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Testing and rejecting models

Descriptive network analysis: Computation of

• graph level statistics: density, degree distribution, centralization

• node level statistics: degrees, centralities

• covariate effects: relative densities and odds ratios

What conclusions can we draw from such statistics?

• Are observed statistics large or small?
• as compared to other observed networks?
• as compared to hypothetical networks?

• Are observed statistics consistent with a theoretical model?
• what model is appropriate for comparison?
• how are comparisons made?
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Example: Girls friendships
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mean(Y,na.rm=TRUE)

## [1] 0.04088967

Cd(Y)

## [1] 0.1003644

Cd(t(Y))

## [1] 0.2918349
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Covariate effects
We also have data on
• gpa: hgpa = indicator of above-average gpa;
• smoking behavior: hsmoke = indicator of above-average smoking behavior.

p.smoke[2]/p.smoke[1]

## [1] 0.9638469

p.smoke[3]/p.smoke[1]

## [1] 1.008332

( p.smoke[1]*p.smoke[4] ) / ( p.smoke[2]*p.smoke[3] )

## [1] 1.248783

###

p.gpa[2]/p.gpa[1]

## [1] 0.3868937

p.gpa[3]/p.gpa[1]

## [1] 0.5379664

( p.gpa[1]*p.gpa[4] ) / ( p.gpa[2]*p.gpa[3] )

## [1] 5.754995
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Descriptive results

Summary:
• Density:

• the overall density of ties is 0.041.

• Centrality:
• outdegree centrality (.10) is less than indegree centrality (.29)

• Smoking:
• smokers tend to be less active as senders of ties (p10/p00 = .69)
• there is positive homophily for smoking (γ = 1.47)

• Gpa:
• students with high and low gpas have similar densities

( p10/p00 ≈ p01/p00 ≈ 1).
• there is positive homophily for gpa (γ = 1.25)

What conclusions can we draw?

Can we infer anything about how these people formed ties?
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Models of tie formation

A probability model of tie formation is a probability distribution over
sociomatrices.

More specifically, let

Y = {Y : yi,j ∈ {0, 1}, yi,i = NA}

be the set of all possible sociomatrics.

A probability model P over Y assigns a number P(Y) to each Y ∈ Y

0 ≤ P(Y) ≤ 1 for all Y ∈ Y∑
Y∈Y

P(Y) = 1
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Simple random graph

The simple random graph model Pθ assumes

• all ties are formed independently of each other;

• each tie exists with some probability θ, common across all ties.

Under Pθ the entries of Y are independent and identically distributed:

y1,2, . . . , yn−1,n ∼ i.i.d. binary(θ)

Exercise: Compute the probability of each graph under Pθ
NA 0 1 1 0 0
0 NA 0 1 0 0
0 1 NA 0 0 0
1 0 0 NA 1 0
0 1 0 1 NA 0
0 0 0 0 0 NA




NA 1 1 1 1 0
1 NA 0 0 0 0
1 0 NA 0 0 0
1 0 0 NA 0 0
1 0 0 0 NA 0
0 0 0 0 0 NA
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Simple random graph

Under Pθ, the probability of a graph Y is

Pθ(Y) =
∏
i 6=j

θyi,j (1− θ)1−yi,j

= θ
∑

yi,j (1− θ)
∑

(1−yi,j )

Would this be a good model for our friendship data?

Are the data consistent with this model?
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Evaluating the simple random graph

Specification of a probability model requires specification of θ.

Let’s make an ad-hoc selection of θ = 0.04 for now, and ask the question:

Are the data consistent with an SRG model with θ = 0.04?

For now, let’s evaluate consistency in terms of a few simple statistics:

• td(Y) = tie density;

• tcr (Y) = outdegree centrality;

• tcc(Y) = indegree centrality;

For each test statistic, we will ask the question

Is the observed value of our test statistic consistent with the values of
the statistic we could have observed, under Pθ?
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Null distributions

t123.stat<-function(Y)
{

c(mean(Y,na.rm=TRUE), Cd(Y) , Cd(t(Y)) )
}

###

t123.obs<-t123.stat(Y)

t123.obs

## [1] 0.04088967 0.10036442 0.29183493
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Null distributions

theta<-.04

T123.sim<-NULL
for(s in 1:S)
{

Ys<-matrix(rbinom(nrow(Y)^2,1,theta),nrow(Y),nrow(Y))
diag(Ys)<-NA
T123.sim<-rbind(T123.sim, t123.stat(Ys))
}

###

head(T123.sim)

## [,1] [,2] [,3]
## [1,] 0.03996698 0.05165961 0.06584261
## [2,] 0.03957848 0.05914508 0.04496208
## [3,] 0.03962704 0.05909583 0.03782133
## [4,] 0.04059829 0.05101940 0.07229390
## [5,] 0.04030692 0.03713188 0.05131488
## [6,] 0.03753885 0.03993893 0.03993893
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Null distributions
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Hypothesis testing and null distributions

A pure hypothesis test is a comparison of the data to a probability model.

Ingredients
• A test statistic t:

• t : Y → R ;
• t is a known function of the data.

• A null distribution: Pr(·|H)
• H refers to the hypothesized probability model, i.e. the “null hypothesis.”
• Pr(·|H) is the probability distribution of t under H.

• A comparison of tobs = t(Y) to Pr(·|H).
• graphical comparison;
• p-value: Pr(t ≥ tobs|H).

To make the p-value useful, we usually choose t to be large for values of Y
that are “far away” from H.
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Example: testing with the density statistic

Let’s consider testing the SRG model with θ = .04 using the density statistic.

• H : {yi,j : i 6= j} ∼ i.i.d. binary(0.04)

• t(Y) = |ȳ·· − 0.04|

A large value of the test statistic t

• occurs if ȳ is very different from 0.04

• suggests something is wrong with H.
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• t(Y) = |ȳ·· − 0.04|

A large value of the test statistic t
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Computing the null distribution

The null distribution of this particular statistic can be computed with

• a normal approximation;

• a Monte Carlo approximation.

For many other statistics, the Monte Carlo approximation will be more
accurate.

theta<-0.04

t.H<-NULL

for(s in 1:S)
{

Ysim<-matrix(rbinom(nrow(Y)^2,1,theta),nrow(Y),nrow(Y)) ; diag(Ysim)<-NA
t.H<-c(t.H, abs( mean(Ysim,na.rm=TRUE) - theta ) )
}
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Example: testing with the density statistic

density difference
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The blue histogram is the (Monte Carlo approximation to) the distribution of t
under H.

The red line is the observed value tobs = t(Y) of the test statistic.

Is there a big discrepancy?
Should we “reject” H?16/32
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Quantifying model-data discrepancy

A popular way of quantifying the discrepancy is with a p-value:

p = Pr(t(Ỹ) ≥ tobs|H)

The p-value can be approximated via the Monte Carlo method:

p.val<-mean( t.H > t.o )
p.val

## [1] 0.51

The result says that, if H were true, the probability of observing a value of
t(Y) bigger than 9× 10−4 is about 0.51.

In other words,

If H were true,

values of t as big as tobs are not extremely unlikely.

A p-value of 0.51 is not generally seen as

• a strong discrepancy between model and data;

• evidence against H.
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Decision making and error rates

Truth
Decision H not H
accept H correct type II error
reject H type I error correct

Suppose H is true and you will perform the following procedure:

• Sample Y

• Compute tobs = t(Y)

• Compute p = Pr(t(Ỹ) ≥ tobs|H)

• Reject H if p < α, accept otherwise.

Then your probability of making a type I error is α.

Pr(reject H|H is true ) = Pr(p < α|H) = α.

Often people choose α = 0.05.
If H is true, then their chance of falsely rejecting H is 0.05.
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• Sample Y

• Compute tobs = t(Y)

• Compute p = Pr(t(Ỹ) ≥ tobs|H)
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Rejecting the SRG

H : {yi,j : i 6= j} ∼ i.i.d. binomial(0.04)

Most wouldn’t reject H based on the density statistic and its p-value.

We might say that the model is adequate in terms of t(Y) = ȳ··.

Is the model adequate in terms of other statistics? Consider

• todc = Cod(Y) (outdegree centralization)

• tidc = Cid(Y) (indegree centralization)
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Rejecting the SRG based on centralization

t.H<-NULL

for(s in 1:S)
{

Ysim<-matrix(rbinom(nrow(Y)^2,1,theta),nrow(Y),nrow(Y)) ; diag(Ysim)<-NA
t.H<-rbind(t.H, c(Cd(Ysim),Cd(t(Ysim)) ) )
}

t.o<- c(Cd(Y),Cd(t(Y)) )
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p-values from centralization

pval.o<-mean( t.H[,1] >= t.o[1] )
pval.i<-mean( t.H[,2] >= t.o[2] )

pval.o

## [1] 2e-04

pval.i

## [1] 0

The plots and p-values indicate strong evidence against H:

• The binomial(0.04) model predicts much less outdegree centralization
than was observed.

• The binomial(0.04) model predicts much much less indegree centralization
than was observed.
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Statistical versus probabilistic models

We evaluated evidence against the SRG(0.040) distribution:

H : {yi,j : i 6= j} ∼ i.i.d. binary(0.04) .

Generally, we won’t have such a specific hypothesis:

• Rejecting SRG(0.040) doesn’t mean we reject SRG(0.041).

• We are more interested in testing all SRG distributions.
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Statistical model

A statistical model is a collection of probability distributions indexed by an
unknown parameter.

P = {p(Y|θ) : θ ∈ Θ}

• θ is the unknown parameter;

• Θ is the parameter space;

• p(Y|θ) is the distribution of Y if θ is correct.

SRG model: The simple random graph model is the set of SRG(θ)
distributions:

• θ ∈ Θ = [0, 1]

• p(Y|θ) is such that {yi,j : i 6= j} ∼ i.i.d. binary(θ):

p(Y|θ) = θ
∑

yi,j (1− θ)
∑

(1−yi,j )
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Rejecting a statistical model

Is there a procedure that can evaluate all SRG distributions at once?

We will discuss two approaches:

• ad-hoc approach: intuitive but not exactly correct in terms of type I error.

• principled: intuitive and correct, but less generalizable.
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Ad-hoc approach: the best case scenario

Idea:

• We reject the SRG(θ) distribution if samples from it don’t look like Y;

• We would reject all SRG(θ) distributions if none of them look like Y;

• Instead of comparing Y to each θ, just compare Y to the “most similar” θ.

Which value of θ ∈ [0, 1] makes Ỹ ∼ SRG(θ) most similar to Y?

Maximum likelihood estimation:

Y ∼ p(Y|θ), θ unknown.

θ ∈ Θ

The maximum likelihood estimator(MLE) of θ is the value θ̂ that maximizes
the probability of the observed data:

p(Y|θ̂) ≥ p(Y|θ) for all θ ∈ Θ
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Maximum likelihood estimation:

Y ∼ p(Y|θ), θ unknown.

θ ∈ Θ

The maximum likelihood estimator(MLE) of θ is the value θ̂ that maximizes
the probability of the observed data:

p(Y|θ̂) ≥ p(Y|θ) for all θ ∈ Θ

25/32



Ad-hoc approach: the best case scenario

Idea:

• We reject the SRG(θ) distribution if samples from it don’t look like Y;

• We would reject all SRG(θ) distributions if none of them look like Y;

• Instead of comparing Y to each θ, just compare Y to the “most similar” θ.

Which value of θ ∈ [0, 1] makes Ỹ ∼ SRG(θ) most similar to Y?
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MLE for SRG

Let’s find the MLE for the SRG:

p(Y|θ) = θ
∑

yi,j (1− θ)
∑

(1−yi,j )

= θmȳ (1− θ)m(1−ȳ)

where

• m = n(n − 1) = the number of pairs;

• ȳ =
∑

yi,j/m = the density.

Recall that log x is an increasing function of x .

Therefore, the maximizer of p(Y|θ) is the maximizer of log p(Y|θ):

log p(Y|θ) = mȳ log θ + m(1− ȳ) log(1− θ)

= m [ȳ log θ + (1− ȳ) log(1− θ)]
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= θmȳ (1− θ)m(1−ȳ)
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MLE for SRG
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MLE for SRG

Recall, the maximum occurs where the derivative (slope) is zero:

d
dθ

log p(Y|θ) = m[
ȳ

θ
− 1− ȳ

1− θ ]

= m[
ȳ

θ̂
− 1− ȳ

1− θ̂
] = 0

ȳ

θ̂
=

1− ȳ

1− θ̂
ȳ

1− ȳ
=

θ̂

1− θ̂

which is satisfied by
θ̂ = ȳ .

Convince yourself that this makes intuitive sense.

Result: By the maximum likelihood criterion, the member of
P = {SRG(θ) : θ ∈ [0, 1]} that is closest to Y is the SRG(ȳ) distribution.
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Testing with the best case scenario

Intuition:
If we reject Y ∼ binomial(θ̂),
we should reject Y ∼ binomial(θ) for all θ ∈ Θ.

Model evaluation procedure: Given a test statistic t(Y),

1. compute θ̂ from Y

2. simulate Ỹ1, . . . , ỸS from p(Y|θ̂);

3. compare t(Y) to t(Ỹ1), . . . , t(ỸS).

Let’s do this for our centralization statistics:

• todc = Cod(Y) (outdegree centralization)

• tidc = Cid(Y) (indegree centralization)
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Rejecting the best SRG

theta<-mean(Y,na.rm=TRUE)
t.H<-NULL

for(s in 1:S)
{

Ysim<-matrix(rbinom(nrow(Y)^2,1,theta),nrow(Y),nrow(Y)) ; diag(Ysim)<-NA
t.H<-rbind(t.H, c(Cd(Ysim),Cd(t(Ysim)) ) )
}

t.o<- c(Cd(Y),Cd(t(Y)) )
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Rejecting the SRG based on centralization

outdegree centralization
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pval.o<-mean( t.H[,1] >= t.o[1] )
pval.i<-mean( t.H[,2] >= t.o[2] )

pval.o

## [1] 2e-04

pval.i

## [1] 0
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Ad-hockery

The null distributions and p-values here are not exactly proper.

Suppose Y ∼ binary(θ) for some true but unknown θ.

• θ is only approximated by θ̂.

• the distribution of t under binary(θ) is not the same as under binary(θ̂).

• Note this latter distribution is “random”, as θ̂ is random.

In principle: For some models, we can develop a testing procedure with a
correct null distribution.

In practice: It will turn out that our ad-hoc approach often gives the same
answers as our exact approach.

32/32



Ad-hockery

The null distributions and p-values here are not exactly proper.

Suppose Y ∼ binary(θ) for some true but unknown θ.

• θ is only approximated by θ̂.

• the distribution of t under binary(θ) is not the same as under binary(θ̂).

• Note this latter distribution is “random”, as θ̂ is random.

In principle: For some models, we can develop a testing procedure with a
correct null distribution.

In practice: It will turn out that our ad-hoc approach often gives the same
answers as our exact approach.

32/32



Ad-hockery

The null distributions and p-values here are not exactly proper.

Suppose Y ∼ binary(θ) for some true but unknown θ.

• θ is only approximated by θ̂.

• the distribution of t under binary(θ) is not the same as under binary(θ̂).

• Note this latter distribution is “random”, as θ̂ is random.

In principle: For some models, we can develop a testing procedure with a
correct null distribution.

In practice: It will turn out that our ad-hoc approach often gives the same
answers as our exact approach.

32/32



Ad-hockery

The null distributions and p-values here are not exactly proper.

Suppose Y ∼ binary(θ) for some true but unknown θ.

• θ is only approximated by θ̂.

• the distribution of t under binary(θ) is not the same as under binary(θ̂).

• Note this latter distribution is “random”, as θ̂ is random.

In principle: For some models, we can develop a testing procedure with a
correct null distribution.

In practice: It will turn out that our ad-hoc approach often gives the same
answers as our exact approach.

32/32



Ad-hockery

The null distributions and p-values here are not exactly proper.

Suppose Y ∼ binary(θ) for some true but unknown θ.

• θ is only approximated by θ̂.

• the distribution of t under binary(θ) is not the same as under binary(θ̂).

• Note this latter distribution is “random”, as θ̂ is random.

In principle: For some models, we can develop a testing procedure with a
correct null distribution.

In practice: It will turn out that our ad-hoc approach often gives the same
answers as our exact approach.

32/32



Ad-hockery

The null distributions and p-values here are not exactly proper.

Suppose Y ∼ binary(θ) for some true but unknown θ.

• θ is only approximated by θ̂.

• the distribution of t under binary(θ) is not the same as under binary(θ̂).

• Note this latter distribution is “random”, as θ̂ is random.

In principle: For some models, we can develop a testing procedure with a
correct null distribution.

In practice: It will turn out that our ad-hoc approach often gives the same
answers as our exact approach.

32/32



Ad-hockery

The null distributions and p-values here are not exactly proper.

Suppose Y ∼ binary(θ) for some true but unknown θ.

• θ is only approximated by θ̂.

• the distribution of t under binary(θ) is not the same as under binary(θ̂).

• Note this latter distribution is “random”, as θ̂ is random.

In principle: For some models, we can develop a testing procedure with a
correct null distribution.

In practice: It will turn out that our ad-hoc approach often gives the same
answers as our exact approach.

32/32


