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Centrality

A common goal in SNA is to identify the “central” nodes of a network.

What does “central” mean?

• active?

• important?

• non-redundant?

Koschutzki et al. (2005) attempted a classification of centrality measures

• Reach: ability of ego to reach other vertices

• Flow: quantity/weight of walks passing through ego

• Vitality: effect of removing ego from the network

• Feedback: a recursive function of alter centralities
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Common centrality measures

We will define and compare four centrality measures:

• degree centrality (based on degree)

• closeness centrality (based on average distances)

• betweeness centrality (based on geodesics)

• eigenvector centrality (recursive: similar to page rank methods)
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Standardized centrality measures

Node-level indices
Let c1, . . . , cn be node-level centrality measures:

ci = centrality of node i by some metric

It is often useful to standardize the ci ’s by their maximum possible value:

c̃i = ci/cmax
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Network centralization

Network-level indices
How centralized is the network?

To what extent is there a small number of highly central nodes?

• Let c∗ = max{c1, . . . , cn}
• Let S =

∑
i [c
∗ − ci ]

Then

• S = 0 if all nodes are equally central;

• S is large if one node is most central.
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Network centralization

Network level centralization index

C =

∑
i [c
∗ − ci ]

max
∑

i [c
∗ − ci ]

The “max” in the denominator is over all possible networks.

• 0 ≤ C ≤ 1;

• C = 0 when all nodes have the same centrality;

• C = 1 if one actor has maximal centrality and all others have minimal.
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Networks for comparison
We will compare the following graphs under different centrality measures:
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These are the star graph, line graph, y-graph, the circle graph.

Which do you feel is most “centralized”? Which the least?
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Degree centrality

Idea: A central actor is one with many connections.

This motivates the measure of degree centrality

• undirected degree centrality: cdi =
∑

j :j 6=i yi,j

• outdegree centrality: coi =
∑

j :j 6=i yi,j

• indegree centrality: c ii =
∑

j :j 6=i yj,i

The standardized degree centrality is

c̃di = cdi /c
d
max = cdi /(n − 1)
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Degree centrality
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apply(Ys,1,sum,na.rm=TRUE)

## 1 2 3 4 5
## 1 1 4 1 1

apply(Yl,1,sum,na.rm=TRUE)

## 1 2 3 4 5
## 1 2 2 2 1

apply(Yy,1,sum,na.rm=TRUE)

## 1 2 3 4 5
## 1 2 3 1 1

apply(Yc,1,sum,na.rm=TRUE)

## 1 2 3 4 5
## 2 2 2 2 2
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Degree centralization

cdi : actor centrality

cd∗ : maximum actor centrality observed in the network∑
i

[cd∗ − cdi ] : sum of differences between most central actor and others

Centralization

C d =

∑
i [c

d∗ − cdi ]

maxY
∑

i [c
d∗ − cdi ]

What is the maximum numerator that could be attained by an n-node graph?
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Degree centralization

The maximum occurs when

• one node has the largest possible degree (cd∗ = n − 1),

• the others have the smallest possible degree cdi = 1.

This is the star graph.

max
Y

∑
i

[cd∗ − cdi ] =
∑
i

[(n − 1)− cdi ]

= 0 + (n − 1− 1) + · · ·+ (n − 1− 1)

= (n − 1)(n − 2)

C d(Y) =

∑
i [c

d∗ − cdi ]

(n − 1)(n − 2)
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Degree centralization

Exercise: Compute the degree centralization for the four n = 5 graphs:

• the star graph;

• the line graph;

• the y-graph;

• the circle graph.
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Degree centralization

Cd<-function(Y)
{

n<-nrow(Y)
d<-apply(Y,1,sum,na.rm=TRUE)
sum(max(d)-d)/( (n-1)*(n-2) )
}

Cd(Ys)

## [1] 1

Cd(Yy)

## [1] 0.5833333

Cd(Yl)

## [1] 0.1666667

Cd(Yc)

## [1] 0
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Closeness centrality

Idea: A central node is one that is close, on average, to other nodes.

This motivates the idea of closeness centrality

• (geodesic) distance: di,j is the minimal path length from i to j ;

• closeness centrality: cci = 1/
∑

j :j 6=i di,j = 1/[(n − 1)d̄i ] ;

• limitation: not useful for disconnected graphs.
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Closeness centrality

cci = 1/[(n − 1)d̄i ]

Recall,

da < db ⇒
1

da
>

1

db

and so a node i would be “maximally close” if di,j = 1 for all j 6= i .

cdmax =
1

n − 1

The standardized closeness centrality is therefore

c̃ci = cci /c
d
max

= (n − 1)cci = 1/d̄i .
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Closeness centralization

cci : actor centrality

cc∗ : maximum actor centrality observed in the network∑
i

[cc∗ − cci ] : sum of differences between most central actor and others

Centralization

C c =

∑
i [c

c∗ − cdi ]

maxY
∑

i [c
c∗ − cci ]

What is the maximum numerator that could be attained by an n-node graph?
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Closeness centralization

The maximum occurs when

• one node has the largest possible closeness (d̄∗ = 1, cc∗ = 1/(n − 1)),

• the others have the smallest possible closeness, given that cc∗ = 1/(n− 1).

(Freeman, 1979)

For what graph are these conditions satisfied?

• For c∗c = 1/(n − 1), one node must be connected to all others.

• To then maximize centralization, the centrality of the other nodes must be
minimized.

This occurs when none of the non-central nodes are tied to each other, i.e. the
star graph.
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Closeness centralization
For a non-central node in the star graph,

d̄i =
1 + 2 + · · ·+ 2

n − 1

=
2(n − 2) + 1

n − 1

=
2n − 3

n − 1

cci = 1/[(n − 1)d̄i ] =
1

2n − 3
.

Therefore, for the star graph∑
i

[cc∗ − cci ] = 0 + (
1

n − 1
− 1

2n − 3
) + · · · ( 1

n − 1
− 1

2n − 3
)

= (n − 1)×
(

1

n − 1
− 1

2n − 3

)
= (n − 1)× n − 2

(2n − 3)(n − 1)

=
n − 2

2n − 3
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Closeness centralization

To review, the maximum of
∑

i [c
c∗ − cci ] occurs for the star graph, for which∑

i

[cc∗ − cci ] =
n − 2

2n − 3

Therefore, the centralization of any graph Y is

C c(Y) =

∑
i [c

c∗ − cci ]

maxY
∑

i [c
c∗ − cci ]

=

∑
i [c

c∗ − cci ]

(n − 2)/(2n − 3)

Alternatively, as c̃ci = (n − 1)cci ,

C c(Y) =

∑
i [c

c∗ − cci ]

(n − 2)/(2n − 3)

=

∑
i [c̃

c∗ − c̃ci ]

[(n − 1)(n − 2)]/(2n − 3)
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Closeness centralization

Exercise: Compute the closeness centralization for the four n = 5 graphs:

• the star graph;

• the line graph;

• the y-graph;

• the circle graph.
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Closeness centralization

Cc<-function(Y)
{
n<-nrow(Y)
D<-netdist(Y)
c<-1/apply(D,1,sum,na.rm=TRUE)

sum(max(c)-c)/( (n-2)/(2*n-3) )
}

Cc(Ys)

## [1] 1

Cc(Yy)

## [1] 0.6351852

Cc(Yl)

## [1] 0.4222222

Cc(Yc)

## [1] 0
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Betweeness centrality

Idea: A central actor is one that acts as a bridge, broker or gatekeeper.

• Interaction between unlinked nodes goes through the shortest path
(geodesic);

• A “central” node is one that lies on many geodesics.

This motivates the idea of betweenness centrality

• gj,k = number of geodesics between nodes j and k;

• gj,k(i) = number of geodesics between nodes j and k going through i ;

• cbi =
∑

j<k gj,k(i)/gj,k
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Betweeness centrality

Interpretation: gj,k(i)/gj,k is the probability that a “message” from j to k
goes through i .

• j and k have gj,k routes of communication;

• i is on gj,k(i) of these routes;

• a randomly selected route contains i with probability gj,k(i)/gj,k .

Note: WF p.191
“(betweenness centrality) can be computed even if the graph is not connected”
(WF)

• Careful: If j and k are not reachable, what is gj,k(i)/gj,k ?

• By convention this is set to zero for unreachable pairs.
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Betweeness centrality

cbi =
∑
j<k

gj,k(i)/gj,k

• 0 ≤ cbi , with equality when i lies on no geodesics (draw a picture)

• cbi ≤
(
n−1
2

)
= (n−1)(n−2)

2
, with equality when i lies on all geodesics.

The standardized betweenness centrality is

c̃bi = 2cbi /[(n − 1)(n − 2)].
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Betweenness centrality
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Exercise: Compute the betweenness centrality for each node in each graph.

betweenness(Ys,gmode="graph")

## [1] 0 0 6 0 0

betweenness(Yl,gmode="graph")

## [1] 0 3 4 3 0

betweenness(Yy,gmode="graph")

## [1] 0 3 5 0 0

betweenness(Yc,gmode="graph")

## [1] 1 1 1 1 1
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Betweenness centralization

cbi : actor centrality

cb∗ : maximum actor centrality observed in the network∑
i

[cb∗ − cbi ] : sum of differences between most central actor and others

Centralization

C b =

∑
i [c

b∗ − cbi ]

maxY
∑

i [c
b∗ − cbi ]

What is the maximum numerator that could be attained by an n-node graph?
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Betweenness centralization
The maximum occurs when

• one node has the largest possible betweeness (cb∗ =
(
n−1
2

)
),

• the others have the smallest possible betweeness (cdi = 0).

Again, this is the star graph.

max
Y

∑
i

[cb∗ − cbi ] =
∑
i

[

(
n − 1

2

)
− cbi ]

= 0 + (

(
n − 1

2

)
− 0) + · · ·+ (

(
n − 1

2

)
− 0)

= (n − 1)

(
n − 1

2

)
(
n−1
2

)
= (n − 1)(n − 2)/2, so

C b(Y) =

∑
i [c

b∗ − cbi ]

(n − 1)
(
n−1
2

)
= 2

∑
i [c

b∗ − cbi ]

(n − 1)2(n − 2)
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Betweenness centralization

Cb<-function(Y)
{

require(sna)
n<-nrow(Y)
b<-betweenness(Y,gmode="graph")
2*sum(max(b)-b)/( (n-1)^2 * (n-2) )
}

Cb(Ys)

## [1] 1

Cb(Yy)

## [1] 0.7083333

Cb(Yl)

## [1] 0.4166667

Cb(Yc)

## [1] 0
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Eigenvector centrality

Idea: A central actor is connected to other central actors.

This definition is recursive:
Eigenvector centrality: The centrality of each vertex is proportional to the
sum of the centralities of its neighbors

• Formula: cei = 1
λ

∑
j :j 6=i yi,jc

e
j

• Central vertices are those with many central neighbors

• A variant of eigenvector centrality is used by Google to rank Web pages

Google Describing PageRank: PageRank relies on the uniquely democratic
nature of the web by using its vast link structure as an indicator of an
individual page’s value. In essence, Google interprets a link from page A to
page B as a vote, by page A, for page B. But, Google looks at more than the
sheer volume of votes, or links a page receives; it also analyzes the page that
casts the vote. Votes cast by pages that are themselves “important” weigh
more heavily and help to make other pages “important.”
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Eigenvector centrality

cei =
1

λ

∑
j :j 6=i

yi,jc
e
j

Using matrix algebra, such a vector of centralities satisfies

Yce = λce ,

where the missing diagonal of Y has been replaced with zeros.

A vector ce satisfying the above equation is an eigenvector of Y.

There are generally multiple eigenvectors. The centrality is taken to be the one
corresponding to the largest value of λ.

• this corresponds with the best rank-1 approximation to Y;

• nodes with large cei ’s have “strong activity” in the “primary dimension” of
Y.
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Eigenvector centrality
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evecc<-function(Y)
{

diag(Y)<-0
tmp<-eigen(Y)$vec[,1] ; tmp<-tmp*sign(tmp[1])
tmp
}

evecc(Ys)

## [1] 0.3535534 0.3535534 0.7071068 0.3535534 0.3535534

evecc(Yl)

## [1] 0.2886751 0.5000000 0.5773503 0.5000000 0.2886751

evecc(Yy)

## [1] 0.2705981 0.5000000 0.6532815 0.3535534 0.3535534

evecc(Yc)

## [1] 0.4472136 0.4472136 0.4472136 0.4472136 0.4472136
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Eigenvector centralization

Ce<-function(Y)
{

n<-nrow(Y)
e<-evecc(Y)
Y.sgn<-matrix(0,n,n) ; Y.sgn[1,-1]<-1 ; Y.sgn<-Y.sgn+t(Y.sgn)
e.sgn<-evecc(Y.sgn)
sum(max(e)-e)/ sum(max(e.sgn)-e.sgn)
}

Ce(Ys)

## [1] 1

Ce(Yy)

## [1] 0.802864

Ce(Yl)

## [1] 0.5176381

Ce(Yc)

## [1] 9.420555e-16
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Empirical study: Comparing centralization of different networks

Comparison of centralization metrics across four networks:

• butland ppi: binding interactions among 716 yeast proteins

• addhealth9: friendships among 136 boys

• tribes: postive relations among 12 NZ tribes
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Empirical study: Comparing centralization of different networks
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Empirical study: Comparing centralization of different networks

degree closeness betweenness eigenvector
ppi 0.13 0.26 0.31 0.35

addhealth 0.04 0.14 0.42 0.61
tribes 0.35 0.5 0.51 0.47
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Empirical study: Comparing centralization of different networks

Comments:
• The protein network looks visually centralized, but

• most centralization is local;
• globally, somewhat decentralized.

• The friendship network has small degree centrality (why?).

• The tribes network has one particularly central node.
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