6	
##	11	0	0	0	0	0	0	1	1	2	6	4	5	
##	12	0	0	0	0	0	0	1	1	2	6	5	4	

R-function concomp

```
concomp
## function (Y)
## {
## YO <- 1 * (Y > 0)
## diag(Y0) <- 1
## Y1 <- Y0
## for (i in 1:dim(YO)[1]) {
##
          Y1 < -1 * (Y1 \% \% Y0 > 0)
##
      }
##
     cc <- list()
##
     idx <- 1:dim(Y1)[1]
      while (dim(Y1)[1] > 0) {
##
          c1 <- which(Y1[1, ] == 1)
##
          cc <- c(cc, list(idx[c1]))</pre>
##
          Y1 \leftarrow Y1[-c1, -c1, drop = FALSE]
##
          idx <- idx[-c1]
##
       }
##
##
      cc[order(-sapply(cc, length))]
## }
## <environment: namespace:rda>
```

R-function concomp

```
concomp(Y)
## [[1]]
## [1] 1 2 3 4 5 6
##
## [[2]]
## [1] 7 8 9 10 11 12
connodes<-concomp(Y)</pre>
Y[ connodes[[1]], connodes[[1]] ]
## 123456
## 1 0 1 1 0 0 0
## 2 1 0 1 0 0 0
## 3 1 1 0 1 0 0
## 4 0 0 1 0 1 1
## 5 0 0 0 1 0 1
## 6 0 0 0 1 1 0
```

Directed walk: A sequence of nodes i_1, \ldots, i_K such that $y_{i_k, i_{k+1}} = 1$ for $k = 1, \ldots, K - 1$.

Powers of the sociomatrix correspond to counts of directed walks.

 $\mathbf{X}^{(k)} = \mathbf{Y} + \mathbf{Y}^2 + \dots + \mathbf{Y}^k$ $\mathbf{x}^{(k)}_{i,j} = \text{ } \# \text{ of directed walks from } i \text{ to } j \text{ of length } k \text{ or less}$

Directed walk: A sequence of nodes i_1, \ldots, i_K such that $y_{i_k, i_{k+1}} = 1$ for $k = 1, \ldots, K - 1$.

Powers of the sociomatrix correspond to counts of directed walks.

 $\mathbf{X}^{(k)} = \mathbf{Y} + \mathbf{Y}^2 + \dots + \mathbf{Y}^k$ $\mathbf{x}^{(k)}_{i,j} = \text{ } \# \text{ of directed walks from } i \text{ to } j \text{ of length } k \text{ or less}$

Directed walk: A sequence of nodes i_1, \ldots, i_K such that $y_{i_k, i_{k+1}} = 1$ for $k = 1, \ldots, K - 1$.

Powers of the sociomatrix correspond to counts of directed walks.

 $\begin{aligned} \mathbf{X}^{(k)} &= \mathbf{Y} + \mathbf{Y}^2 + \dots + \mathbf{Y}^k \\ x_{i,j}^{(k)} &= \# \text{ of directed walks from } i \text{ to } j \text{ of length } k \text{ or less} \end{aligned}$

Directed walk: A sequence of nodes i_1, \ldots, i_K such that $y_{i_k, i_{k+1}} = 1$ for $k = 1, \ldots, K - 1$.

Powers of the sociomatrix correspond to counts of directed walks.

 $\begin{aligned} \mathbf{X}^{(k)} &= \mathbf{Y} + \mathbf{Y}^2 + \dots + \mathbf{Y}^k \\ x_{i,j}^{(k)} &= \# \text{ of directed walks from } i \text{ to } j \text{ of length } k \text{ or less} \end{aligned}$

Example: Praise among monks



netdist(Yr)

##	ROMUL	AMBROSE	BERTH	PETER	LOUIS	VICTOR
## ROMUL	0	Inf	Inf	Inf	Inf	Inf
## AMBROS	E Inf	0	Inf	Inf	Inf	Inf
## BERTH	2	1	0	1	1	2
## PETER	1	2	1	0	1	2
## LOUIS	2	3	2	1	0	1
## VICTOR	. 2	2	1	1	1	0