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Example

mean (Y,na.rm=TRUE)
## [1] 0.04088967
cd(y)

## [1] 0.1003644

Cd(t(Y))

## [1] 0.2918349
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Covariate effects
We also have data on
e gpa: hgpa = indicator of above-average gpa;

4/32



Covariate effects
We also have data on
e gpa: hgpa = indicator of above-average gpa;
e smoking behavior: hsmoke = indicator of above-average smoking behavior.

4/32



Covariate effects
We also have data on
e gpa: hgpa = indicator of above-average gpa;
e smoking behavior: hsmoke = indicator of above-average smoking behavior.

4/32



Covariate effects
We also have data on
e gpa: hgpa = indicator of above-average gpa;
e smoking behavior: hsmoke = indicator of above-average smoking behavior.

p-smoke [2]/p.smoke[1]

## [1] 0.9638469

p-smoke [3]/p.smoke[1]

## [1] 1.008332

( p.smoke[1]*p.smoke[4] ) / ( p.smoke[2]p.smoke[3] )

## [1] 1.248783

p.gpal2]/p.gpall]
## [1] 0.3868937
p-gpal3]/p.gpalll
## [1] 0.5379664
( p.gpal1l*p.gpal4] ) / ( p.gpal2l*p.gpal3] )

## [1] 5.754995
4/32



!escrlptlve resu‘ts

Summary:
e Density:
e the overall density of ties is 0.041.
o Centrality:

e Smoking:

e Gpa:

What conclusions can we draw?

Can we infer anything about how these people formed ties?
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Models of tie formation

A probability model of tie formation is a probability distribution over
sociomatrices.

More specifically, let
Y ={Y:y;€{0,1},y; = NA}
be the set of all possible sociomatrics.
A probability model P over ) assigns a number P(Y) to each Y € Y

0<P(Y)<1lforallYe)

> P(Y)=1

Yey
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Simple random graph

The simple random graph model Py assumes
o all ties are formed independently of each other;

e each tie exists with some probability 6, common across all ties.
Under Py the entries of Y are independent and identically distributed:
Y12y, Ya—1,n ~ i.i.d. binary(6)

Exercise: Compute the probability of each graph under Py

NA 0 1 1 0 0 NA 1 1 1 1 0
0 NA 0 1 0 0 1 NA 0 0 0 0
0 1 NA 0 0 0 1 0 NA 0 0 0
1 0 0 NA 1 0 1 0 0 NA 0 0
0 1 0 1 NA 0 1 0 0 0 NA 0
0 0 0 0 0 NA 0 0 0 0 0 NA



Simple random graph

Under Py, the probability of a graph Y is
Po(Y) =] ¢ (1—0)

i#j
— 0> Yi,j(l _ 9)2(1—%’,/)
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Simple random graph

Under Py, the probability of a graph Y is
Po(Y) =] ¢ (1—0)

i#j
— 92%‘,,’(1 _ 9)2(1—)’,',/)

Would this be a good model for our friendship data?

Are the data consistent with this model?
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Evaluating the simple random graph

Specification of a probability model requires specification of 6.

Let’'s make an ad-hoc selection of § = 0.04 for now, and ask the question:
Are the data consistent with an SRG model with 6 = 0.047
For now, let's evaluate consistency in terms of a few simple statistics:
o ty(Y) = tie density;
o t.(Y) = outdegree centrality;
o t.(Y) = indegree centrality;

For each test statistic, we will ask the question

Is the observed value of our test statistic consistent with the values of
the statistic we could have observed, under Py?



Null distributions

t123.stat<-function(Y)

c(mean(Y,na.rm=TRUE), Cd(Y) , Cd(t(Y)) )

}

#H##
t123.0bs<-t123.stat (Y)
t123.0bs

## [1] 0.04088967 0.10036442 0.29183493
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Null distributions

theta<-.04

T123.sim<-NULL
for(s in 1:S)

Ys<-matrix(rbinom(nrow(Y)~2,1,theta) ,nrow(Y) ,nrow(Y))
diag(Ys)<-NA
T123.sim<-rbind(T123.sim, t123.stat(Ys))

}

#H##

head(T123.sim)

#H [,1] [,2] [,3]
## [1,]1 0.03996698 0.05165961 0.06584261
## [2,] 0.03957848 0.05914508 0.04496208
## [3,] 0.03962704 0.05909583 0.03782133
## [4,] 0.04059829 0.05101940 0.07229390
## [5,] 0.04030692 0.03713188 0.05131488
## [6,]1 0.03753885 0.03993893 0.03993893
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Null distributions

Q-
o 3
—] 3 - —
Q —
3
&
o
2 <
¥ —
=)
3
&
m 2
3 3
o
3 4
4
S
S & S
8
El
8 27 %7
o o o
r T T T T 1 | B E— r T T T T 1
0.036 0.038 0.040 0.042 0.044 0.046 0.04 0.06 0.08 0.10 0.05 010 015 020 0.25 0.30
density outdegree centralization indegree centralization

12/32



Hypothesis testing and null distributions

A pure hypothesis test is a comparison of the data to a probability model.

13/32



Hypothesis testing and null distributions

A pure hypothesis test is a comparison of the data to a probability model.

Ingredients
e A test statistic t:

13/32



Hypothesis testing and null distributions

A pure hypothesis test is a comparison of the data to a probability model.

Ingredients
e A test statistic t:
e t: V>R,

13/32



Hypothesis testing and null distributions

A pure hypothesis test is a comparison of the data to a probability model.

Ingredients
e A test statistic t:

e t: YV —>R;
e tis a known function of the data.

13/32



Hypothesis testing and null distributions

A pure hypothesis test is a comparison of the data to a probability model.

Ingredients
e A test statistic t:
e t: YV —>R;
e tis a known function of the data.

e A null distribution: Pr(:|H)

13/32



Hypothesis testing and null distributions

A pure hypothesis test is a comparison of the data to a probability model.

Ingredients
o A test statistic t:
e t: YV —>R;
e tis a known function of the data.
e A null distribution: Pr(:|H)
o H refers to the hypothesized probability model, i.e. the “null hypothesis.”

13/32



Hypothesis testing and null distributions

A pure hypothesis test is a comparison of the data to a probability model.

Ingredients
e A test statistic t:
e t: V>R,
e tis a known function of the data.
e A null distribution: Pr(:|H)

o H refers to the hypothesized probability model, i.e. the “null hypothesis.”
e Pr(:|H) is the probability distribution of ¢t under H.

13/32



Hypothesis testing and null distributions

A pure hypothesis test is a comparison of the data to a probability model.

Ingredients
e A test statistic t:
e t: V>R,
e tis a known function of the data.
e A null distribution: Pr(:|H)
o H refers to the hypothesized probability model, i.e. the “null hypothesis.”
e Pr(:|H) is the probability distribution of ¢t under H.

e A comparison of tons = t(Y) to Pr(-|H).

13/32



Hypothesis testing and null distributions

A pure hypothesis test is a comparison of the data to a probability model.

Ingredients

e A test statistic t:
e t: V>R,
e tis a known function of the data.

e A null distribution: Pr(:|H)
o H refers to the hypothesized probability model, i.e. the “null hypothesis.”
e Pr(:|H) is the probability distribution of ¢t under H.

e A comparison of tohs = t(Y) to Pr(:|H).
e graphical comparison;

13/32



Hypothesis testing and null distributions

A pure hypothesis test is a comparison of the data to a probability model.

Ingredients

e A test statistic t:
e t: V>R,
e tis a known function of the data.

e A null distribution: Pr(:|H)
o H refers to the hypothesized probability model, i.e. the “null hypothesis.”
e Pr(:|H) is the probability distribution of ¢t under H.

e A comparison of tohs = t(Y) to Pr(:|H).
e graphical comparison;
o p-value: Pr(t > tops|H).

13/32



Hypothesis testing and null distributions

A pure hypothesis test is a comparison of the data to a probability model.

Ingredients

e A test statistic t:
e t: V>R,
e tis a known function of the data.

e A null distribution: Pr(:|H)
o H refers to the hypothesized probability model, i.e. the “null hypothesis.”
e Pr(:|H) is the probability distribution of ¢t under H.

e A comparison of tohs = t(Y) to Pr(:|H).
e graphical comparison;
o p-value: Pr(t > tops|H).

13/32



Hypothesis testing and null distributions

A pure hypothesis test is a comparison of the data to a probability model.

Ingredients

e A test statistic t:
e t: V>R,
e tis a known function of the data.

e A null distribution: Pr(:|H)
o H refers to the hypothesized probability model, i.e. the “null hypothesis.”
e Pr(:|H) is the probability distribution of ¢t under H.

e A comparison of tohs = t(Y) to Pr(:|H).
e graphical comparison;
o p-value: Pr(t > tops|H).

13/32



Hypothesis testing and null distributions

A pure hypothesis test is a comparison of the data to a probability model.

Ingredients

e A test statistic t:
e t: V>R,
e tis a known function of the data.

e A null distribution: Pr(:|H)
o H refers to the hypothesized probability model, i.e. the “null hypothesis.”
e Pr(:|H) is the probability distribution of ¢t under H.

e A comparison of tohs = t(Y) to Pr(:|H).
e graphical comparison;
o p-value: Pr(t > tops|H).

To make the p-value useful, we usually choose t to be large for values of Y
that are “far away” from H.
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Computing the null distribution

The null distribution of this particular statistic can be computed with
e a normal approximation;
e a Monte Carlo approximation.
For many other statistics, the Monte Carlo approximation will be more
accurate.
theta<-0.04

t.H<-NULL

for(s in 1:8)

{

Ysim<-matrix(rbinom(nrow(Y)~2,1,theta) ,nrow(Y) ,nrow(Y)) ; diag(Y¥Ysim)<-NA
t.H<-c(t.H, abs( mean(Ysim,na.rm=TRUE) - theta ) )

}



Example: testing with the density statistic
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The blue histogram is the (Monte Carlo approximation to) the distribution of ¢
under H.

The red line is the observed value t.,s = t(Y) of the test statistic.

Is there a big discrepancy?
1632 Should we “reject” H?



Quantifying model-data discrepancy
A popular way of quantifying the discrepancy is with a p-value:

p = Pr(t(Y) > tops|H)
The p-value can be approximated via the Monte Carlo method:

p-val<-mean( t.H > t.o )
p.val

## [1] 0.51

The result says that, if H were true, the probability of observing a value of
t(Y) bigger than 9 x 10™* is about 0.51.
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Decision making and error rates

Truth
Decision ‘ H not H
accept H correct type Il error
reject H ‘ type | error correct

Suppose H is true and you will perform the following procedure:
e Sample Y
e Compute tops = t(Y)
o Compute p = Pr(t(Y) > tops| H)
e Reject H if p < a, accept otherwise.

Then your probability of making a type | error is a.
Pr(reject H|H is true ) = Pr(p < a|H) = «a.

Often people choose o = 0.05.
If H is true, then their chance of falsely rejecting H is 0.05.
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Rejecting the SRG based on centralization

t.H<-NULL

for(s in 1:S)

{

Ysim<-matrix(rbinom(nrow(Y)~2,1,theta) ,nrow(Y),nrow(Y)) ; diag(¥Ysim)<-NA
t.H<-rbind(t.H, c(Cd(Ysim),Cd(t(Ysim)) ) )

}

t.0<- c(Cd(Y),Cd(t(Y)) )
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p-values from centralization

pval.o<-mean( t.H[,1] >= t.o[1] )
pval.i<-mean( t.H[,2] >= t.o[2] )

pval.o
## [1] 2e-04
pval.i

## [1] O

The plots and p-values indicate strong evidence against H:

e The binomial(0.04) model predicts much less outdegree centralization
than was observed.
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e We would reject all SRG(0) distributions if none of them look like Y;

o Instead of comparing Y to each 6, just compare Y to the “most similar” 6.

Which value of 8 € [0, 1] makes ¥ ~ SRG(#) most similar to Y?

Maximum likelihood estimation:

Y ~ p(Y|6), 6 unknown.

0co
The maximum likelihood estimator(MLE) of 6 is the value # that maximizes
the probability of the observed data:

p(Y|0) > p(Y|#) forall 6O
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MLE for SRG
Let's find the MLE for the SRG:

p(Y]0) = 6% (1 — 9)>=0%)
=0™(1— )"

where

e m = n(n— 1) = the number of pairs;
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MLE for SRG

Let's find the MLE for the SRG:

p(Y|9) _ gzy/',j(l _ 9)2(1*}’,',1)
_ emi(l _ g)m(lfi)
where
e m = n(n — 1) = the number of pairs;
e y =3 yij/m = the density.
Recall that log x is an increasing function of x.

Therefore, the maximizer of p(Y|0) is the maximizer of log p(Y|0):

mylog6 + m(1 — y)log(1 —0)
m[ylogf+ (1 —y)log(l—0)]

log p(Y10)
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MLE for SRG
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MLE for SRG

Recall, the maximum occurs where the derivative (slope) is zero:

y 1-y
45 log p(Y|0) = m[g - m]
:m[Z,\—l;}:]ZO

6 1-0
y_1-7
6 1-46
y__ b
1-y 1-4

which is satisfied by A

0=y.

Convince yourself that this makes intuitive sense.
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Recall, the maximum occurs where the derivative (slope) is zero:

y 1-y
45 log p(Y|0) = m[g - m]
:m[Z,\—l;}:]ZO

6 1-0
y_1-7
6 1-46
y__ b
1-y 1-4

which is satisfied by A

0=y.

Convince yourself that this makes intuitive sense.

Result: By the maximum likelihood criterion, the member of
P ={SRG(0) : 6 € [0,1]} that is closest to Y is the SRG(y) distribution.
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Rejecting the best SRG

theta<-mean(Y,na.rm=TRUE)
t.H<-NULL

for(s in 1:S)
{

Ysim<-matrix(rbinom(nrow(Y)~2,1,theta) ,nrow(Y) ,nrow(Y)) ; diag(¥sim)<-NA
t.H<-rbind(t.H, c¢(Cd(Ysim),Cd(t(¥sim)) ) )

}

t.o<- c(Cd(Y),Cd(t(Y)) )
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Rejecting the SRG based on centralization
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pval.o<-mean( t.H[,1] >= t.o[1] )
pval.i<-mean( t.H[,2] >= t.o[2] )

pval.o
## [1] 2e-04
pval.i

## [11 0
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Ad-hockery

The null distributions and p-values here are not exactly proper.
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The null distributions and p-values here are not exactly proper.
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Ad-hockery

The null distributions and p-values here are not exactly proper.

Suppose Y ~ binary(6) for some true but unknown 6.
e O is only approximated by 0.
o the distribution of t under binary(f) is not the same as under binary(6).

e Note this latter distribution is “random”, as  is random.

In principle: For some models, we can develop a testing procedure with a
correct null distribution.

In practice: It will turn out that our ad-hoc approach often gives the same
answers as our exact approach.



