Centrality

567 Statistical analysis of social networks

Peter Hoff

Statistics, University of Washington

Centrality

A common goal in SNA is to identify the "central" nodes of a network.
What does "central" mean?

- active?
- important?
- non-redundant?

Koschutzki et al. (2005) attempted a classification of centrality measures

- Reach: ability of ego to reach other vertices
- Flow: quantity/weight of walks passing through ego
- Vitality: effect of removing ego from the network
- Feedback: a recursive function of alter centralities

Common centrality measures

We will define and compare four centrality measures:

- degree centrality (based on degree)
- closeness centrality (based on average distances)
- betweeness centrality (based on geodesics)
- eigenvector centrality (recursive: similar to page rank methods)

Standardized centrality measures

Node-level indices

Let c_{1}, \ldots, c_{n} be node-level centrality measures:

$$
c_{i}=\text { centrality of node } i \text { by some metric }
$$

It is often useful to standardize the c_{i} 's by their maximum possible value:

$$
\tilde{c}_{i}=c_{i} / c_{\max }
$$

Network centralization

Network-level indices
How centralized is the network?
To what extent is there a small number of highly central nodes?

- Let $c^{*}=\max \left\{c_{1}, \ldots, c_{n}\right\}$
- Let $S=\sum_{i}\left[c^{*}-c_{i}\right]$

Then

- $S=0$ if all nodes are equally central;
- S is large if one node is most central.

Network centralization

Network level centralization index

$$
C=\frac{\sum_{i}\left[c^{*}-c_{i}\right]}{\max \sum_{i}\left[c^{*}-c_{i}\right]}
$$

The "max" in the denominator is over all possible networks.

- $0 \leq C \leq 1$;
- $C=0$ when all nodes have the same centrality;
- $C=1$ if one actor has maximal centrality and all others have minimal.

Networks for comparison

We will compare the following graphs under different centrality measures:

These are the star graph, line graph, y-graph, the circle graph.
Which do you feel is most "centralized"? Which the least?

Degree centrality

Idea: A central actor is one with many connections.
This motivates the measure of degree centrality

- undirected degree centrality: $c_{i}^{d}=\sum_{j: j \neq i} y_{i, j}$
- outdegree centrality: $c_{i}^{o}=\sum_{j: j \neq i} y_{i, j}$
- indegree centrality: $c_{i}^{i}=\sum_{j: j \neq i} y_{j, i}$

The standardized degree centrality is

$$
\tilde{c}_{i}^{d}=c_{i}^{d} / c_{\max }^{d}=c_{i}^{d} /(n-1)
$$

Degree centrality

Degree centralization

$$
\begin{gathered}
c_{i}^{d}: \text { actor centrality } \\
c^{d *}: \text { maximum actor centrality observed in the network } \\
\sum_{i}\left[c^{d *}-c_{i}^{d}\right]: \text { sum of differences between most central actor and others }
\end{gathered}
$$

Centralization

$$
C^{d}=\frac{\sum_{i}\left[c^{d *}-c_{i}^{d}\right]}{\max y \sum_{i}\left[c^{d *}-c_{i}^{d}\right]}
$$

What is the maximum numerator that could be attained by an n-node graph?

Degree centralization

The maximum occurs when

- one node has the largest possible degree $\left(c^{d *}=n-1\right)$,
- the others have the smallest possible degree $c_{i}^{d}=1$.

This is the star graph.

$$
\begin{aligned}
& \max _{Y} \sum_{i}\left[c^{d *}-c_{i}^{d}\right]=\sum_{i}\left[(n-1)-c_{i}^{d}\right] \\
&=0+(n-1-1)+\cdots+(n-1-1) \\
&=(n-1)(n-2) \\
& C^{d}(\mathbf{Y})=\frac{\sum_{i}\left[c^{d *}-c_{i}^{d}\right]}{(n-1)(n-2)}
\end{aligned}
$$

Degree centralization

Exercise: Compute the degree centralization for the four $n=5$ graphs:

- the star graph;
- the line graph;
- the y-graph;
- the circle graph.

Degree centralization

Cd(Ys)

[1] 1

Cd(Yy)

[1] 0.5833333

Cd(Y1)

[1] 0.1666667

Cd(Yc)

[1] 0

```
```

```
Cd<-function(Y)
```

```
Cd<-function(Y)
{
{
    n<-nrow(Y)
    n<-nrow(Y)
    d<-apply(Y,1,sum,na.rm=TRUE)
    d<-apply(Y,1,sum,na.rm=TRUE)
    sum(max (d)-d)/((n-1)*(n-2))
    sum(max (d)-d)/((n-1)*(n-2))
}
```

}

```


\section*{Closeness centrality}

Idea: A central node is one that is close, on average, to other nodes.
This motivates the idea of closeness centrality
- (geodesic) distance: \(d_{i, j}\) is the minimal path length from \(i\) to \(j\);
- closeness centrality: \(c_{i}^{c}=1 / \sum_{j: j \neq i} d_{i, j}=1 /\left[(n-1) \bar{d}_{i}\right]\);
- limitation: not useful for disconnected graphs.

\section*{Closeness centrality}
\[
c_{i}^{c}=1 /\left[(n-1) \bar{d}_{i}\right]
\]

Recall,
\[
d_{a}<d_{b} \Rightarrow \frac{1}{d_{a}}>\frac{1}{d_{b}}
\]
and so a node \(i\) would be "maximally close" if \(d_{i, j}=1\) for all \(j \neq i\).
\[
c_{\max }^{d}=\frac{1}{n-1}
\]

The standardized closeness centrality is therefore
\[
\begin{aligned}
\tilde{c}_{i}^{c} & =c_{i}^{c} / c_{\max }^{d} \\
& =(n-1) c_{i}^{c}=1 / \bar{d}_{i} .
\end{aligned}
\]

\section*{Closeness centralization}
\(c_{i}^{c}\) : actor centrality
\(c^{c *}\) : maximum actor centrality observed in the network
\(\sum_{i}\left[c^{c *}-c_{i}^{c}\right]\) : sum of differences between most central actor and others
Centralization
\[
C^{c}=\frac{\sum_{i}\left[c^{c *}-c_{i}^{d}\right]}{\max Y \sum_{i}\left[c^{c *}-c_{i}^{c}\right]}
\]

What is the maximum numerator that could be attained by an n-node graph?

\section*{Closeness centralization}

The maximum occurs when
- one node has the largest possible closeness \(\left(\bar{d}^{*}=1, c^{c *}=1 /(n-1)\right)\),
- the others have the smallest possible closeness, given that \(c^{c *}=1 /(n-1)\).
(Freeman, 1979)
For what graph are these conditions satisfied?
- For \(c^{* c}=1 /(n-1)\), one node must be connected to all others.
- To then maximize centralization, the centrality of the other nodes must be minimized.

This occurs when none of the non-central nodes are tied to each other, i.e. the star graph.

\section*{Closeness centralization}

For a non-central node in the star graph,
\[
\begin{aligned}
\bar{d}_{i} & =\frac{1+2+\cdots+2}{n-1} \\
& =\frac{2(n-2)+1}{n-1} \\
& =\frac{2 n-3}{n-1} \\
c_{i}^{c} & =1 /\left[(n-1) \bar{d}_{i}\right]=\frac{1}{2 n-3} .
\end{aligned}
\]

Therefore, for the star graph
\[
\begin{aligned}
\sum_{i}\left[c^{c *}-c_{i}^{c}\right] & =0+\left(\frac{1}{n-1}-\frac{1}{2 n-3}\right)+\cdots\left(\frac{1}{n-1}-\frac{1}{2 n-3}\right) \\
& =(n-1) \times\left(\frac{1}{n-1}-\frac{1}{2 n-3}\right) \\
& =(n-1) \times \frac{n-2}{(2 n-3)(n-1)} \\
& =\frac{n-2}{2 n-3}
\end{aligned}
\]

\section*{Closeness centralization}

To review, the maximum of \(\sum_{i}\left[c^{c *}-c_{i}^{c}\right]\) occurs for the star graph, for which
\[
\sum_{i}\left[c^{c *}-c_{i}^{c}\right]=\frac{n-2}{2 n-3}
\]

Therefore, the centralization of any graph \(\mathbf{Y}\) is
\[
\begin{aligned}
C^{c}(\mathbf{Y}) & =\frac{\sum_{i}\left[c^{c *}-c_{i}^{c}\right]}{\max _{y} \sum_{i}\left[c^{c *}-c_{i}^{c}\right]} \\
& =\frac{\sum_{i}\left[c^{c *}-c_{i}^{c}\right]}{(n-2) /(2 n-3)}
\end{aligned}
\]

Alternatively, as \(\tilde{c}_{i}^{c}=(n-1) c_{i}^{c}\),
\[
\begin{aligned}
C^{c}(\mathbf{Y}) & =\frac{\sum_{i}\left[c^{c *}-c_{i}^{c}\right]}{(n-2) /(2 n-3)} \\
& =\frac{\sum_{i}\left[\tilde{c}^{c *}-\tilde{c}_{i}^{c}\right]}{[(n-1)(n-2)] /(2 n-3)}
\end{aligned}
\]

\section*{Closeness centralization}

Exercise: Compute the closeness centralization for the four \(n=5\) graphs:
- the star graph;
- the line graph;
- the \(y\)-graph;
- the circle graph.

\section*{Closeness centralization}
```

Cc<-function(Y)
{
n<-nrow (Y)
D<-netdist(Y)
c<-1/apply(D , 1, sum, na.rm=TRUE)
sum(max (c)-c)/((n-2)/(2*n-3))
}
Cc(Ys)

[1] 1

Cc(Yy)

[1] 0.6351852

Cc(YI)

[1] 0.4222222

Cc(Yc)

[1] 0

```

\section*{Betweeness centrality}

Idea: A central actor is one that acts as a bridge, broker or gatekeeper.
- Interaction between unlinked nodes goes through the shortest path (geodesic);
- A "central" node is one that lies on many geodesics.

This motivates the idea of betweenness centrality
- \(g_{j, k}=\) number of geodesics between nodes \(j\) and \(k\);
- \(g_{j, k}(i)=\) number of geodesics between nodes \(j\) and \(k\) going through \(i\);
- \(c_{i}^{b}=\sum_{j<k} g_{j, k}(i) / g_{j, k}\)

\section*{Betweeness centrality}

Interpretation: \(g_{j, k}(i) / g_{j, k}\) is the probability that a "message" from \(j\) to \(k\) goes through \(i\).
- \(j\) and \(k\) have \(g_{j, k}\) routes of communication;
- \(i\) is on \(g_{j, k}(i)\) of these routes;
- a randomly selected route contains \(i\) with probability \(g_{j, k}(i) / g_{j, k}\).

Note: WF p. 191
"(betweenness centrality) can be computed even if the graph is not connected" (WF)
- Careful: If \(j\) and \(k\) are not reachable, what is \(g_{j, k}(i) / g_{j, k}\) ?
- By convention this is set to zero for unreachable pairs.

\section*{Betweeness centrality}
\[
c_{i}^{b}=\sum_{j<k} g_{j, k}(i) / g_{j, k}
\]
- \(0 \leq c_{i}^{b}\), with equality when \(i\) lies on no geodesics (draw a picture)
- \(c_{i}^{b} \leq\binom{ n-1}{2}=\frac{(n-1)(n-2)}{2}\), with equality when \(i\) lies on all geodesics.

The standardized betweenness centrality is
\[
\tilde{c}_{i}^{b}=2 c_{i}^{b} /[(n-1)(n-2)] .
\]

\section*{Betweenness centrality}

\section*{Exercise: Compute the betweenness centrality for each node in each graph.}
```

betweenness(Ys,gmode="graph")

[1] 0 0 6 0 0

betweenness(Yl,gmode="graph")

[1] 0 3 4 3 0

betweenness(Yy,gmode="graph")

[1] 0 3 5 0 0

betweenness(Yc,gmode="graph")

[1] 1 1 1 1 1 1

```

\section*{Betweenness centralization}
\[
\begin{gathered}
c_{i}^{b}: \text { actor centrality } \\
c^{b *}: \text { maximum actor centrality observed in the network } \\
\sum_{i}\left[c^{b *}-c_{i}^{b}\right]: \text { sum of differences between most central actor and others }
\end{gathered}
\]

Centralization
\[
C^{b}=\frac{\sum_{i}\left[c^{b *}-c_{i}^{b}\right]}{\max \sum_{i}\left[c^{b *}-c_{i}^{b}\right]}
\]

What is the maximum numerator that could be attained by an \(n\)-node graph?

\section*{Betweenness centralization}

The maximum occurs when
- one node has the largest possible betweeness \(\left(c^{b *}=\binom{n-1}{2}\right)\),
- the others have the smallest possible betweeness \(\left(c_{i}^{d}=0\right)\).

Again, this is the star graph.
\[
\begin{aligned}
\max _{Y} \sum_{i}\left[c^{b *}-c_{i}^{b}\right] & =\sum_{i}\left[\binom{n-1}{2}-c_{i}^{b}\right] \\
& =0+\left(\binom{n-1}{2}-0\right)+\cdots+\left(\binom{n-1}{2}-0\right) \\
& =(n-1)\binom{n-1}{2}
\end{aligned}
\]
\(\binom{n-1}{2}=(n-1)(n-2) / 2\), so
\[
\begin{aligned}
C^{b}(\mathbf{Y}) & =\frac{\sum_{i}\left[c^{b *}-c_{i}^{b}\right]}{(n-1)\binom{n-1}{2}} \\
& =2 \frac{\sum_{i}\left[c^{b *}-c_{i}^{b}\right]}{(n-1)^{2}(n-2)}
\end{aligned}
\]

\section*{Betweenness centralization}
```

Cb}<-function(Y
{
require(sna)
n<-nrow(Y)
b<-betweenness(Y,gmode="graph")
2*sum(max(b)-b)/((n-1) ^2 * (n-2))
}
Cb(Ys)

[1] 1

Cb(Yy)

[1] 0.7083333

Cb(Y1)

[1] 0.4166667

Cb(Yc)

[1] 0

```


\section*{Eigenvector centrality}

Idea: A central actor is connected to other central actors.
This definition is recursive:
Eigenvector centrality: The centrality of each vertex is proportional to the sum of the centralities of its neighbors
- Formula: \(c_{i}^{e}=\frac{1}{\lambda} \sum_{j: j \neq i} y_{i, j} c_{j}^{e}\)
- Central vertices are those with many central neighbors
- A variant of eigenvector centrality is used by Google to rank Web pages

Google Describing PageRank: PageRank relies on the uniquely democratic nature of the web by using its vast link structure as an indicator of an individual page's value. In essence, Google interprets a link from page A to page \(B\) as a vote, by page \(A\), for page \(B\). But, Google looks at more than the sheer volume of votes, or links a page receives; it also analyzes the page that casts the vote. Votes cast by pages that are themselves "important" weigh more heavily and help to make other pages "important."

\section*{Eigenvector centrality}
\[
c_{i}^{e}=\frac{1}{\lambda} \sum_{j: j \neq i} y_{i, j} c_{j}^{e}
\]

Using matrix algebra, such a vector of centralities satisfies
\[
\mathbf{Y} \mathbf{c}^{e}=\lambda \mathbf{c}^{e}
\]
where the missing diagonal of \(\mathbf{Y}\) has been replaced with zeros.
A vector \(\mathbf{c}^{e}\) satisfying the above equation is an eigenvector of \(\mathbf{Y}\).
There are generally multiple eigenvectors. The centrality is taken to be the one corresponding to the largest value of \(\lambda\).
- this corresponds with the best rank-1 approximation to \(\mathbf{Y}\);
- nodes with large \(c_{i}^{e}\) 's have "strong activity" in the "primary dimension" of Y.

\section*{Eigenvector centrality}

```

evecc<-function(Y)

```
evecc<-function(Y)
{
{
    diag(Y)<-0
    diag(Y)<-0
    tmp<-eigen(Y)$vec[,1] ; tmp<-tmp*sign(tmp[1])
    tmp<-eigen(Y)$vec[,1] ; tmp<-tmp*sign(tmp[1])
    tmp
    tmp
}
}
evecc(Ys)
## [1] 0.3535534 0.3535534 0.7071068 0.3535534 0.3535534
evecc(Yl)
## [1] 0.2886751 0.5000000 0.5773503 0.5000000 0.2886751
evecc(Yy)
## [1] 0.2705981 0.5000000 0.6532815 0.3535534 0.3535534
evecc(Yc)
## [1] 0.4472136 0.4472136 0.4472136 0.4472136 0.4472136
```


Eigenvector centralization

```
Ce<-function(Y)
{
    n<-nrow(Y)
    e<-evecc(Y)
    Y.sgn<-matrix(0,n,n) ; Y.sgn[1,-1]<-1 ; Y.sgn<-Y.sgn+t(Y.sgn)
    e.sgn<-evecc(Y.sgn)
    sum(max(e)-e)/ sum(max(e.sgn)-e.sgn)
}
Ce(Ys)
## [1] 1
Ce(Yy)
## [1] 0.802864
Ce(Y1)
## [1] 0.5176381
Ce(Yc)
## [1] 9.420555e-16
```


Empirical study: Comparing centralization of different networks

Comparison of centralization metrics across four networks:

- butland_ppi: binding interactions among 716 yeast proteins
- addhealth9: friendships among 136 boys
- tribes: postive relations among 12 NZ tribes

Empirical study: Comparing centralization of different networks

Empirical study: Comparing centralization of different networks

	degree	closeness	betweenness	eigenvector
ppi	0.13	0.26	0.31	0.35
addhealth	0.04	0.14	0.42	0.61
tribes	0.35	0.5	0.51	0.47

Empirical study: Comparing centralization of different networks

Comments:

- The protein network looks visually centralized, but
- most centralization is local;
- globally, somewhat decentralized.
- The friendship network has small degree centrality (why?).
- The tribes network has one particularly central node.

