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Example

mean(Y,na.rm=TRUE)
## [1] 0.04088967
Ce( 1x( Y+t(Y) > 0 ) )

## [1] 0.3820283

. Girls friendships

20

47
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e hgpa = indicator of above-average gpa;
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Covariate effects

We also have data on GPA

e hgpa = indicator of above-average gpa;

mean( Y[ hgpa==1, hgpa==1] ,na.rm=TRUE)

## [1] 0.04737443

mean( Y[ hgpa==1, hgpa==0] ,na.rm=TRUE)

## [1] 0.037623

mean( Y[ hgpa==0, hgpa==1] ,na.rm=TRUE)

## [1] 0.03935944

mean( Y[ hgpa==0, hgpa==0] ,na.rm=TRUE)

## [1] 0.03903421



Covariate effects

We also have data on smoking behavior:

e hsmoke = indicator of above-average smoking behavior.
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Covariate effects

We also have data on smoking behavior:
e hsmoke = indicator of above-average smoking behavior.
mean( Y[ hsmoke==1, hsmoke==1] ,na.rm=TRUE)
## [1] 0.04477612
mean( Y[ hsmoke==1, hsmoke==0] ,na.rm=TRUE)
## [1] 0.03062609
mean( Y[ hsmoke==0, hsmoke==1] ,na.rm=TRUE)
## [1] 0.04400078
mean( Y[ hsmoke==0, hsmoke==0] ,na.rm=TRUE)

## [1] 0.04425837
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Summarizing densities of subgraphs

There are a lot of probabilities here (four for each covariate)

xj=0 xj=1 xj=0 xj=1
xi=0 0.039 0.039 xi=0 0.044 0.044
xi=1 0.038 0.047 xi=1 0.031 0.045

Table : gpa Table : smoking
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xj=0 xj=1 xj=0 xj=1

xi=0 0.039 0.039 xi=0 0.044 0.044

xi=1 0.038 0.047 xi=1 0.031 0.045
Table : gpa Table : smoking

Note: Such tables correspond to very rudimentary “blockmodels”:
e an observed categorical covariate divides nodes into “blocks”;

e probability of tie between nodes determined by rates between their blocks.

Interpreting probabilities/rates:
How do rates correspond to nodal preferences?
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Odds ratios
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Odds: Let Pr(E) be the probability of an event. The odds of E are

odds(E) = %

Probabilities are between 0 and 1, odds are between 0 and oc.
The “effect” of a variable on a probability is often described via the odds ratio.

Odds ratio: Let
e Pr(E|A) = the probability of some event E under condition A
e Pr(E|B) = the probability of some event E under condition B
The odds ratio is
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Odds: Let Pr(E) be the probability of an event. The odds of E are

odds(E) = %

Probabilities are between 0 and 1, odds are between 0 and oc.
The “effect” of a variable on a probability is often described via the odds ratio.
Odds ratio: Let
e Pr(E|A) = the probability of some event E under condition A
e Pr(E|B) = the probability of some event E under condition B
The odds ratio is

_ _ Pr(E|A) 1-Pr(E|B)
OddS(E TA, B) =71_ PI’(E|A) PI‘(ElB)

Note that
odds(E : A,B) =1 = Pr(E|A) = Pr(E|B)
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Effect of a covariate on a tie

Let x; € {0,1} for i = 1,...,n be a binary variable.
e x; = indicator of high gpa, or
e x; = smoking status, or
e x; = indicator of membership to some group.

Let Pr(yij = 11xi, X)) = P

xj=0 xj=1
xi=0 Poo Po1
xi=1 P10 p11

Given a network, we might want to describe the “effect” of x; and x; on y; ;:

1_
OddS()/i,j — 1‘{Xi = ]_7XJ = 1}, {X,' = 07)(1 = 1}) = 1 51;11 pﬂfol
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Odds ratios

pli<-mean( Y[ hsmoke==1, hsmoke==1] ,na.rm=TRUE)
pOi<-mean( Y[ hsmoke==0, hsmoke==1] ,na.rm=TRUE)

(p11/(1-p11)) / (p01/(1-p01))

## [1] 1.018447

This result says that the odds of a tie are 1.02 times higher under the condition
xi =1,x; =1than x; = 0,x = 1.

This result seems to suggest that smokers and non-smokers are equally friendly
to smokers. However, the result could be due to
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Odds ratios for tie preferences
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Does a person’s characteristic determine the characteristics of whom
they choose as friends?
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Pr(yij=1lx; =1,x =1)Pr(x; = 1|xi = 1)
Pr(yij =1[xi =1)
Pr(yij =1, =1,x =1)Pr(x; = 1)
Pr(y,»,j = 1|X,‘ = 1)
Pr(x =1)
Pr(y,-,j = 1|X; = 1)

Prixi =1lyi; =1,x =1) =

= p11

This probability can be interpreted as, for example,

What is the probability that a friend of a smoker is another smoker?

Such a probability is more descriptive of tie preferences.
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Odds ratios for tie preferences

Pr(x; = 1|yij = 1,x; = 1) = probability that a friend of a smoker is another smoker

However, this probability will mostly reflect the (typically low) overall tie
density.

To assess the “effect” of x; on choosing another smoker as a friend, we can
look at an appropriate odds ratio:

odds(x; =1:{yi; = 1,x = 1},{yi; = 1,5 =0}) =
Prixj =1lyij =1,x = 1) Pr(s = Olyij = 1,x = 0)
Pr(x; = Olyi; = 1,x = 1) Pr(x; = 1]y;; = 1, = 0)
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Odds ratios for tie preferences
Recall,
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Prix = 1y, = Lxi = 1) = Priyis = Il = 1)
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ij = i =
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= p11

Similarly,

Pr(x = 0)

Pr(x; = i=1,x=1)= -
r(XJ O‘y’J % ) P1o F’r(y,-,j = 1|X,‘ = 1)
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Recall,
Pr(yij=1x =1,x =1)Pr(x; = 1|x; = 1)
Pr(y,-yj = 1|X,' = 1)
Priyij=1]x =1,x =1)Pr(x = 1)
Pr(y,-,j = 1|X,' = 1)
Pr(x =1)

Prix; =1lysj =1L, x=1) =

=P =T = T)
Similarly,
Pr(x; = 0)
Pr(x =Olyij =1, =1) = prog——————
r0g = Olyiy =1, =1) = pop e =307y
and so
pu Pr(x = 1)/ Pr(yi; = 1|xi = 1)
odds(x; = 1lyij =1,x,=1) = —
(x5 = 1lyiy ) p1o Pr /Prlyij =1xi =1)
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Puax, = Pr( tie [x1, %)

= density in the xi, xo submatrix

xj=0 xj=1
xi=0 Poo Po1
xi=1 p1io p11

pu Pr( =1)
p1o Pr(x; = 0)
por Pr(x =1)
poo Pr(x; = 0)

OddS(Xj = l\y,-,j = l,X,‘ = 1) =

odds(x; = 1ly;; =1,x =0) =

The odds ratio is therefore

. P11/P1o P11 pPoo
odds ratio(x; = 1{yi; = 1,x, =1}H{y;; =1,x. =0}) = =
( j ‘{y J }{y J }) Po1/ Poo P1opor
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Odds ratios for tie preferences

xj=0 xj=1
xi=0 Poo Po1
xi=1 P10 P11

Are there interesting/useful ways to represent numbers in the table?

e In SNA, more interested in relative rates than absolute rates.

e Absolute rates are derivable from relative rates and a baseline, and
vice-vera:

{poo, po1, p1o, P11} ~ {Poo, Po1/Poo, Pro/Poo, P11/ poo}
~ {Poo, po1/Poo; P10/ oo, (P11poo) / (Po1pio) }
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p.smoke<-c(

Friendship example

mean( Y[ hsmoke==0, hsmoke==0] ,na.rm=TRUE),
mean( Y[ hsmoke==1, hsmoke==0] ,na.rm=TRUE),
mean( Y[ hsmoke==0, hsmoke==1] ,na.rm=TRUE),
mean( Y[ hsmoke==1, hsmoke==1] ,na.rm=TRUE) )

(p.smoke[1]*p.smoke[4]) /

## [1] 1.470585
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(p.smoke [2] *p.smoke[3] )
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Friendship example

=0] ,na.rm=TRUE),
=0] ,na.rm=TRUE),
=1] ,na.rm=TRUE),
=1] ,na.rm=TRUE) )

(p.smoke [2] *p.smoke[3] )

,na.rm=TRUE) ,
,na.rm=TRUE) ,
,na.rm=TRUE) ,
,na.rm=TRUE) )

.gpal2]*p.gpal3] )

Homophily is positive for both smoking and gpa.



Friendship example

p.smoke[1]

## [1] 0.04425837

p-smoke[2]/p.smoke[1]

## [1] 0.6919841

p-smoke[3]/p.smoke[1]

## [1] 0.9941797

(p.smoke[1]*p.smoke[4]) / (p.smoke[2]*p.smoke[3] )

## [1] 1.470585
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!rlen!s!m examp’e

e The baseline rate is low (poo = 0.04 )

e The rate of ties from nonsmokers to smokers is about the same as that
from nonsmokers to nonsmokers (po1/poo = .99).

e The rate of ties from smokers to nonsmokers is much lower than that from
nonsmokers to nonsmokers (p1o/poo = .69).

e There is strong homophily (v = 1.47)
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Friendship example

p-gpalil

## [1] 0.03903421

p.gpal2]/p.gpall]
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p.gpal3]/p.gpalll

## [1] 1.008332

(p-gpalll*p.gpalal) / (p.gpal2]#p.gpal3] )

## [1] 1.248783

21/33



Friendship example

p-gpall]

## [1] 0.03903421

p.gpal2]/p.gpall]

## [1] 0.9638469

p-gpal3]/p.gpalil

## [1] 1.008332

(p-gpalil*p.gpaldl) / (p.gpal2l*p.gpal3] )

## [1] 1.248783

Note: It is possible for po1/poo = pio/poo = 1, but ~ to be large.
e In this case v = p11/poo.

21/33



21/33

Friendship example

p-gpall]

## [1] 0.03903421

p.gpal2]/p.gpall]

## [1] 0.9638469

p-gpal3]/p.gpalil

## [1] 1.008332

(p-gpalil*p.gpal4]) / (p.gpal2]*p.gpal3] )

## [1] 1.248783

Note: It is possible for po1/poo = pio/poo = 1, but ~ to be large.
e In this case v = p11/poo-
e Deviations from 1 indicate heterogeneity in within-group ties.



21/33

Friendship example

p-gpall]

## [1] 0.03903421

p.gpal2]/p.gpall]

## [1] 0.9638469

p-gpal3]/p.gpalil

## [1] 1.008332

(p-gpaltl*p.gpal4l) / (p.gpal2]l*p.gpal3]l )

## [1] 1.248783

Note: It is possible for po1/poo = pio/poo = 1, but ~ to be large.
e In this case v = p11/poo-
o Deviations from 1 indicate heterogeneity in within-group ties.

e Such deviations indicate within group preferences, or homophily.



21/33

Friendship example

p-gpalll

## [1] 0.03903421

p.gpal2]/p.gpall]

## [1] 0.9638469

p-gpal3]/p.gpalil

## [1] 1.008332

(p.gpalll*p.gpald]l) / (p.gpal2]*p.gpal3] )

## [1] 1.248783

Note: It is possible for po1/poo = pio/poo = 1, but ~ to be large.
e In this case v = p11/poo-
e Deviations from 1 indicate heterogeneity in within-group ties.

e Such deviations indicate within group preferences, or homophily.



21/33

Friendship example

p-gpalll

## [1] 0.03903421

p.gpal2]/p.gpall]

## [1] 0.9638469

p-gpal3]/p.gpalil

## [1] 1.008332

(p.gpalll*p.gpald]l) / (p.gpal2]*p.gpal3] )

## [1] 1.248783

Note: It is possible for po1/poo = pio/poo = 1, but ~ to be large.
e In this case v = p11/poo-
e Deviations from 1 indicate heterogeneity in within-group ties.

e Such deviations indicate within group preferences, or homophily.



Logistic regression

A useful tool for describing effects on a binary variable is logistic regression

22/33



Logistic regression

A useful tool for describing effects on a binary variable is logistic regression

Given

e a binary outcome variable y

22/33



Logistic regression

A useful tool for describing effects on a binary variable is logistic regression

Given
e a binary outcome variable y

e binary explanatory variables x1, x»

22/33



Logistic regression

A useful tool for describing effects on a binary variable is logistic regression

Given
e a binary outcome variable y

e binary explanatory variables x1, x2

22/33



Logistic regression

A useful tool for describing effects on a binary variable is logistic regression
Given

e a binary outcome variable y

e binary explanatory variables x1, x2

A logistic regression model for y in terms of xi, x2 is

ePotBrxa+BaxtBiaxix
Pr(y = 1|x1, %) =

1 + eBotBrxa+Baxa+Br2x1x2
Based on this, we see that

1
1 + eBotBrxa+Baxa+Pr2xaxe

Pr(y = Ox, ) =

odds(y = 1|x1, x2) = exp(Bo + Six1 + Baxz + Pr2xix2)
log odds(y = 1|x1,x2) = Bo + Six1 + Pexz + Przxixe
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Log-odds ratios in logistic regression

For example,

odds(y = 1]0,0) = exp(Bo)
odds(y = 1|1,0) = exp(fo + 51)
exp(Bo + P1)

odds ratio(y = 1|(1,0),(0,0)) = exp(Bo)

= exp (1)

log odds ratio(y = 1|(1,0),(0,0)) = f1
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Log-odds ratios in logistic regression

For example,

odds(y = 1]0,0) = exp(Bo)
odds(y = 1|1,0) = exp(fo + 51)
exp(Bo + P1)

odds ratio(y = 1|(1,0),(0,0)) = exp(Bo)

= exp (B1)
log odds ratio(y = 1/(1,0),(0,0)) = S
In logistic regression

o [31, the “effect” of xi, represents the log odds ratio (y = 1|(1,0), (0,0))
e 35, the “effect” of x», represents the log odds ratio (y = 1/(0,1),(0,0))

What about the interaction?
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Log-odds ratios in logistic regression

odds(y = 1|x1, x2) = exp(Bo + Six1 + Baxz + Lr2x1x2)

exp(Bo + B1 + B2 + Si2)
exp(fo + B2)

exp(Bo + f1)

T(ﬂo) = exp (/31)

odds ratio(y = 1|(1,1),(0,1)) = = exp(B1 + Pr2)

odds ratio(y = 1|(1,0),(0,0)) =
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Log-odds ratios in logistic regression

odds(y = 1|x1, x2) = exp(Bo + Six1 + Baxz + Lr2x1x2)

exp(Bo + B1 + B2 + Si2)

odds ratio(y = 1/(1,1),(0,1)) = oxo(fo £ B2) = exp(f1 + S12)
odds ratio(y = 1/(1,0), (0,0)) = %(;)ﬁl) = exp (f1)
xp(Bo
Therefore
odds ratio(y = 1|(1,1), (0, — exp(f)
12

odds ratio(y = 1|(1,1),
8 odds ratio(y = 1/(1,0),

)

OO O|Oo

lo = P12

( (0,1)) _
odds ratio(y = 1/(1,0), (0,0))

( (0,1))

( (0,0))

I
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Log-odds ratios in logistic regression

Pr(yi2 = 1x1, x2) _ _Pxax
1-— Pr(yl,g = 1|X1,X2) 1-— Px1xa

OXl x2

x2=0 x2=1
x1=0 000 001
x1=1 010 O11




Log-odds ratios in logistic regression

Privio =1x1,%0) _  Pux
1=Pr(yiz=1x,%) 1= pax

OXl x2

x2=0 x2=1
x1=0 000 Oo1
x1=1 010 O11
Under the logistic regression model
Bo = log oo
010
B1 = log —
000
010
B2 = log —
000
o) o
B1> = log 11/ 001 — Jog 1100
010/ 000 001010

How do {8, f1, B2, f12} relate to {poo, pro/Poo, po1/poo, (pr1poo)/(Porpio)} ?
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Friendship example

Xr<-matrix(hsmoke,nrow(Y),ncol(Y))
Xc<-t (Xr)

xr<-c(Xr)

xc<-c(Xc)

y<—c(Y)

fit<-glm(y~ xr+ xc + xr*xc, family=binomial)

exp(fit$coef)

## (Intercept) Xr xC XT:XC
## 0.04630788 0.68225274 0.99391180 1.49277105

Do these numbers look familiar?
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y<—c(Y)
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exp(fit$coef)

## (Intercept) Xr xC XT:XC
## 0.04630788 0.68225274 0.99391180 1.49277105

Do these numbers look familiar?

p.smoke[1]

## [1] 0.04425837

p.smoke[2] /p.smoke[1]

## [1] 0.6919841

p.smoke[3]/p.smoke[1]

## [1] 0.9941797

(p.smoke[1]*p.smoke[4]) / (p.smoke[2]*p.smoke[3] )

26/33 ## [1] 1.470585



Comparing summaries

If network density is very low,

o l—pgg~1
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Comparing summaries

If network density is very low,

o l—pg~1
® Oxix; = prXj/(l - prXj) R Pxix;
and so
xi=0 xi=1 xi=0 xi=1
xj=0 Poo Ppo1 ~ xj=0 000 oo1
Xj=1 P1o P11 Xj=1 010 O11
Therefore

P00, P10/ Poo, Po1/ Poo, (P11Poo)/(Po1P10) sy = 1000, 010/ 000, 001/ 000, ( O11000 001010
{ / / oo, )/( )} A / /000, ( )/( )}
:{eﬁo P P2 e@u}



Undirected data

Now we have

xj=0 xj=1

xi=0 Poo Po1 = p1o
xi=1  pio = po1 P11

Now there are only three (unique) numbers in the table.
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Logistic regression for undirected data

log odds(y = 1|x1,x2) = Bo + Bix1 + Baxz + Praxix

Here, x1 and x> are not “sender” and “receiver’ effects, as there are no senders
or receivers.
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Interpreting coefficients

Under positive homophily, i.e. 812 > 0,

log odds(y = 1|0,1) = Bo + 51
log odds(y = 1|1,1) = Bo + 261 + f12 > Bo + 261
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Computation in R

ys<—c( 1*x(Y+t(Y)>0) )
fit<-glm(ys~ xr+ xc + xr*xc, family=binomial)
exp(fit$coef)

## (Intercept) Xr xC XT:XC
## 0.07455013 0.84579038 0.84579038 1.45293402
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Summary

o Effects of binary covariates can be described with submatrix densities.
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