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Statistics for covariate effects

Descriptive network analysis: Computation of

• graph level statistics: density, degree distribution, centralization

• node level statistics: degrees, centralities

Often we also have node-level covariate information.

• Covariate: Node characteristics that “co-vary” with the network.

Questions:

• How to describe the relationship between the network and covariates?

• Can the covariates explain/predict network behavior?

2/33



Statistics for covariate effects

Descriptive network analysis: Computation of

• graph level statistics: density, degree distribution, centralization

• node level statistics: degrees, centralities

Often we also have node-level covariate information.

• Covariate: Node characteristics that “co-vary” with the network.

Questions:

• How to describe the relationship between the network and covariates?

• Can the covariates explain/predict network behavior?

2/33



Statistics for covariate effects

Descriptive network analysis: Computation of

• graph level statistics: density, degree distribution, centralization

• node level statistics: degrees, centralities

Often we also have node-level covariate information.

• Covariate: Node characteristics that “co-vary” with the network.

Questions:

• How to describe the relationship between the network and covariates?

• Can the covariates explain/predict network behavior?

2/33



Statistics for covariate effects

Descriptive network analysis: Computation of

• graph level statistics: density, degree distribution, centralization

• node level statistics: degrees, centralities

Often we also have node-level covariate information.

• Covariate: Node characteristics that “co-vary” with the network.

Questions:

• How to describe the relationship between the network and covariates?

• Can the covariates explain/predict network behavior?

2/33



Statistics for covariate effects

Descriptive network analysis: Computation of

• graph level statistics: density, degree distribution, centralization

• node level statistics: degrees, centralities

Often we also have node-level covariate information.

• Covariate: Node characteristics that “co-vary” with the network.

Questions:

• How to describe the relationship between the network and covariates?

• Can the covariates explain/predict network behavior?

2/33



Statistics for covariate effects

Descriptive network analysis: Computation of

• graph level statistics: density, degree distribution, centralization

• node level statistics: degrees, centralities

Often we also have node-level covariate information.

• Covariate: Node characteristics that “co-vary” with the network.

Questions:

• How to describe the relationship between the network and covariates?

• Can the covariates explain/predict network behavior?

2/33



Statistics for covariate effects

Descriptive network analysis: Computation of

• graph level statistics: density, degree distribution, centralization

• node level statistics: degrees, centralities

Often we also have node-level covariate information.

• Covariate: Node characteristics that “co-vary” with the network.

Questions:

• How to describe the relationship between the network and covariates?

• Can the covariates explain/predict network behavior?

2/33



Statistics for covariate effects

Descriptive network analysis: Computation of

• graph level statistics: density, degree distribution, centralization

• node level statistics: degrees, centralities

Often we also have node-level covariate information.

• Covariate: Node characteristics that “co-vary” with the network.

Questions:

• How to describe the relationship between the network and covariates?

• Can the covariates explain/predict network behavior?

2/33



Statistics for covariate effects

Descriptive network analysis: Computation of

• graph level statistics: density, degree distribution, centralization

• node level statistics: degrees, centralities

Often we also have node-level covariate information.

• Covariate: Node characteristics that “co-vary” with the network.

Questions:

• How to describe the relationship between the network and covariates?

• Can the covariates explain/predict network behavior?

2/33



Example: Girls friendships
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mean(Y,na.rm=TRUE)

## [1] 0.04088967

Ce( 1*( Y+t(Y) > 0 ) )

## [1] 0.3820283
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Covariate effects

We also have data on GPA

• hgpa = indicator of above-average gpa;

mean( Y[ hgpa==1, hgpa==1] ,na.rm=TRUE)

## [1] 0.04737443

mean( Y[ hgpa==1, hgpa==0] ,na.rm=TRUE)

## [1] 0.037623

mean( Y[ hgpa==0, hgpa==1] ,na.rm=TRUE)

## [1] 0.03935944

mean( Y[ hgpa==0, hgpa==0] ,na.rm=TRUE)

## [1] 0.03903421
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Covariate effects

We also have data on smoking behavior:

• hsmoke = indicator of above-average smoking behavior.

mean( Y[ hsmoke==1, hsmoke==1] ,na.rm=TRUE)

## [1] 0.04477612

mean( Y[ hsmoke==1, hsmoke==0] ,na.rm=TRUE)

## [1] 0.03062609

mean( Y[ hsmoke==0, hsmoke==1] ,na.rm=TRUE)

## [1] 0.04400078

mean( Y[ hsmoke==0, hsmoke==0] ,na.rm=TRUE)

## [1] 0.04425837
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Summarizing densities of subgraphs

There are a lot of probabilities here (four for each covariate)

xj=0 xj=1
xi=0 0.039 0.039
xi=1 0.038 0.047

Table : gpa

xj=0 xj=1
xi=0 0.044 0.044
xi=1 0.031 0.045

Table : smoking

Note: Such tables correspond to very rudimentary “blockmodels”:

• an observed categorical covariate divides nodes into “blocks”;

• probability of tie between nodes determined by rates between their blocks.

Interpreting probabilities/rates:
How do rates correspond to nodal preferences?
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Odds ratios

Odds: Let Pr(E) be the probability of an event. The odds of E are

odds(E) =
Pr(E)

1− Pr(E)

Probabilities are between 0 and 1, odds are between 0 and ∞.

The “effect” of a variable on a probability is often described via the odds ratio.

Odds ratio: Let

• Pr(E |A) = the probability of some event E under condition A

• Pr(E |B) = the probability of some event E under condition B

The odds ratio is

odds(E : A,B) =
Pr(E |A)

1− Pr(E |A)

1− Pr(E |B)

Pr(E |B)

Note that
odds(E : A,B) = 1⇒ Pr(E |A) = Pr(E |B)
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Effect of a covariate on a tie

Let xi ∈ {0, 1} for i = 1, . . . , n be a binary variable.

• xi = indicator of high gpa, or

• xi = smoking status, or

• xi = indicator of membership to some group.

Let Pr(yi,j = 1|xi , xj) = pxi xj

xj=0 xj=1
xi=0 p00 p01

xi=1 p10 p11

Given a network, we might want to describe the “effect” of xi and xj on yi,j :

odds(yi,j = 1|{xi = 1, xj = 1}, {xi = 0, xj = 1}) =
p11

1− p11

1− p01

p01
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Odds ratios

p11<-mean( Y[ hsmoke==1, hsmoke==1] ,na.rm=TRUE)
p01<-mean( Y[ hsmoke==0, hsmoke==1] ,na.rm=TRUE)

(p11/(1-p11)) / (p01/(1-p01))

## [1] 1.018447

This result says that the odds of a tie are 1.02 times higher under the condition
xi = 1, xj = 1 than xi = 0, xj = 1.

This result seems to suggest that smokers and non-smokers are equally friendly
to smokers. However, the result could be due to

• no effect of smoking or

• differential rates of ties among smokers and nonsmokers.
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Odds ratios for tie preferences

A better question to ask might be:

Does a person’s characteristic determine the characteristics of whom
they choose as friends?

The probabilities related to this question condition on the existence of a tie:

Pr(xj = 1|yi,j = 1, xi = 1) =
Pr(yi,j = 1|xj = 1, xi = 1) Pr(xj = 1|xi = 1)

Pr(yi,j = 1|xi = 1)

=
Pr(yi,j = 1|xj = 1, xi = 1) Pr(xj = 1)

Pr(yi,j = 1|xi = 1)

= p11
Pr(xj = 1)

Pr(yi,j = 1|xi = 1)

This probability can be interpreted as, for example,

What is the probability that a friend of a smoker is another smoker?

Such a probability is more descriptive of tie preferences.
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Odds ratios for tie preferences

Pr(xj = 1|yi,j = 1, xi = 1) = probability that a friend of a smoker is another smoker

However, this probability will mostly reflect the (typically low) overall tie
density.

To assess the “effect” of xi on choosing another smoker as a friend, we can
look at an appropriate odds ratio:

odds(xj = 1 : {yi,j = 1, xi = 1}, {yi,j = 1, xi = 0}) =

Pr(xj = 1|yi,j = 1, xi = 1)

Pr(xj = 0|yi,j = 1, xi = 1)

Pr(xj = 0|yi,j = 1, xi = 0)

Pr(xj = 1|yi,j = 1, xi = 0)
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Pr(xj = 1|yi,j = 1, xi = 1)

Pr(xj = 0|yi,j = 1, xi = 1)

Pr(xj = 0|yi,j = 1, xi = 0)

Pr(xj = 1|yi,j = 1, xi = 0)
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Odds ratios for tie preferences

Recall,

Pr(xj = 1|yi,j = 1, xi = 1) =
Pr(yi,j = 1|xj = 1, xi = 1) Pr(xj = 1|xi = 1)

Pr(yi,j = 1|xi = 1)

=
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Odds ratios for tie preferences

px1x2 = Pr( tie |x1, x2)

≈ density in the x1, x2 submatrix

xj=0 xj=1
xi=0 p00 p01

xi=1 p10 p11

odds(xj = 1|yi,j = 1, xi = 1) =
p11

p10

Pr(xj = 1)

Pr(xj = 0)

odds(xj = 1|yi,j = 1, xi = 0) =
p01

p00

Pr(xj = 1)

Pr(xj = 0)

The odds ratio is therefore

odds ratio(xj = 1|{yi,j = 1, xi = 1}{yi,j = 1, xi = 0}) =
p11/p10

p01/p00
=

p11p00

p10p01
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Odds ratios for tie preferences

γ =
p11p00

p10p01

This ratio represents

the relative preference of egos with x = 1 versus x = 0

to tie to alters with x = 1.

Interestingly, one can show (homework?)

odds ratio(xi = 1|{yi,j = 1, xj = 1}{yi,j = 1, xj = 0}) =
p11p00

p10p01
= γ.

This ratio represents

the relative attractiveness of alters with x = 1 versus x = 0

to egos with x = 1.
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Odds ratios for tie preferences

xj=0 xj=1
xi=0 p00 p01

xi=1 p10 p11

Are there interesting/useful ways to represent numbers in the table?

• In SNA, more interested in relative rates than absolute rates.

• Absolute rates are derivable from relative rates and a baseline, and
vice-vera:

{p00, p01, p10, p11} ∼ {p00, p01/p00, p10/p00, p11/p00}
∼ {p00, p01/p00, p10/p00, (p11p00)/(p01p10)}
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Interpreting probability ratios

{p00, p01, p10, p11} ∼ {p00, p01/p00, p10/p00, (p11p00)/(p01p10)}

Basline: p00 represents a baseline rate

Relative rates: p01/p00, p10/p00 represent relative rates

• p01/p00 = density of 0→ 1 relative to 0→ 0 (“attractiveness of 1’s”)

• p10/p00 = density of 1→ 0 relative to 0→ 0 (“sociability of 1’s”)

Odds ratio: (p11p00)/(p01p10) = γ represents preferences for homophily.
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Interpreting relative rates

You can show (for example) that

p01

p00
=

odds(xj = 1|yi,j = 1, xi = 0)

odds(xj = 1)

While this is a ratio of odds, it is not exactly an odds ratio:

• The conditioning events are not complementary.

The ratio still has a reasonable interpretation:

• The ratio can be interpreted as how much the odds of xj = 1 change if
you are told that j has a link from a person i with xi = 0.
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Friendship example

p.smoke<-c(
mean( Y[ hsmoke==0, hsmoke==0] ,na.rm=TRUE),
mean( Y[ hsmoke==1, hsmoke==0] ,na.rm=TRUE),
mean( Y[ hsmoke==0, hsmoke==1] ,na.rm=TRUE),
mean( Y[ hsmoke==1, hsmoke==1] ,na.rm=TRUE) )

(p.smoke[1]*p.smoke[4]) / (p.smoke[2]*p.smoke[3] )

## [1] 1.470585

p.gpa<-c(
mean( Y[ hgpa==0, hgpa==0] ,na.rm=TRUE),
mean( Y[ hgpa==1, hgpa==0] ,na.rm=TRUE),
mean( Y[ hgpa==0, hgpa==1] ,na.rm=TRUE),
mean( Y[ hgpa==1, hgpa==1] ,na.rm=TRUE) )

(p.gpa[1]*p.gpa[4]) / (p.gpa[2]*p.gpa[3] )

## [1] 1.248783

Homophily is positive for both smoking and gpa.
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Friendship example

p.smoke[1]

## [1] 0.04425837

p.smoke[2]/p.smoke[1]

## [1] 0.6919841

p.smoke[3]/p.smoke[1]

## [1] 0.9941797

(p.smoke[1]*p.smoke[4]) / (p.smoke[2]*p.smoke[3] )

## [1] 1.470585
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Friendship example

• The baseline rate is low (p00 = 0.04 )

• The rate of ties from nonsmokers to smokers is about the same as that
from nonsmokers to nonsmokers (p01/p00 = .99).

• The rate of ties from smokers to nonsmokers is much lower than that from
nonsmokers to nonsmokers (p10/p00 = .69).

• There is strong homophily (γ = 1.47)
• A tie from a smoker is more likely to be to a smoker than a tie from a

nonsmoker is.
• A tie to a smoker is more likely to be from a smoker than a tie to a

nonsmoker is.
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Friendship example

p.gpa[1]

## [1] 0.03903421

p.gpa[2]/p.gpa[1]

## [1] 0.9638469

p.gpa[3]/p.gpa[1]

## [1] 1.008332

(p.gpa[1]*p.gpa[4]) / (p.gpa[2]*p.gpa[3] )

## [1] 1.248783

Note: It is possible for p01/p00 = p10/p00 = 1, but γ to be large.

• In this case γ = p11/p00.

• Deviations from 1 indicate heterogeneity in within-group ties.

• Such deviations indicate within group preferences, or homophily.
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Logistic regression

A useful tool for describing effects on a binary variable is logistic regression

Given

• a binary outcome variable y

• binary explanatory variables x1, x2

A logistic regression model for y in terms of x1, x2 is

Pr(y = 1|x1, x2) =
eβ0+β1x1+β2x2+β12x1x2

1 + eβ0+β1x1+β2x2+β12x1x2

Based on this, we see that

Pr(y = 0|x1, x2) =
1

1 + eβ0+β1x1+β2x2+β12x1x2

odds(y = 1|x1, x2) = exp(β0 + β1x1 + β2x2 + β12x1x2)

log odds(y = 1|x1, x2) = β0 + β1x1 + β2x2 + β12x1x2
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Log-odds ratios in logistic regression

For example,

odds(y = 1|0, 0) = exp(β0)

odds(y = 1|1, 0) = exp(β0 + β1)

odds ratio(y = 1|(1, 0), (0, 0)) =
exp(β0 + β1)

exp(β0)
= exp (β1)

log odds ratio(y = 1|(1, 0), (0, 0)) = β1

In logistic regression

• β1, the “effect” of x1, represents the log odds ratio (y = 1|(1, 0), (0, 0))

• β2, the “effect” of x2, represents the log odds ratio (y = 1|(0, 1), (0, 0))

What about the interaction?
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Log-odds ratios in logistic regression

odds(y = 1|x1, x2) = exp(β0 + β1x1 + β2x2 + β12x1x2)

odds ratio(y = 1|(1, 1), (0, 1)) =
exp(β0 + β1 + β2 + β12)

exp(β0 + β2)
= exp(β1 + β12)

odds ratio(y = 1|(1, 0), (0, 0)) =
exp(β0 + β1)

exp(β0)
= exp (β1)

Therefore

odds ratio(y = 1|(1, 1), (0, 1))

odds ratio(y = 1|(1, 0), (0, 0))
= exp(β12)

log
odds ratio(y = 1|(1, 1), (0, 1))

odds ratio(y = 1|(1, 0), (0, 0))
= β12
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Log-odds ratios in logistic regression

ox1x2 =
Pr(y1,2 = 1|x1, x2)

1− Pr(y1,2 = 1|x1, x2)
=

px1x2

1− px1x2

x2=0 x2=1
x1=0 o00 o01

x1=1 o10 o11

Under the logistic regression model

β0 = log o00

β1 = log
o10

o00

β2 = log
o10

o00

β12 = log
o11/o01

o10/o00
= log

o11o00

o01o10

How do {β0, β1, β2, β12} relate to {p00, p10/p00, p01/p00, (p11p00)/(p01p10)} ?
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Friendship example
Xr<-matrix(hsmoke,nrow(Y),ncol(Y))

Xc<-t(Xr)

xr<-c(Xr)

xc<-c(Xc)

y<-c(Y)

fit<-glm(y~ xr+ xc + xr*xc, family=binomial)

exp(fit$coef)

## (Intercept) xr xc xr:xc

## 0.04630788 0.68225274 0.99391180 1.49277105

Do these numbers look familiar?

p.smoke[1]

## [1] 0.04425837

p.smoke[2]/p.smoke[1]

## [1] 0.6919841

p.smoke[3]/p.smoke[1]

## [1] 0.9941797

(p.smoke[1]*p.smoke[4]) / (p.smoke[2]*p.smoke[3] )

## [1] 1.47058526/33
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Comparing summaries

If network density is very low,

• 1− pxi xj ≈ 1

• oxi xj = pxi xj /(1− pxi xj ) ≈ pxi xj

and so

xi=0 xi=1
xj=0 p00 p01

xj=1 p10 p11

≈
xi=0 xi=1

xj=0 o00 o01

xj=1 o10 o11

Therefore

{p00, p10/p00, p01/p00, (p11p00)/(p01p10)} ≈ {o00, o10/o00, o01/o00, (o11o00)/(o01o10)}

= {eβ0 , eβ1 , eβ2 , eβ12}
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Undirected data

Now we have

xj=0 xj=1
xi=0 p00 p01 = p10

xi=1 p10 = p01 p11

Now there are only three (unique) numbers in the table.

We can express these as follows:

{p00, p01, p11} ∼ {p00, p01/p00, p11p00/p
2
01}

The interpretation of these is roughly the same as before:

• p00 represents a baseline rate (both x ’s 0)

• p01/p00 represents a relative rate (one x 0 versus both x ’s 0)

• p11p00/p
2
01 represents a homophily effect - the preference of like for like.

• the excess within-group density, beyond the effect of one group being more
active than another.
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Logistic regression for undirected data

log odds(y = 1|x1, x2) = β0 + β1x1 + β2x2 + β12x1x2

Here, x1 and x2 are not “sender” and “receiver” effects, as there are no senders
or receivers.

As there is no way to differentiate the effect of x1 versus that of x2, we must
have β1 = β2, and the model becomes

log odds(y = 1|x1, x2) = β0 + β1(x1 + x2) + β2x1x2

• β0 represents a baseline rate;

• β1 represents the “additive” effect of either x1 = 1 or x2 = 1 on the rate;

• β12 represents the additional effect of homophily on the rate.
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Interpreting coefficients

log odds(y = 1|x1, x2) = β0 + β1(x1 + x2) + β2x1x2

For example, suppose

• yi,j = indicator of friendship;

• xi = indicator of friendliness.

Under no homophily, i.e. β12 = 0,

log odds(y = 1|0, 1) = β0 + β1

log odds(y = 1|1, 1) = β0 + 2β1

The rate is higher under (xi = 1, xj = 1) than (xi = 1, xj = 0)

• not because of homophily,

• but because both people are friendly, instead of one.
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Interpreting coefficients

Under positive homophily, i.e. β12 > 0,

log odds(y = 1|0, 1) = β0 + β1

log odds(y = 1|1, 1) = β0 + 2β1 + β12 > β0 + 2β1

The rate is higher under (xi = 1, xj = 1) than (xi = 1, xj = 0)

• both people are friendly,

• additionally, friendly people prefer friendly people.
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Computation in R

ys<-c( 1*(Y+t(Y)>0) )

fit<-glm(ys~ xr+ xc + xr*xc, family=binomial)

exp(fit$coef)

## (Intercept) xr xc xr:xc
## 0.07455013 0.84579038 0.84579038 1.45293402
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Summary

• Effects of binary covariates can be described with submatrix densities.

• Submatrix densities can be reparameterized:
• baseline rate;
• relative probabilities;
• homophily.

• These summaries are related to logistic regression coefficients.
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