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Centrality

A common goal in SNA is to identify the “central” nodes of a network.

What does “central’” mean?
e active?
e important?

e non-redundant?

Koschutzki et al. (2005) attempted a classification of centrality measures
o Reach: ability of ego to reach other vertices
e Flow: quantity/weight of walks passing through ego
e Vitality: effect of removing ego from the network

e Feedback: a recursive function of alter centralities
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Common centrality measures

We will define and compare four centrality measures:
o degree centrality (based on degree)
e closeness centrality (based on average distances)
e betweeness centrality (based on geodesics)

e eigenvector centrality (recursive: similar to page rank methods)



Standardized centrality measures

Node-level indices
Let c1, ..., cs be node-level centrality measures:

¢i = centrality of node i by some metric

It is often useful to standardize the ¢;'s by their maximum possible value:

¢ = Ci/cmax
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Network centralization

Network-level indices
How centralized is the network?

To what extent is there a small number of highly central nodes?

o Let ¢* = max{ci,...,cn}
o Let S=>[c" — ¢
Then

e S =0 if all nodes are equally central;

e S is large if one node is most central.

5/36



Network centralization

Network level centralization index

2.le" —cl

max ) .[c* — ¢

The "max” in the denominator is over all possible networks.
e 0<C<L1;

e C = 0 when all nodes have the same centrality;
e C =1 if one actor has maximal centrality and all others have minimal.
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Networks for comparison
We will compare the following graphs under different centrality measures:

These are the star graph, line graph, y-graph, the circle graph.

Which do you feel is most “centralized”? Which the least?
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Degree centrality

Idea: A central actor is one with many connections.

This motivates the measure of degree centrality

o undirected degree centrality: ¢ = Zj#,- Vi

o outdegree centrality: ¢ =3, vi;

e indegree centrality: ¢} = Zj#,. Vi

The standardized degree centrality is

Eld - Cld/cr‘:ax = Cid/(n - 1)
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Degree centrality

apply(Y¥s,1,sum,na.rm=TRUE)

## 12345
## 11411
apply(Y1l,1,sum,na.rm=TRUE)

##

12345
## 12221

apply (Yy,1,sum,na.rm=TRUE)

##

12345
## 12311

apply(Yc,1,sum,na.rm=TRUE)

##

12345
## 22222
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Degree centralization

d .
¢; . actor centrality

d . . .
c®* : maximum actor centrality observed in the network

Z[cd* — ¢] : sum of differences between most central actor and others
i

Centralization J J
c?— >oile” =]

 maxy 3, — ¢l

What is the maximum numerator that could be attained by an n-node graph?
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Degree centralization

The maximum occurs when
e one node has the largest possible degree (¢?* = n—1),
e the others have the smallest possible degree ¢ = 1.

This is the star graph.

mexZ[cd* — 1= Z[(n —1)—¢f]

=0+(n—-1-1)+---+(n—-1-1)

~ (n—1)(n—2)
Zi[cd* - Cid]
M= G -2
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Degree centralization

Exercise: Compute the degree centralization for the four n = 5 graphs:
e the star graph;
e the line graph;
e the y-graph;
e the circle graph.
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Degree centralization

Cd<-function(Y)
n<-nrow(Y)
d<-apply(Y,1,sum,na.rm=TRUE)
sum(max(d)-d)/( (n-1)*(n-2) )

Cd(Ys)

## [1] 1

cd(Yy)

## [1] 0.5833333

Ccd (Y1)

## [1] 0.1666667

Cd(Yc)

## [1] 0

13/36



Closeness centrality

Idea: A central node is one that is close, on average, to other nodes.

This motivates the idea of closeness centrality
e (geodesic) distance: d;; is the minimal path length from i to j;
e closeness centrality: ¢ =1/, di; =1/[(n— 1)d] ;

e limitation: not useful for disconnected graphs.
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Closeness centrality

cf =1/[(n—1)d]
Recall,
1 1
d, < d| - > =
< dp = d. > b
and so a node / would be “maximally close” if dij =1 for all j # i.

¢ 1
n—1

Cmax -

The standardized closeness centrality is therefore

~C cy d
G =G /Cmax

=(n—1)¢ =1/d.
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Closeness centralization

¢ : actor centrality

c“* : maximum actor centrality observed in the network

Z[cc* — ¢;] : sum of differences between most central actor and others

i

Centralization J
D o) Calt=i

B maxy Zi[cc* - CIF]

What is the maximum numerator that could be attained by an n-node graph?
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Closeness centralization

The maximum occurs when
e one node has the largest possible closeness (d* = 1,c¢* = 1/(n — 1)),
e the others have the smallest possible closeness, given that ¢“* =1/(n—1).

(Freeman, 1979)

For what graph are these conditions satisfied?
e For ¢ =1/(n— 1), one node must be connected to all others.
e To then maximize centralization, the centrality of the other nodes must be
minimized.
This occurs when none of the non-central nodes are tied to each other, i.e. the
star graph.
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Closeness centralization
For a non-central node in the star graph,

(—ji:1+2+--'+2

n—1
_2(h—2)+1
- n—1
_2n-3
T on-1
¢ =1/[(n—1)d] =

2n—-3
Therefore, for the star graph
1 1 1 1

2 =0t (g 53t (o 503

| :("_1)X<n11_2n173>

n—2
(2n—=3)(n—-1)

=(n—-1)x

n—2
2n—3
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Closeness centralization

To review, the maximum of }_.[c“" — ¢f] occurs for the star graph, for which

C* c_n_2
Dl —el= 55

i

Therefore, the centralization of any graph Y is

CC(Y) Zi[cc* B CVC]

maxy y_.[c* — cf]
2 = <]
T (n—2)/(2n-3)

Alternatively, as & = (n — 1)cf,

. >oile =]
c(¥) = (n—2)/(2n - 3)
iler =&l

~{(n=1)(n—2)]/(2n-3)
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Closeness centralization

Exercise: Compute the closeness centralization for the four n =5 graphs:
e the star graph;
e the line graph;
e the y-graph;
e the circle graph.
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Closeness centralization

Cc<-function(Y)

n<-nrow(Y)

D<-netdist (Y)
c<-1/apply(D,1,sum,na.rm=TRUE)

sum(max(c)-c)/( (n-2)/(2*n-3) )

}

Cc(Ys)

## [1] 1

Ce(Yy)

## [1] 0.6351852
Cc (Y1)

## [1] 0.4222222
Cc(Yc)

## [11 0
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Betweeness centrality

Idea: A central actor is one that acts as a bridge, broker or gatekeeper.

o Interaction between unlinked nodes goes through the shortest path
(geodesic);

o A “central” node is one that lies on many geodesics.

This motivates the idea of betweenness centrality
e gjk = number of geodesics between nodes j and k;

e gi k(i) = number of geodesics between nodes j and k going through i;

ot =3 &k(i)/gik
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Betweeness centrality

Interpretation: gj «(i)/gj« is the probability that a “message” from j to k
goes through i.

e j and k have gj « routes of communication;
e jis on gj (i) of these routes;

e a randomly selected route contains i with probability gj «(7)/gj k-

Note: WF p.191
“(betweenness centrality) can be computed even if the graph is not connected”
(WF)

e Careful: If j and k are not reachable, what is g «(/)/gj,x ?

e By convention this is set to zero for unreachable pairs.
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Betweeness centrality

b .
= gxli)g
i<k
e 0 < cf, with equality when i lies on no geodesics (draw a picture)
o P < (") = =022 ith equality when i lies on all geodesics.

The standardized betweenness centrality is

& =2¢7/[(n—1)(n—2)].
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Betweenness centrality

Exercise: Compute the betweenness centrality for each node in each graph.
betweenness(Ys,gmode="graph")

## [11] 006 00

betweenness (Y1, gmode="graph")

## [1] 03430

betweenness(Yy,gmode="graph")

## [11 03500

betweenness(Yc,gmode="graph")

## [1] 11111
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Betweenness centralization

b .
¢ actor centrality

b . . .
¢’ : maximum actor centrality observed in the network

Z[cb* — ¢] : sum of differences between most central actor and others
i

Centralization . .
ct = dole”™ =<l

~ maxy 3 [eb — cf]

What is the maximum numerator that could be attained by an n-node graph?
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Betweenness centralization
The maximum occurs when
e one node has the largest possible betweeness (c®*
e the others have the smallest possible betweeness (¢f = 0).
Again, this is the star graph.

mgx >l — ef] = Zj[(” N 1) o

:o+((";1) —0)+...+((";1> —0)
(n1)<n21)

(ngl) =(n—-1)(n—-2)/2, so
coy) = 2l <]

(n=1)("2")

_, Tl el
T (n-12(n-2)
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Betweenness centralization

Cb<-function(Y)

{
require(sna)
n<-nrow(Y)
b<-betweenness(Y,gmode="graph")
2xsum(max(b)-b)/( (n-1)"2 * (n-2) )

}

Cb(Ys)

## [1] 1

Cb(Yy)

## [1] 0.7083333

Cb(Y1)

## [1] 0.4166667

Cb(Yc)

## [1] O
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Eigenvector centrality

Idea: A central actor is connected to other central actors.

This definition is recursive:
Eigenvector centrality: The centrality of each vertex is proportional to the
sum of the centralities of its neighbors

Lo 1 .
o Formula: ¢i = 53 ;. vijG
o Central vertices are those with many central neighbors

e A variant of eigenvector centrality is used by Google to rank Web pages

Google Describing PageRank: PageRank relies on the uniquely democratic
nature of the web by using its vast link structure as an indicator of an
individual page’s value. In essence, Google interprets a link from page A to
page B as a vote, by page A, for page B. But, Google looks at more than the
sheer volume of votes, or links a page receives; it also analyzes the page that
casts the vote. Votes cast by pages that are themselves “important” weigh
more heavily and help to make other pages “important.”
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Eigenvector centrality

G = % > et

JiA
Using matrix algebra, such a vector of centralities satisfies
Yc© = A,
where the missing diagonal of Y has been replaced with zeros.

A vector c® satisfying the above equation is an eigenvector of Y.

There are generally multiple eigenvectors. The centrality is taken to be the one
corresponding to the largest value of \.
o this corresponds with the best rank-1 approximation to Y;

e nodes with large ¢'s have “strong activity” in the “primary dimension” of
Y.
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Eigenvector centrality

evecc<-function(Y)
diag(Y)<-0
tmp<-eigen(Y)$vec[,1] ; tmp<-tmpsign(tmp[1])
tmp

}

evecc(Ys)
## [1] 0.3535534 0.3535534 0.7071068 0.3535534 0.3535534
evecc (Y1)
## [1] 0.2886751 0.5000000 0.5773503 0.5000000 0.2886751
evecc(Yy)
## [1] 0.2705981 0.5000000 0.6532815 0.3535534 0.3535534
evecc(Yc)

## [1] 0.4472136 0.4472136 0.4472136 0.4472136 0.4472136



Eigenvector centralization

Ce<-function(Y)

{
n<-nrow(Y)
e<-evecc(Y)
Y.sgn<-matrix(0,n,n) ; VY.sgn[1,-1]<-1 ; Y.sgn<-Y.sgn+t(Y.sgn)
e.sgn<-evecc(Y.sgn)
sum(max(e)-e)/ sum(max(e.sgn)-e.sgn)

}

Ce(Ys)

## [1] 1

Ce (YY)

## [1] 0.802864
Ce (Y1)

## [1] 0.5176381
Ce(Yc)

## [1] 9.420555e-16
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Empirical study: Comparing centralization of different networks

Comparison of centralization metrics across four networks:
e butland_ppi: binding interactions among 716 yeast proteins
e addhealth9: friendships among 136 boys

e tribes: postive relations among 12 NZ tribes

33/36



Empirical study: Comparing centralization of different networks

o,
.
. . .
\ .
A .
‘ 3 .
.
. . . -
. o
o .
. X Y
. 4 X .
X . .
P .
. . . .
. b
PR
v .
bl
.
. . v
. .
‘ .
. .
LERRY . P .

34/36



Empirical study: Comparing centralization of different networks

degree closeness betweenness eigenvector
ppi 0.13 0.26 0.31 0.35
addhealth 0.04 0.14 0.42 0.61
tribes 0.35 0.5 0.51 0.47
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Empirical study: Comparing centralization of different networks

Comments:
e The protein network looks visually centralized, but

e most centralization is local;
e globally, somewhat decentralized.

e The friendship network has small degree centrality (why?).

e The tribes network has one particularly central node.
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