Testing and model evaluation 567 Statistical analysis of social networks

Peter Hoff

Statistics, University of Washington

Descriptive network analysis: Computation of

- graph level statistics: density, degree distribution, centralization
- node level statistics: degrees, centralities
- covariate effects: relative densities and odds ratios

- Are observed statistics large or small?
 - as compared to other observed networks)
 - as compared to hypothetical networks?
- Are observed statistics consistent with a theoretical model?
 - what model is appropriate for comparison?
 - how are comparisons made?

Descriptive network analysis: Computation of

- graph level statistics: density, degree distribution, centralization
- node level statistics: degrees, centralities
- covariate effects: relative densities and odds ratios

- Are observed statistics large or small?
 - as compared to other observed networks
 - as compared to hypothetical networks?
- Are observed statistics consistent with a theoretical model?
 - what model is appropriate for comparison?
 - how are comparisons made?

Descriptive network analysis: Computation of

- graph level statistics: density, degree distribution, centralization
- node level statistics: degrees, centralities
- covariate effects: relative densities and odds ratios

- Are observed statistics large or small?
 - as compared to other observed networks
 - » as compared to hypothetical networks?
- Are observed statistics consistent with a theoretical model?
 - what model is appropriate for comparison?
 - how are comparisons made?

Descriptive network analysis: Computation of

- graph level statistics: density, degree distribution, centralization
- node level statistics: degrees, centralities
- · covariate effects: relative densities and odds ratios

- Are observed statistics large or small?
 - as compared to other observed networks
 - » as compared to hypothetical networks?
- Are observed statistics consistent with a theoretical model?
 - what model is appropriate for comparison?
 - how are comparisons made?

Descriptive network analysis: Computation of

- graph level statistics: density, degree distribution, centralization
- node level statistics: degrees, centralities
- · covariate effects: relative densities and odds ratios

- Are observed statistics large or small?
 - as compared to other observed networks
 - » as compared to hypothetical networks?
- Are observed statistics consistent with a theoretical model?
 - what model is appropriate for comparison?
 - how are comparisons made?

Descriptive network analysis: Computation of

- graph level statistics: density, degree distribution, centralization
- node level statistics: degrees, centralities
- · covariate effects: relative densities and odds ratios

- Are observed statistics large or small?
 - as compared to other observed networks?
 - as compared to hypothetical networks?
- Are observed statistics consistent with a theoretical model?
 - what model is appropriate for comparison?
 - how are comparisons made?

Descriptive network analysis: Computation of

- graph level statistics: density, degree distribution, centralization
- node level statistics: degrees, centralities
- · covariate effects: relative densities and odds ratios

- Are observed statistics large or small?
 - as compared to other observed networks?
 - as compared to hypothetical networks?
- Are observed statistics consistent with a theoretical model?
 - what model is appropriate for comparison?
 - how are comparisons made?

Descriptive network analysis: Computation of

- graph level statistics: density, degree distribution, centralization
- node level statistics: degrees, centralities
- · covariate effects: relative densities and odds ratios

- Are observed statistics large or small?
 - as compared to other observed networks?
 - as compared to hypothetical networks?
- Are observed statistics consistent with a theoretical model?
 - what model is appropriate for comparison?
 - how are comparisons made?

Descriptive network analysis: Computation of

- graph level statistics: density, degree distribution, centralization
- node level statistics: degrees, centralities
- · covariate effects: relative densities and odds ratios

- Are observed statistics large or small?
 - as compared to other observed networks?
 - as compared to hypothetical networks?
- Are observed statistics consistent with a theoretical model?
 - what model is appropriate for comparison?
 - how are comparisons made?

Descriptive network analysis: Computation of

- graph level statistics: density, degree distribution, centralization
- node level statistics: degrees, centralities
- · covariate effects: relative densities and odds ratios

- Are observed statistics large or small?
 - as compared to other observed networks?
 - as compared to hypothetical networks?
- Are observed statistics consistent with a theoretical model?
 - what model is appropriate for comparison?
 - how are comparisons made?

Descriptive network analysis: Computation of

- graph level statistics: density, degree distribution, centralization
- node level statistics: degrees, centralities
- · covariate effects: relative densities and odds ratios

- Are observed statistics large or small?
 - as compared to other observed networks?
 - as compared to hypothetical networks?
- Are observed statistics consistent with a theoretical model?
 - what model is appropriate for comparison?
 - how are comparisons made?

Descriptive network analysis: Computation of

- graph level statistics: density, degree distribution, centralization
- node level statistics: degrees, centralities
- · covariate effects: relative densities and odds ratios

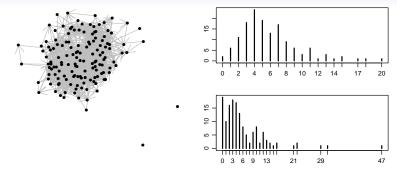
- Are observed statistics large or small?
 - as compared to other observed networks?
 - as compared to hypothetical networks?
- Are observed statistics consistent with a theoretical model?
 - what model is appropriate for comparison?
 - how are comparisons made?

Descriptive network analysis: Computation of

- graph level statistics: density, degree distribution, centralization
- node level statistics: degrees, centralities
- · covariate effects: relative densities and odds ratios

- Are observed statistics large or small?
 - as compared to other observed networks?
 - as compared to hypothetical networks?
- Are observed statistics consistent with a theoretical model?
 - what model is appropriate for comparison?
 - how are comparisons made?

Example: Girls friendships



mean(Y,na.rm=TRUE)

[1] 0.04088967

Cd(Y)

[1] 0.1003644

Cd(t(Y))

[1] 0.2918349

We also have data on

• gpa: hgpa = indicator of above-average gpa;

• smoking behavior: hsmoke = indicator of above-average smoking behavior.

```
p.smoke[2]/p.smoke[1]
```

[1] 0.9638469

```
p.smoke[3]/p.smoke[1]
```

```
## [1] 1.008332
```

```
( p.smoke[1]*p.smoke[4] ) / ( p.smoke[2]*p.smoke[3] )
```

```
## [1] 1.248783
```

###

```
p.gpa[2]/p.gpa[1]
```

[1] 0.3868937

```
p.gpa[3]/p.gpa[1]
```

```
## [1] 0.5379664
```

```
(p.gpa[1]*p.gpa[4]) / (p.gpa[2]*p.gpa[3])
```

```
## [1] 5.754995
```

We also have data on

- gpa: hgpa = indicator of above-average gpa;
- smoking behavior: hsmoke = indicator of above-average smoking behavior.

We also have data on

- gpa: hgpa = indicator of above-average gpa;
- smoking behavior: hsmoke = indicator of above-average smoking behavior.

We also have data on

- gpa: hgpa = indicator of above-average gpa;
- smoking behavior: hsmoke = indicator of above-average smoking behavior.

```
p.smoke[2]/p.smoke[1]
## [1] 0.9638469
p.smoke[3]/p.smoke[1]
## [1] 1.008332
( p.smoke[1]*p.smoke[4] ) / ( p.smoke[2]*p.smoke[3] )
## [1] 1.248783
###
p.gpa[2]/p.gpa[1]
## [1] 0.3868937
p.gpa[3]/p.gpa[1]
## [1] 0.5379664
(p.gpa[1]*p.gpa[4]) / (p.gpa[2]*p.gpa[3])
## [1] 5.754995
```

Summary:

- Density:
 - the overall density of ties is 0.041.
- Centrality:
 - outdegree centrality (.10) is less than indegree centrality (.29)
- Smoking:
 - smokers tend to be less active as senders of ties $(p_{10}/p_{00} = .69)$
 - there is positive homophily for smoking ($\gamma=1.47$)
- Gpa:
 - students with high and low gpas have similar densities $(m_0/m_0 \approx m_1/m_0 \approx 1)$
 - $(P10/P00 \approx P01/P00 \approx 1)$.
 - there is positive homophily for gpa $(\gamma=1.25)$

What conclusions can we draw?

Summary:

- Density:
 - the overall density of ties is 0.041.
- Centrality:
 - outdegree centrality (.10) is less than indegree centrality (.29)
- Smoking:
 - smokers tend to be less active as senders of ties $(p_{10}/p_{00} = .69)$
 - there is positive homophily for smoking ($\gamma=1.47)$
- Gpa:
 - students with high and low gpas have similar densities $(2\pi c_{1}/2\pi c_{2}^{2}/2\pi c_{2}^{2})$
 - $(P_{10}/P_{00} \approx P_{01}/P_{00} \approx 1).$
 - there is positive homophily for gpa $(\gamma=1.25)$

What conclusions can we draw?

Summary:

- Density:
 - the overall density of ties is 0.041.
- Centrality:
 - outdegree centrality (.10) is less than indegree centrality (.29)
- Smoking:
 - smokers tend to be less active as senders of ties $(p_{10}/p_{00} = .69)$
 - there is positive homophily for smoking ($\gamma=1.47$)
- Gpa:
 - students with high and low gpas have similar densities $(222)^{12}$
 - $(P_{10}/P_{00} \approx P_{01}/P_{00} \approx 1).$
 - there is positive homophily for gpa $(\gamma=1.25)$

What conclusions can we draw?

Summary:

- Density:
 - the overall density of ties is 0.041.
- Centrality:
 - outdegree centrality (.10) is less than indegree centrality (.29)
- Smoking:
 - smokers tend to be less active as senders of ties $(p_{10}/p_{00} = .69)$ • there is positive homophily for smoking $(\gamma - 1.47)$
- Gpa:
 - students with high and low gpas have similar densities
 - $(P_{10}/P_{00} \approx P_{01}/P_{00} \approx 1).$
 - there is positive homophily for gpa ($\gamma=1.25$)

What conclusions can we draw?

Summary:

- Density:
 - the overall density of ties is 0.041.
- Centrality:
 - outdegree centrality (.10) is less than indegree centrality (.29)
- Smoking:
 - smokers tend to be less active as senders of ties $(p_{10}/p_{00} = .69)$
 - there is positive homophily for smoking ($\gamma=1.47)$
- Gpa:
 - students with high and low gpas have similar densities $(p_{10}/p_{20} \approx p_{11}/p_{20} \approx 1)$
 - there is positive homophily for gpa ($\gamma = 1$

What conclusions can we draw?

Summary:

- Density:
 - the overall density of ties is 0.041.
- Centrality:
 - outdegree centrality (.10) is less than indegree centrality (.29)
- Smoking:
 - smokers tend to be less active as senders of ties $(p_{10}/p_{00} = .69)$
 - there is positive homophily for smoking ($\gamma=1.47$)
- Gpa:
 - students with high and low gpas have similar densities

 (m) (m) ≈ m (m) ≈ 1)
 - there is positive homophily for gpa ($\gamma=1.25$

What conclusions can we draw?

Summary:

- Density:
 - the overall density of ties is 0.041.
- Centrality:
 - outdegree centrality (.10) is less than indegree centrality (.29)
- Smoking:
 - smokers tend to be less active as senders of ties $(p_{10}/p_{00} = .69)$
 - there is positive homophily for smoking ($\gamma=1.47)$
- Gpa:
 - students with high and low gpas have similar densities
 - $(p_{10}/p_{00} \approx p_{01}/p_{00} \approx 1).$
 - there is positive homophily for gpa $(\gamma=1.25)$

What conclusions can we draw?

Summary:

- Density:
 - the overall density of ties is 0.041.
- Centrality:
 - outdegree centrality (.10) is less than indegree centrality (.29)
- Smoking:
 - smokers tend to be less active as senders of ties $(p_{10}/p_{00} = .69)$
 - there is positive homophily for smoking ($\gamma=1.47$)
- Gpa:
 - students with high and low gpas have similar densities $(p_{10}/p_{00} \approx p_{01}/p_{00} \approx 1).$
 - there is positive homophily for gpa ($\gamma=1.25$)

What conclusions can we draw?

Summary:

- Density:
 - the overall density of ties is 0.041.
- Centrality:
 - outdegree centrality (.10) is less than indegree centrality (.29)
- Smoking:
 - smokers tend to be less active as senders of ties $(p_{10}/p_{00} = .69)$
 - there is positive homophily for smoking ($\gamma=1.47$)
- Gpa:
 - students with high and low gpas have similar densities ($p_{10}/p_{00} \approx p_{01}/p_{00} \approx 1$).
 - there is positive homophily for gpa $(\gamma=1.25)$

What conclusions can we draw?

Summary:

- Density:
 - the overall density of ties is 0.041.
- Centrality:
 - outdegree centrality (.10) is less than indegree centrality (.29)
- Smoking:
 - smokers tend to be less active as senders of ties $(p_{10}/p_{00} = .69)$
 - there is positive homophily for smoking ($\gamma = 1.47$)
- Gpa:
 - students with high and low gpas have similar densities (p₁₀/p₀₀ ≈ p₀₁/p₀₀ ≈ 1).
 - there is positive homophily for gpa ($\gamma = 1.25$)

What conclusions can we draw?

Summary:

- Density:
 - the overall density of ties is 0.041.
- Centrality:
 - outdegree centrality (.10) is less than indegree centrality (.29)
- Smoking:
 - smokers tend to be less active as senders of ties $(p_{10}/p_{00} = .69)$
 - there is positive homophily for smoking ($\gamma=1.47$)
- Gpa:
 - students with high and low gpas have similar densities ($p_{10}/p_{00} \approx p_{01}/p_{00} \approx 1$).
 - there is positive homophily for gpa ($\gamma=1.25$)

What conclusions can we draw?

Summary:

- Density:
 - the overall density of ties is 0.041.
- Centrality:
 - outdegree centrality (.10) is less than indegree centrality (.29)
- Smoking:
 - smokers tend to be less active as senders of ties $(p_{10}/p_{00} = .69)$
 - there is positive homophily for smoking ($\gamma=1.47$)
- Gpa:
 - students with high and low gpas have similar densities ($p_{10}/p_{00} \approx p_{01}/p_{00} \approx 1$).
 - there is positive homophily for gpa ($\gamma=1.25$)

What conclusions can we draw?

Summary:

- Density:
 - the overall density of ties is 0.041.
- Centrality:
 - outdegree centrality (.10) is less than indegree centrality (.29)
- Smoking:
 - smokers tend to be less active as senders of ties $(p_{10}/p_{00} = .69)$
 - there is positive homophily for smoking ($\gamma = 1.47$)
- Gpa:
 - students with high and low gpas have similar densities ($p_{10}/p_{00} \approx p_{01}/p_{00} \approx 1$).
 - there is positive homophily for gpa ($\gamma=1.25$)

What conclusions can we draw?

Summary:

- Density:
 - the overall density of ties is 0.041.
- Centrality:
 - outdegree centrality (.10) is less than indegree centrality (.29)
- Smoking:
 - smokers tend to be less active as senders of ties $(p_{10}/p_{00} = .69)$
 - there is positive homophily for smoking ($\gamma = 1.47$)
- Gpa:
 - students with high and low gpas have similar densities ($p_{10}/p_{00} \approx p_{01}/p_{00} \approx 1$).
 - there is positive homophily for gpa ($\gamma=1.25$)

What conclusions can we draw?

Models of tie formation

A **probability model** of tie formation is a probability distribution over sociomatrices.

More specifically, let

$$\mathcal{Y} = \{ \mathbf{Y} : y_{i,j} \in \{0,1\}, y_{i,i} = \mathsf{NA} \}$$

be the set of all possible sociomatrics.

A probability model *P* over \mathcal{Y} assigns a number $P(\mathbf{Y})$ to each $\mathbf{Y} \in \mathcal{Y}$

$$0 \le P(\mathbf{Y}) \le 1 \text{ for all } \mathbf{Y} \in \mathcal{Y}$$
$$\sum_{\mathbf{Y} \in \mathcal{Y}} P(\mathbf{Y}) = 1$$

A probability model of tie formation is a probability distribution over sociomatrices.

More specifically, let

$$\mathcal{Y} = \{\mathbf{Y} : y_{i,j} \in \{0,1\}, y_{i,i} = \mathsf{NA}\}$$

be the set of all possible sociomatrics.

A probability model *P* over \mathcal{Y} assigns a number $P(\mathbf{Y})$ to each $\mathbf{Y} \in \mathcal{Y}$

$$0 \le P(\mathbf{Y}) \le 1$$
 for all $\mathbf{Y} \in \mathcal{Y}$
 $\sum_{\mathbf{Y} \in \mathcal{Y}} P(\mathbf{Y}) = 1$

A probability model of tie formation is a probability distribution over sociomatrices.

More specifically, let

$$\mathcal{Y} = \{\boldsymbol{\mathsf{Y}}: y_{i,j} \in \{0,1\}, y_{i,i} = \mathsf{NA}\}$$

be the set of all possible sociomatrics.

A probability model *P* over \mathcal{Y} assigns a number $P(\mathbf{Y})$ to each $\mathbf{Y} \in \mathcal{Y}$

$$0 \le P(\mathbf{Y}) \le 1$$
 for all $\mathbf{Y} \in \mathcal{Y}$
 $\sum_{\mathbf{Y} \in \mathcal{Y}} P(\mathbf{Y}) = 1$

The simple random graph model P_{θ} assumes

- all ties are formed independently of each other;
- each tie exists with some probability θ , common across all ties.

Under P_{θ} the entries of **Y** are **independent** and **identically distributed**:

 $y_{1,2},\ldots,y_{n-1,n}\sim$ i.i.d. binary(θ)

(NA		1	1			(NA	1	1	1	1	
0	NA		1		0	1	NA				0
0	1	NA				1		NA			
1			NA	1		1			NA		
0	1		1	NA	0	1				NA	
					NA/						NA/

The simple random graph model P_{θ} assumes

- all ties are formed independently of each other;
- each tie exists with some probability θ , common across all ties.

Under P_{θ} the entries of **Y** are **independent** and **identically distributed**:

 $y_{1,2},\ldots,y_{n-1,n}\sim$ i.i.d. binary(θ)

(NA		1	1			(NA	1	1	1	1	
	NA		1		0	1	NA				0
1			NA	1	0	1			NA		0
	1		1	NA	0	1				NA	0
					NA/						NA/

The simple random graph model P_{θ} assumes

- all ties are formed independently of each other;
- each tie exists with some probability θ , common across all ties.

Under P_{θ} the entries of **Y** are **independent** and **identically distributed**:

 $y_{1,2},\ldots,y_{n-1,n} \sim \text{ i.i.d. binary}(\theta)$

(NA		1	1			(NA	1	1	1	1	
	NA		1		0	1	NA				0
1			NA	1	0	1			NA		0
	1		1	NA	0	1				NA	
					NA/						NA/

The simple random graph model P_{θ} assumes

- all ties are formed independently of each other;
- each tie exists with some probability θ , common across all ties.

Under P_{θ} the entries of **Y** are **independent** and **identically distributed**:

 $y_{1,2},\ldots,y_{n-1,n} \sim \text{ i.i.d. binary}(\theta)$

(NA		1	1			(NA	1	1	1	1	
	NA		1		0	1	NA				0
1			NA	1	0	1			NA		0
	1		1	NA	0	1				NA	
					NA/						NA/

The simple random graph model P_{θ} assumes

- all ties are formed independently of each other;
- each tie exists with some probability θ , common across all ties.

Under P_{θ} the entries of **Y** are independent and identically distributed:

 $y_{1,2},\ldots,y_{n-1,n} \sim \text{ i.i.d. binary}(\theta)$

1	ŃΑ	0	1	1	0	0 \	(NA	1	1	1	1	0 \
1	0	NA	0	1	0	0	1	NA	0	0	0	0
I	0	1	NA	0	0	0	1	0	NA	0	0	0
I	1	0	0	NA	1	0	1	0	0	NA	0	0
l	0	1	0	1	NA	0	1	0	0	0	NA	0
/	0	0	0	0	0	NA/	0 /	0	0	0	0	0 0 0 0 0 NA

Under P_{θ} , the probability of a graph **Y** is

$$egin{aligned} \mathcal{P}_{ heta}(\mathbf{Y}) &= \prod_{i
eq j} heta^{y_{i,j}} (1- heta)^{1-y_{i,j}} \ &= heta^{\sum y_{i,j}} (1- heta)^{\sum (1-y_{i,j})} \end{aligned}$$

Would this be a good model for our friendship data?

Are the data consistent with this model?

Under P_{θ} , the probability of a graph **Y** is

$$egin{aligned} \mathcal{P}_{ heta}(\mathbf{Y}) &= \prod_{i
eq j} heta^{y_{i,j}} (1- heta)^{1-y_{i,j}} \ &= heta^{\sum y_{i,j}} (1- heta)^{\sum (1-y_{i,j})} \end{aligned}$$

Would this be a good model for our friendship data?

Are the data consistent with this model?

Under P_{θ} , the probability of a graph **Y** is

$$egin{aligned} \mathcal{P}_{ heta}(\mathbf{Y}) &= \prod_{i
eq j} heta^{y_{i,j}} (1- heta)^{1-y_{i,j}} \ &= heta^{\sum y_{i,j}} (1- heta)^{\sum (1-y_{i,j})} \end{aligned}$$

Would this be a good model for our friendship data? Are the data consistent with this model?

Specification of a probability model requires specification of θ .

Let's make an ad-hoc selection of $\theta = 0.04$ for now, and ask the question:

Are the data consistent with an SRG model with $\theta = 0.04$?

For now, let's evaluate consistency in terms of a few simple statistics:

- $t_d(\mathbf{Y}) = \text{tie density};$
- t_{cr}(Y) = outdegree centrality;
- t_{cc}(Y) = indegree centrality;

For each test statistic, we will ask the question

Specification of a probability model requires specification of θ .

Let's make an ad-hoc selection of $\theta = 0.04$ for now, and ask the question: Are the data consistent with an SRG model with $\theta = 0.04$?

For now, let's evaluate consistency in terms of a few simple statistics:

- $t_d(\mathbf{Y}) = \text{tie density};$
- t_{cr}(Y) = outdegree centrality;
- t_{cc}(Y) = indegree centrality;

For each test statistic, we will ask the question

Specification of a probability model requires specification of θ .

Let's make an ad-hoc selection of $\theta = 0.04$ for now, and ask the question:

Are the data consistent with an SRG model with $\theta = 0.04$?

For now, let's evaluate consistency in terms of a few simple statistics:

- $t_d(\mathbf{Y}) = \text{tie density};$
- t_{cr}(Y) = outdegree centrality;
- t_{cc}(Y) = indegree centrality;

For each test statistic, we will ask the question

Specification of a probability model requires specification of θ .

Let's make an ad-hoc selection of $\theta = 0.04$ for now, and ask the question:

Are the data consistent with an SRG model with $\theta = 0.04$?

For now, let's evaluate consistency in terms of a few simple statistics:

- $t_d(\mathbf{Y}) = \text{tie density};$
- t_{cr}(Y) = outdegree centrality;
- $t_{cc}(\mathbf{Y}) = \text{ indegree centrality;}$

For each test statistic, we will ask the question

Specification of a probability model requires specification of θ .

Let's make an ad-hoc selection of $\theta = 0.04$ for now, and ask the question:

Are the data consistent with an SRG model with $\theta = 0.04$?

For now, let's evaluate consistency in terms of a few simple statistics:

- $t_d(\mathbf{Y}) = \text{tie density};$
- t_{cr}(Y) = outdegree centrality;
- t_{cc}(Y) = indegree centrality;

For each test statistic, we will ask the question

Specification of a probability model requires specification of θ .

Let's make an ad-hoc selection of $\theta = 0.04$ for now, and ask the question:

Are the data consistent with an SRG model with $\theta = 0.04$?

For now, let's evaluate consistency in terms of a few simple statistics:

- $t_d(\mathbf{Y}) = \text{tie density};$
- t_{cr}(Y) = outdegree centrality;
- t_{cc}(Y) = indegree centrality;

For each test statistic, we will ask the question

Specification of a probability model requires specification of θ .

Let's make an ad-hoc selection of $\theta = 0.04$ for now, and ask the question:

Are the data consistent with an SRG model with $\theta = 0.04$?

For now, let's evaluate consistency in terms of a few simple statistics:

- $t_d(\mathbf{Y}) = \text{tie density};$
- t_{cr}(Y) = outdegree centrality;
- t_{cc}(Y) = indegree centrality;

For each test statistic, we will ask the question

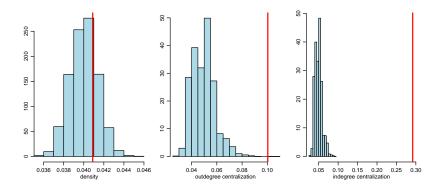
Null distributions

```
t123.stat<-function(Y)
{
    c(mean(Y,na.rm=TRUE), Cd(Y) , Cd(t(Y)) )
}
###
t123.obs<-t123.stat(Y)
t123.obs
## [1] 0.04088967 0.10036442 0.29183493</pre>
```

Null distributions

```
theta<-.04
T123.sim<-NULL
for(s in 1:S)
 Ys<-matrix(rbinom(nrow(Y)^2,1,theta),nrow(Y),nrow(Y))
 diag(Ys)<-NA
 T123.sim<-rbind(T123.sim, t123.stat(Ys))
###
head(T123.sim)
             [,1] [,2] [,3]
##
## [1,] 0.03996698 0.05165961 0.06584261
## [2,] 0.03957848 0.05914508 0.04496208
## [3,] 0.03962704 0.05909583 0.03782133
## [4,] 0.04059829 0.05101940 0.07229390
## [5,] 0.04030692 0.03713188 0.05131488
## [6,] 0.03753885 0.03993893 0.03993893
```

Null distributions



A pure hypothesis test is a comparison of the data to a probability model.

Ingredients

- A test statistic t:
 - t is a known function of the data.
- A null distribution: $Pr(\cdot | H)$
 - H refers to the hypothesized probability model, i.e. the "null hypothesis" ÷ Er[18] is the probability distribution of a under H
- A comparison of $t_{obs} = t(\mathbf{Y})$ to $Pr(\cdot|H)$.
 - graphical comparison;
 - p-value: $\Pr(t \ge t_{obs}|H)$.

A pure hypothesis test is a comparison of the data to a probability model.

Ingredients

- A test statistic *t*:
 - $t: \mathcal{Y} \to \mathbb{R}$;
 - t is a known function of the data.
- A null distribution: $Pr(\cdot|H)$
 - *H* refers to the hypothesized probability model, i.e. the "null hypothesis."
 - $Pr(\cdot|H)$ is the probability distribution of t under H.
- A comparison of $t_{obs} = t(\mathbf{Y})$ to $Pr(\cdot|H)$.
 - graphical comparison;
 - *p*-value: $\Pr(t \ge t_{obs}|H)$.

A pure hypothesis test is a comparison of the data to a probability model.

Ingredients

- A test statistic *t*:
 - $t: \mathcal{Y} \to \mathbb{R}$;
 - *t* is a known function of the data.
- A null distribution: $Pr(\cdot|H)$
 - *H* refers to the hypothesized probability model, i.e. the "null hypothesis."
 - $Pr(\cdot|H)$ is the probability distribution of t under H.
- A comparison of $t_{obs} = t(\mathbf{Y})$ to $Pr(\cdot|H)$.
 - graphical comparison;
 - *p*-value: $\Pr(t \ge t_{obs}|H)$.

A pure hypothesis test is a comparison of the data to a probability model.

Ingredients

- A test statistic *t*:
 - $t:\mathcal{Y}
 ightarrow \mathbb{R}$;
 - t is a known function of the data.
- A null distribution: $Pr(\cdot|H)$
 - *H* refers to the hypothesized probability model, i.e. the "null hypothesis."
 - Pr(·|H) is the probability distribution of t under H.
- A comparison of $t_{obs} = t(\mathbf{Y})$ to $Pr(\cdot|H)$.
 - graphical comparison;
 - *p*-value: $\Pr(t \ge t_{obs}|H)$.

A pure hypothesis test is a comparison of the data to a probability model.

Ingredients

- A test statistic *t*:
 - $t: \mathcal{Y} \to \mathbb{R}$;
 - t is a known function of the data.
- A null distribution: $Pr(\cdot|H)$
 - *H* refers to the hypothesized probability model, i.e. the "null hypothesis."
 - $Pr(\cdot|H)$ is the probability distribution of t under H.
- A comparison of $t_{obs} = t(\mathbf{Y})$ to $Pr(\cdot|H)$.
 - graphical comparison;
 - *p*-value: $\Pr(t \ge t_{obs}|H)$.

A pure hypothesis test is a comparison of the data to a probability model.

Ingredients

- A test statistic *t*:
 - $t:\mathcal{Y}
 ightarrow \mathbb{R}$;
 - t is a known function of the data.
- A null distribution: $Pr(\cdot|H)$
 - *H* refers to the hypothesized probability model, i.e. the "null hypothesis."
 - $Pr(\cdot|H)$ is the probability distribution of t under H.
- A comparison of $t_{obs} = t(\mathbf{Y})$ to $Pr(\cdot|H)$.
 - graphical comparison;
 - *p*-value: $\Pr(t \ge t_{obs}|H)$.

A pure hypothesis test is a comparison of the data to a probability model.

Ingredients

- A test statistic *t*:
 - $t:\mathcal{Y}
 ightarrow \mathbb{R}$;
 - t is a known function of the data.
- A null distribution: $Pr(\cdot|H)$
 - *H* refers to the hypothesized probability model, i.e. the "null hypothesis."
 - $Pr(\cdot|H)$ is the probability distribution of t under H.
- A comparison of $t_{obs} = t(\mathbf{Y})$ to $Pr(\cdot|H)$.
 - graphical comparison;
 - *p*-value: $\Pr(t \ge t_{obs}|H)$.

A pure hypothesis test is a comparison of the data to a probability model.

Ingredients

- A test statistic *t*:
 - $t:\mathcal{Y}
 ightarrow \mathbb{R}$;
 - t is a known function of the data.
- A null distribution: $Pr(\cdot|H)$
 - H refers to the hypothesized probability model, i.e. the "null hypothesis."
 - $Pr(\cdot|H)$ is the probability distribution of t under H.
- A comparison of $t_{obs} = t(\mathbf{Y})$ to $Pr(\cdot|H)$.
 - graphical comparison;
 - *p*-value: $\Pr(t \ge t_{obs}|H)$.

A pure hypothesis test is a comparison of the data to a probability model.

Ingredients

- A test statistic *t*:
 - $t:\mathcal{Y}
 ightarrow \mathbb{R}$;
 - t is a known function of the data.
- A null distribution: $Pr(\cdot|H)$
 - H refers to the hypothesized probability model, i.e. the "null hypothesis."
 - $Pr(\cdot|H)$ is the probability distribution of t under H.
- A comparison of $t_{obs} = t(\mathbf{Y})$ to $Pr(\cdot|H)$.
 - graphical comparison;
 - *p*-value: $\Pr(t \ge t_{obs}|H)$.

A pure hypothesis test is a comparison of the data to a probability model.

Ingredients

- A test statistic *t*:
 - $t:\mathcal{Y}
 ightarrow \mathbb{R}$;
 - t is a known function of the data.
- A null distribution: $Pr(\cdot|H)$
 - H refers to the hypothesized probability model, i.e. the "null hypothesis."
 - $Pr(\cdot|H)$ is the probability distribution of t under H.
- A comparison of $t_{obs} = t(\mathbf{Y})$ to $Pr(\cdot|H)$.
 - graphical comparison;
 - *p*-value: $\Pr(t \ge t_{obs}|H)$.

A pure hypothesis test is a comparison of the data to a probability model.

Ingredients

- A test statistic *t*:
 - $t:\mathcal{Y}
 ightarrow \mathbb{R}$;
 - t is a known function of the data.
- A null distribution: $Pr(\cdot|H)$
 - *H* refers to the hypothesized probability model, i.e. the "null hypothesis."
 - $Pr(\cdot|H)$ is the probability distribution of t under H.
- A comparison of $t_{obs} = t(\mathbf{Y})$ to $Pr(\cdot|H)$.
 - graphical comparison;
 - *p*-value: $\Pr(t \ge t_{obs}|H)$.

A pure hypothesis test is a comparison of the data to a probability model.

Ingredients

- A test statistic *t*:
 - $t:\mathcal{Y}
 ightarrow \mathbb{R}$;
 - t is a known function of the data.
- A null distribution: $Pr(\cdot|H)$
 - *H* refers to the hypothesized probability model, i.e. the "null hypothesis."
 - $Pr(\cdot|H)$ is the probability distribution of t under H.
- A comparison of $t_{obs} = t(\mathbf{Y})$ to $Pr(\cdot|H)$.
 - graphical comparison;
 - *p*-value: $\Pr(t \ge t_{obs}|H)$.

A pure hypothesis test is a comparison of the data to a probability model.

Ingredients

- A test statistic *t*:
 - $t: \mathcal{Y} \to \mathbb{R}$;
 - t is a known function of the data.
- A null distribution: $Pr(\cdot|H)$
 - H refers to the hypothesized probability model, i.e. the "null hypothesis."
 - $Pr(\cdot|H)$ is the probability distribution of t under H.
- A comparison of $t_{obs} = t(\mathbf{Y})$ to $Pr(\cdot|H)$.
 - graphical comparison;
 - *p*-value: $\Pr(t \ge t_{obs}|H)$.

Let's consider testing the SRG model with $\theta = .04$ using the density statistic.

• $H: \{y_{i,j}: i \neq j\} \sim \text{i.i.d. binary}(0.04)$ • $t(\mathbf{X}) = |\overline{x}| = 0.04$

- occurs if \bar{y} is very different from 0.04
- suggests something is wrong with *H*.

Let's consider testing the SRG model with $\theta = .04$ using the density statistic.

- $H: \{y_{i,j} : i \neq j\} \sim \text{i.i.d. binary}(0.04)$
- $t(\mathbf{Y}) = |\bar{y}_{..} 0.04|$

- occurs if y
 is very different from 0.04
- suggests something is wrong with *H*.

Let's consider testing the SRG model with $\theta = .04$ using the density statistic.

- $H: \{y_{i,j}: i \neq j\} \sim \text{i.i.d. binary}(0.04)$
- $t(\mathbf{Y}) = |\bar{y}_{..} 0.04|$

- occurs if y
 is very different from 0.04
- suggests something is wrong with H.

Let's consider testing the SRG model with $\theta = .04$ using the density statistic.

- $H: \{y_{i,j}: i \neq j\} \sim \text{i.i.d. binary}(0.04)$
- $t(\mathbf{Y}) = |\bar{y}_{..} 0.04|$

- occurs if y
 is very different from 0.04
- suggests something is wrong with H.

Let's consider testing the SRG model with $\theta = .04$ using the density statistic.

- $H: \{y_{i,j}: i \neq j\} \sim \text{i.i.d. binary}(0.04)$
- $t(\mathbf{Y}) = |\bar{y}_{..} 0.04|$

- occurs if y
 is very different from 0.04
- suggests something is wrong with H.

Let's consider testing the SRG model with $\theta = .04$ using the density statistic.

- $H: \{y_{i,j}: i \neq j\} \sim \text{i.i.d. binary}(0.04)$
- $t(\mathbf{Y}) = |\bar{y}_{..} 0.04|$

- occurs if \bar{y} is very different from 0.04
- suggests something is wrong with *H*.

Let's consider testing the SRG model with $\theta = .04$ using the density statistic.

- $H : \{y_{i,j} : i \neq j\} \sim \text{i.i.d. binary}(0.04)$
- $t(\mathbf{Y}) = |\bar{y}_{..} 0.04|$

- occurs if \bar{y} is very different from 0.04
- suggests something is wrong with *H*.

Let's consider testing the SRG model with $\theta = .04$ using the density statistic.

- $H: \{y_{i,j}: i \neq j\} \sim \text{i.i.d. binary}(0.04)$
- $t(\mathbf{Y}) = |\bar{y}_{..} 0.04|$

- occurs if \bar{y} is very different from 0.04
- suggests something is wrong with *H*.

Let's consider testing the SRG model with $\theta = .04$ using the density statistic.

- $H: \{y_{i,j}: i \neq j\} \sim \text{i.i.d. binary}(0.04)$
- $t(\mathbf{Y}) = |\bar{y}_{..} 0.04|$

- occurs if \bar{y} is very different from 0.04
- suggests something is wrong with *H*.

The null distribution of this particular statistic can be computed with

- a normal approximation;
- a Monte Carlo approximation.

```
theta<-0.04
t.H<-NULL
for(s in 1:S)
{
    Ysim<-matrix(rbinom(nrow(Y)^2,1,theta),nrow(Y),nrow(Y)) ; diag(Ysim)<-NA
    t.H<-c(t.H, abs( mean(Ysim,na.rm=TRUE) - theta ) )
}</pre>
```

The null distribution of this particular statistic can be computed with

- a normal approximation;
- a Monte Carlo approximation.

```
theta<-0.04
t.H<-NULL
for(s in 1:S)
{
    Ysim<-matrix(rbinom(nrow(Y)^2,1,theta),nrow(Y),nrow(Y)); diag(Ysim)<-NA
    t.H<-c(t.H, abs( mean(Ysim,na.rm=TRUE) - theta ) )
}</pre>
```

The null distribution of this particular statistic can be computed with

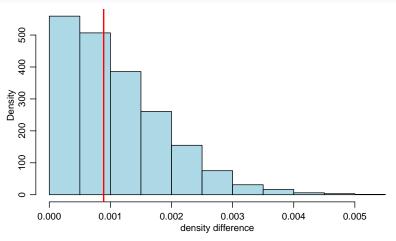
- a normal approximation;
- a Monte Carlo approximation.

```
theta<-0.04
t.H<-NULL
for(s in 1:S)
{
    Ysim<-matrix(rbinom(nrow(Y)^2,1,theta),nrow(Y),nrow(Y)); diag(Ysim)<-NA
    t.H<-c(t.H, abs( mean(Ysim,na.rm=TRUE) - theta ) )
}</pre>
```

The null distribution of this particular statistic can be computed with

- a normal approximation;
- a Monte Carlo approximation.

```
theta<-0.04
t.H<-NULL
for(s in 1:S)
{
    Ysim<-matrix(rbinom(nrow(Y)^2,1,theta),nrow(Y),nrow(Y)) ; diag(Ysim)<-NA
    t.H<-c(t.H, abs( mean(Ysim,na.rm=TRUE) - theta ) )
}</pre>
```

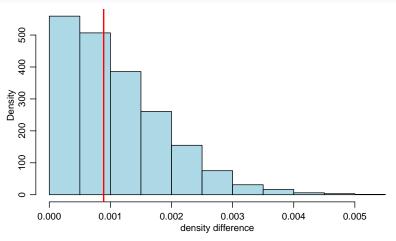


The blue histogram is the (Monte Carlo approximation to) the distribution of t under H.

The red line is the observed value $t_{obs} = t(\mathbf{Y})$ of the test statistic.

```
Is there a big discrepancy?
Should we "reject" H?
```

16/32

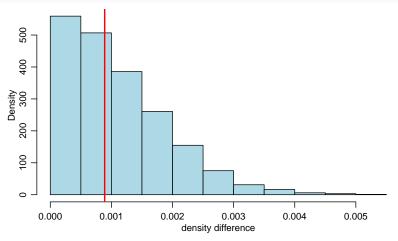


The blue histogram is the (Monte Carlo approximation to) the distribution of t under H.

The red line is the observed value $t_{obs} = t(\mathbf{Y})$ of the test statistic.

```
Is there a big discrepancy?
Should we "reject" H?
```

16/32



The blue histogram is the (Monte Carlo approximation to) the distribution of t under H.

The red line is the observed value $t_{obs} = t(\mathbf{Y})$ of the test statistic.

```
Is there a big discrepancy?
Should we "reject" H?
```

16/32

A popular way of quantifying the discrepancy is with a *p*-value:

 $p = \Pr(t(\mathbf{\tilde{Y}}) \ge t_{\mathrm{obs}}|H)$

The *p*-value can be approximated via the Monte Carlo method:

```
p.val<-mean( t.H > t.o )
p.val
```

[1] 0.51

The result says that, if *H* were true, the probability of observing a value of $t(\mathbf{Y})$ bigger than 9×10^{-4} is about 0.51.

In other words,

If *H* were true,

values of t as big as t_{obs} are not extremely unlikely.

- a strong discrepancy between model and data;
- evidence against H.

A popular way of quantifying the discrepancy is with a *p*-value:

 $p = \Pr(t(\mathbf{\tilde{Y}}) \ge t_{\mathrm{obs}}|H)$

The *p*-value can be approximated via the Monte Carlo method:

```
p.val<-mean( t.H > t.o )
p.val
## [1] 0.51
```

The result says that, if *H* were true, the probability of observing a value of $t(\mathbf{Y})$ bigger than 9×10^{-4} is about 0.51.

In other words,

If H were true,

values of t as big as t_{obs} are not extremely unlikely.

- a strong discrepancy between model and data;
- evidence against H.

A popular way of quantifying the discrepancy is with a *p*-value:

 $p = \Pr(t(\mathbf{\tilde{Y}}) \ge t_{\mathrm{obs}}|H)$

The *p*-value can be approximated via the Monte Carlo method:

```
p.val<-mean( t.H > t.o )
p.val
## [1] 0.51
```

The result says that, if *H* were true, the probability of observing a value of $t(\mathbf{Y})$ bigger than 9×10^{-4} is about 0.51.

In other words,

If H were true,

values of t as big as t_{obs} are not extremely unlikely.

A p-value of 0.51 is not generally seen as

a strong discrepancy between model and data;

• evidence against H.

A popular way of quantifying the discrepancy is with a *p*-value:

 $p = \Pr(t(\mathbf{\tilde{Y}}) \ge t_{\mathrm{obs}}|H)$

The *p*-value can be approximated via the Monte Carlo method:

```
p.val<-mean( t.H > t.o )
p.val
## [1] 0.51
```

The result says that, if *H* were true, the probability of observing a value of $t(\mathbf{Y})$ bigger than 9×10^{-4} is about 0.51.

In other words,

If H were true,

values of t as big as t_{obs} are not extremely unlikely.

A p-value of 0.51 is not generally seen as

a strong discrepancy between model and data;

• evidence against H.

A popular way of quantifying the discrepancy is with a *p*-value:

 $p = \Pr(t(\mathbf{\tilde{Y}}) \ge t_{\mathrm{obs}}|H)$

The *p*-value can be approximated via the Monte Carlo method:

```
p.val<-mean( t.H > t.o )
p.val
## [1] 0.51
```

The result says that, if *H* were true, the probability of observing a value of $t(\mathbf{Y})$ bigger than 9×10^{-4} is about 0.51.

In other words,

If H were true,

values of t as big as t_{obs} are not extremely unlikely.

A p-value of 0.51 is not generally seen as

a strong discrepancy between model and data;

• evidence against H.

A popular way of quantifying the discrepancy is with a *p*-value:

 $p = \Pr(t(\mathbf{\tilde{Y}}) \ge t_{\mathrm{obs}}|H)$

The *p*-value can be approximated via the Monte Carlo method:

```
p.val<-mean( t.H > t.o )
p.val
## [1] 0.51
```

The result says that, if *H* were true, the probability of observing a value of $t(\mathbf{Y})$ bigger than 9×10^{-4} is about 0.51.

In other words,

If H were true,

values of t as big as t_{obs} are not extremely unlikely.

A *p*-value of 0.51 is not generally seen as

• a strong discrepancy between model and data;

```
    evidence against H.
```

A popular way of quantifying the discrepancy is with a *p*-value:

 $p = \Pr(t(\mathbf{\tilde{Y}}) \ge t_{\mathrm{obs}}|H)$

The *p*-value can be approximated via the Monte Carlo method:

```
p.val<-mean( t.H > t.o )
p.val
## [1] 0.51
```

The result says that, if *H* were true, the probability of observing a value of $t(\mathbf{Y})$ bigger than 9×10^{-4} is about 0.51.

In other words,

If H were true,

values of t as big as t_{obs} are not extremely unlikely.

- a strong discrepancy between model and data;
- evidence against H.

A popular way of quantifying the discrepancy is with a *p*-value:

 $p = \Pr(t(\mathbf{\tilde{Y}}) \ge t_{\mathrm{obs}}|H)$

The *p*-value can be approximated via the Monte Carlo method:

```
p.val<-mean( t.H > t.o )
p.val
## [1] 0.51
```

The result says that, if *H* were true, the probability of observing a value of $t(\mathbf{Y})$ bigger than 9×10^{-4} is about 0.51.

In other words,

If H were true,

values of t as big as t_{obs} are not extremely unlikely.

- a strong discrepancy between model and data;
- evidence against H.

A popular way of quantifying the discrepancy is with a *p*-value:

 $p = \Pr(t(\mathbf{\tilde{Y}}) \ge t_{\mathrm{obs}}|H)$

The *p*-value can be approximated via the Monte Carlo method:

```
p.val<-mean( t.H > t.o )
p.val
## [1] 0.51
```

The result says that, if *H* were true, the probability of observing a value of $t(\mathbf{Y})$ bigger than 9×10^{-4} is about 0.51.

In other words,

If H were true,

values of t as big as t_{obs} are not extremely unlikely.

- a strong discrepancy between model and data;
- evidence against H.

	Truth	
Decision	Н	not H
accept H	correct	type II error
reject H	type I error	correct

Suppose *H* is true and you will perform the following procedure:

Sample Y

- Compute $t_{obs} = t(\mathbf{Y})$
- Compute $p = \Pr(t(\tilde{\mathbf{Y}}) \ge t_{obs}|H)$
- Reject *H* if $p < \alpha$, accept otherwise.

Then your probability of making a type I error is α .

```
\Pr(\text{reject } H|H \text{ is true }) = \Pr(p < \alpha|H) = \alpha.
```

Often people choose $\alpha = 0.05$.

	Truth	
Decision	Н	not H
accept H	correct	type II error
reject H	type I error	correct

Suppose H is true and you will perform the following procedure:

- Sample Y
- Compute $t_{obs} = t(\mathbf{Y})$
- Compute $p = \Pr(t(\tilde{\mathbf{Y}}) \ge t_{obs}|H)$
- Reject *H* if $p < \alpha$, accept otherwise.

Then your probability of making a type I error is α .

```
\Pr(\text{reject } H|H \text{ is true }) = \Pr(p < \alpha|H) = \alpha.
```

Often people choose $\alpha = 0.05$.

	Truth	
Decision	Н	not H
accept H	correct	type II error
reject H	type I error	correct

Suppose H is true and you will perform the following procedure:

- Sample Y
- Compute $t_{obs} = t(\mathbf{Y})$
- Compute $p = \Pr(t(ilde{\mathbf{Y}}) \geq t_{ ext{obs}}|H)$
- Reject *H* if $p < \alpha$, accept otherwise.

Then your probability of making a type I error is α .

```
\Pr(\text{reject } H|H \text{ is true }) = \Pr(p < \alpha|H) = \alpha.
```

Often people choose lpha= 0.05.

	Truth	
Decision	Н	not H
accept H	correct	type II error
reject H	type I error	correct

Suppose H is true and you will perform the following procedure:

- Sample Y
- Compute t_{obs} = t(Y)
- Compute $p = \Pr(t(\mathbf{\tilde{Y}}) \ge t_{obs}|H)$

• Reject *H* if $p < \alpha$, accept otherwise.

Then your probability of making a type I error is α .

```
\Pr(\text{reject } H|H \text{ is true }) = \Pr(p < \alpha|H) = \alpha.
```

Often people choose $\alpha = 0.05$. If *H* is true, then their chance of falsely rejecting *H* is

	Truth	
Decision	Н	not H
accept H	correct	type II error
reject H	type I error	correct

Suppose H is true and you will perform the following procedure:

- Sample Y
- Compute t_{obs} = t(Y)
- Compute $p = \Pr(t(\mathbf{\tilde{Y}}) \ge t_{obs}|H)$
- Reject H if $p < \alpha$, accept otherwise.

Then your probability of making a type I error is α .

```
\Pr(\text{reject } H|H \text{ is true }) = \Pr(p < \alpha|H) = \alpha.
```

Often people choose $\alpha = 0.05$.

	Truth	
Decision	Н	not H
accept H	correct	type II error
reject H	type I error	correct

Suppose H is true and you will perform the following procedure:

- Sample Y
- Compute t_{obs} = t(Y)
- Compute $p = \Pr(t(\mathbf{\tilde{Y}}) \ge t_{obs}|H)$
- Reject *H* if $p < \alpha$, accept otherwise.

Then your probability of making a type I error is α .

```
\Pr(\text{reject } H|H \text{ is true }) = \Pr(p < \alpha|H) = \alpha.
```

Often people choose $\alpha = 0.05$.

	Truth	
Decision	Н	not H
accept H	correct	type II error
reject H	type I error	correct

Suppose H is true and you will perform the following procedure:

- Sample Y
- Compute t_{obs} = t(Y)
- Compute $p = \mathsf{Pr}(t(\mathbf{ ilde{Y}}) \geq t_{\mathsf{obs}} | \mathcal{H})$
- Reject H if $p < \alpha$, accept otherwise.

Then your probability of making a type I error is α .

$$\Pr(\text{reject } H|H \text{ is true }) = \Pr(p < \alpha|H) = \alpha.$$

Often people choose $\alpha = 0.05$.

 $H: \{y_{i,j}: i \neq j\} \sim \text{ i.i.d. binomial}(0.04)$

Most wouldn't reject H based on the density statistic and its p-value.

We might say that the model is adequate in terms of $t(\mathbf{Y}) = \bar{y}_{\cdots}$

Is the model adequate in terms of other statistics? Consider

- t_{odc} = C_{od}(Y) (outdegree centralization)
- $t_{idc} = C_{id}(\mathbf{Y})$ (indegree centralization)

 $H: \{y_{i,j}: i \neq j\} \sim \text{ i.i.d. binomial}(0.04)$

Most wouldn't reject H based on the density statistic and its p-value. We might say that the model is adequate in terms of $t(\mathbf{Y}) = \bar{y}...$

Is the model adequate in terms of other statistics? Consider

- $t_{odc} = C_{od}(\mathbf{Y})$ (outdegree centralization)
- t_{idc} = C_{id}(Y) (indegree centralization)

 $H: \{y_{i,j}: i \neq j\} \sim \text{ i.i.d. binomial}(0.04)$

- $t_{odc} = C_{od}(\mathbf{Y})$ (outdegree centralization)
- $t_{idc} = C_{id}(\mathbf{Y})$ (indegree centralization)

 $H: \{y_{i,j}: i \neq j\} \sim \text{ i.i.d. binomial}(0.04)$

- $t_{odc} = C_{od}(\mathbf{Y})$ (outdegree centralization)
- $t_{idc} = C_{id}(\mathbf{Y})$ (indegree centralization)

 $H: \{y_{i,j}: i \neq j\} \sim \text{ i.i.d. binomial}(0.04)$

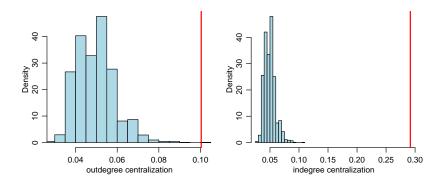
- $t_{odc} = C_{od}(\mathbf{Y})$ (outdegree centralization)
- $t_{idc} = C_{id}(\mathbf{Y})$ (indegree centralization)

 $H: \{y_{i,j}: i \neq j\} \sim \text{ i.i.d. binomial}(0.04)$

- $t_{odc} = C_{od}(\mathbf{Y})$ (outdegree centralization)
- $t_{idc} = C_{id}(\mathbf{Y})$ (indegree centralization)

Rejecting the SRG based on centralization

```
t.H<-NULL
for(s in 1:S)
{
    Ysim<-matrix(rbinom(nrow(Y)^2,1,theta),nrow(Y),nrow(Y)) ; diag(Ysim)<-NA
    t.H<-rbind(t.H, c(Cd(Ysim),Cd(t(Ysim)) ) )
}
t.o<- c(Cd(Y),Cd(t(Y)) )</pre>
```



p-values from centralization

```
pval.o<-mean( t.H[,1] >= t.o[1] )
pval.i<-mean( t.H[,2] >= t.o[2] )
pval.o
## [1] 2e-04
pval.i
## [1] 0
```

The plots and p-values indicate strong evidence against H:

- The binomial(0.04) model predicts much less outdegree centralization than was observed.
- The binomial(0.04) model predicts much much less indegree centralization than was observed.

p-values from centralization

```
pval.o<-mean( t.H[,1] >= t.o[1] )
pval.i<-mean( t.H[,2] >= t.o[2] )
pval.o
## [1] 2e-04
pval.i
## [1] 0
```

The plots and *p*-values indicate strong evidence against *H*:

- The binomial(0.04) model predicts much less outdegree centralization than was observed.
- The binomial(0.04) model predicts much much less indegree centralization than was observed.

p-values from centralization

```
pval.o<-mean( t.H[,1] >= t.o[1] )
pval.i<-mean( t.H[,2] >= t.o[2] )
pval.o
## [1] 2e-04
pval.i
## [1] 0
```

The plots and *p*-values indicate strong evidence against *H*:

- The binomial(0.04) model predicts much less outdegree centralization than was observed.
- The binomial(0.04) model predicts much much less indegree centralization than was observed.

p-values from centralization

```
pval.o<-mean( t.H[,1] >= t.o[1] )
pval.i<-mean( t.H[,2] >= t.o[2] )
pval.o
## [1] 2e-04
pval.i
## [1] 0
```

The plots and *p*-values indicate strong evidence against *H*:

- The binomial(0.04) model predicts much less outdegree centralization than was observed.
- The binomial(0.04) model predicts much much less indegree centralization than was observed.

We evaluated evidence against the SRG(0.040) distribution:

 $H: \{y_{i,j}: i \neq j\} \sim \text{ i.i.d. binary}(0.04)$.

- Rejecting SRG(0.040) doesn't mean we reject SRG(0.041).
- We are more interested in testing all SRG distributions.

We evaluated evidence against the SRG(0.040) distribution:

 $H: \{y_{i,j}: i \neq j\} \sim \text{ i.i.d. binary}(0.04)$.

- Rejecting SRG(0.040) doesn't mean we reject SRG(0.041).
- We are more interested in testing *all* SRG distributions.

We evaluated evidence against the SRG(0.040) distribution:

 $H: \{y_{i,j}: i \neq j\} \sim \text{ i.i.d. binary}(0.04)$.

- Rejecting SRG(0.040) doesn't mean we reject SRG(0.041).
- We are more interested in testing *all* SRG distributions.

We evaluated evidence against the SRG(0.040) distribution:

 $H: \{y_{i,j}: i \neq j\} \sim \text{ i.i.d. binary}(0.04)$.

- Rejecting SRG(0.040) doesn't mean we reject SRG(0.041).
- We are more interested in testing *all* SRG distributions.

A statistical model is a collection of probability distributions indexed by an unknown parameter.

 $\mathcal{P} = \{ p(\mathbf{Y}|\theta) : \theta \in \Theta \}$

- θ is the unknown parameter;
- Θ is the parameter space;
- $p(\mathbf{Y}|\theta)$ is the distribution of **Y** if θ is correct.

SRG model: The simple random graph **model** is the set of $SRG(\theta)$ distributions:

- $heta \in \Theta = [0,1]$
- $p(\mathbf{Y}|\theta)$ is such that $\{y_{i,j} : i \neq j\} \sim \text{i.i.d. binary}(\theta)$:

A statistical model is a collection of probability distributions indexed by an unknown parameter.

 $\mathcal{P} = \{ p(\mathbf{Y}|\theta) : \theta \in \Theta \}$

- θ is the unknown parameter;
- Θ is the parameter space;
- $p(\mathbf{Y}|\theta)$ is the distribution of **Y** if θ is correct.

SRG model: The simple random graph **model** is the set of $SRG(\theta)$ distributions:

- $\theta \in \Theta = [0,1]$
- $p(\mathbf{Y}|\theta)$ is such that $\{y_{i,j} : i \neq j\} \sim \text{i.i.d. binary}(\theta)$:

A statistical model is a collection of probability distributions indexed by an unknown parameter.

 $\mathcal{P} = \{ p(\mathbf{Y}|\theta) : \theta \in \Theta \}$

- θ is the unknown parameter;
- Θ is the parameter space;
- $p(\mathbf{Y}|\theta)$ is the distribution of **Y** if θ is correct.

SRG model: The simple random graph **model** is the set of $SRG(\theta)$ distributions:

- $\theta \in \Theta = [0,1]$
- $p(\mathbf{Y}|\theta)$ is such that $\{y_{i,j} : i \neq j\} \sim \text{i.i.d. binary}(\theta)$:

A statistical model is a collection of probability distributions indexed by an unknown parameter.

 $\mathcal{P} = \{ p(\mathbf{Y}|\theta) : \theta \in \Theta \}$

- θ is the unknown parameter;
- Θ is the parameter space;
- $p(\mathbf{Y}|\theta)$ is the distribution of \mathbf{Y} if θ is correct.

SRG model: The simple random graph **model** is the set of $SRG(\theta)$ distributions:

- $\theta \in \Theta = [0,1]$
- $p(\mathbf{Y}|\theta)$ is such that $\{y_{i,j} : i \neq j\} \sim \text{i.i.d. binary}(\theta)$:

A statistical model is a collection of probability distributions indexed by an unknown parameter.

 $\mathcal{P} = \{ p(\mathbf{Y}|\theta) : \theta \in \Theta \}$

- θ is the unknown parameter;
- Θ is the parameter space;
- $p(\mathbf{Y}|\theta)$ is the distribution of \mathbf{Y} if θ is correct.

SRG model: The simple random graph **model** is the set of $SRG(\theta)$ distributions:

- $\theta \in \Theta = [0,1]$
- $p(\mathbf{Y}|\theta)$ is such that $\{y_{i,j} : i \neq j\} \sim \text{i.i.d. binary}(\theta)$:

A statistical model is a collection of probability distributions indexed by an unknown parameter.

 $\mathcal{P} = \{ p(\mathbf{Y}|\theta) : \theta \in \Theta \}$

- θ is the unknown parameter;
- Θ is the parameter space;
- $p(\mathbf{Y}|\theta)$ is the distribution of **Y** if θ is correct.

- $\theta \in \Theta = [0, 1]$
- $p(\mathbf{Y}|\theta)$ is such that $\{y_{i,j} : i \neq j\} \sim \text{i.i.d. binary}(\theta)$:

$$p(\mathbf{Y}|\theta) = \theta^{\sum y_{i,j}} (1-\theta)^{\sum (1-y_{i,j})}$$

A statistical model is a collection of probability distributions indexed by an unknown parameter.

 $\mathcal{P} = \{ p(\mathbf{Y}|\theta) : \theta \in \Theta \}$

- θ is the unknown parameter;
- Θ is the parameter space;
- $p(\mathbf{Y}|\theta)$ is the distribution of **Y** if θ is correct.

- $\theta \in \Theta = [0, 1]$
- $p(\mathbf{Y}|\theta)$ is such that $\{y_{i,j} : i \neq j\} \sim \text{i.i.d. binary}(\theta)$:

$$p(\mathbf{Y}|\theta) = \theta^{\sum y_{i,j}} (1-\theta)^{\sum (1-y_{i,j})}$$

A statistical model is a collection of probability distributions indexed by an unknown parameter.

$$\mathcal{P} = \{ p(\mathbf{Y}|\theta) : \theta \in \Theta \}$$

- θ is the unknown parameter;
- Θ is the parameter space;
- $p(\mathbf{Y}|\theta)$ is the distribution of **Y** if θ is correct.

- $\theta \in \Theta = [0, 1]$
- $p(\mathbf{Y}|\theta)$ is such that $\{y_{i,j} : i \neq j\} \sim \text{i.i.d. binary}(\theta)$:

$$p(\mathbf{Y}|\theta) = \theta^{\sum y_{i,j}} (1-\theta)^{\sum (1-y_{i,j})}$$

A statistical model is a collection of probability distributions indexed by an unknown parameter.

$$\mathcal{P} = \{ p(\mathbf{Y}|\theta) : \theta \in \Theta \}$$

- θ is the unknown parameter;
- Θ is the parameter space;
- $p(\mathbf{Y}|\theta)$ is the distribution of **Y** if θ is correct.

- $\theta \in \Theta = [0, 1]$
- $p(\mathbf{Y}|\theta)$ is such that $\{y_{i,j} : i \neq j\} \sim \text{i.i.d. binary}(\theta)$:

$$p(\mathbf{Y}|\theta) = \theta^{\sum y_{i,j}} (1-\theta)^{\sum (1-y_{i,j})}$$

Is there a procedure that can evaluate all SRG distributions at once?

- ad-hoc approach: intuitive but not exactly correct in terms of type I error.
- principled: intuitive and correct, but less generalizable.

Is there a procedure that can evaluate all SRG distributions at once?

- ad-hoc approach: intuitive but not exactly correct in terms of type I error.
- principled: intuitive and correct, but less generalizable.

Is there a procedure that can evaluate all SRG distributions at once?

- ad-hoc approach: intuitive but not exactly correct in terms of type I error.
- principled: intuitive and correct, but less generalizable.

Is there a procedure that can evaluate all SRG distributions at once?

- ad-hoc approach: intuitive but not exactly correct in terms of type I error.
- principled: intuitive and correct, but less generalizable.

Is there a procedure that can evaluate all SRG distributions at once?

- ad-hoc approach: intuitive but not exactly correct in terms of type I error.
- principled: intuitive and correct, but less generalizable.

Idea:

• We reject the $SRG(\theta)$ distribution if samples from it don't look like **Y**;

• We would reject all $SRG(\theta)$ distributions if none of them look like **Y**;

• Instead of comparing **Y** to each θ , just compare **Y** to the "most similar" θ .

Which value of $\theta \in [0, 1]$ makes $\tilde{\mathbf{Y}} \sim SRG(\theta)$ most similar to \mathbf{Y} ?

Maximum likelihood estimation:

$$\mathbf{Y} \sim p(\mathbf{Y}| heta), \ heta$$
 unknown.
 $heta \in \Theta$

The maximum likelihood estimator(MLE) of θ is the value $\hat{\theta}$ that maximizes the probability of the observed data:

$$p(\mathbf{Y}|\hat{ heta}) \geq p(\mathbf{Y}| heta) \;\; ext{for all} \;\; heta \in \Theta$$

Idea:

- We reject the $SRG(\theta)$ distribution if samples from it don't look like **Y**;
- We would reject all $SRG(\theta)$ distributions if none of them look like **Y**;
- Instead of comparing **Y** to each θ , just compare **Y** to the "most similar" θ .

Which value of $\theta \in [0, 1]$ makes $\tilde{\mathbf{Y}} \sim SRG(\theta)$ most similar to \mathbf{Y} ?

Maximum likelihood estimation:

$$\mathbf{Y} \sim p(\mathbf{Y}| heta), \ heta$$
 unknown.
 $heta \in \Theta$

The maximum likelihood estimator(MLE) of θ is the value $\hat{\theta}$ that maximizes the probability of the observed data:

$$p(\mathbf{Y}|\hat{ heta}) \geq p(\mathbf{Y}| heta) \;\; ext{for all} \;\; heta \in \Theta$$

Idea:

- We reject the $SRG(\theta)$ distribution if samples from it don't look like **Y**;
- We would reject all $SRG(\theta)$ distributions if none of them look like **Y**;
- Instead of comparing **Y** to each θ , just compare **Y** to the "most similar" θ .

Which value of $\theta \in [0, 1]$ makes $\tilde{\mathbf{Y}} \sim SRG(\theta)$ most similar to \mathbf{Y} ?

Maximum likelihood estimation:

 $\mathbf{Y} \sim p(\mathbf{Y}| heta), \ heta$ unknown. $heta \in \Theta$

The maximum likelihood estimator(MLE) of θ is the value $\hat{\theta}$ that maximizes the probability of the observed data:

Idea:

- We reject the $SRG(\theta)$ distribution if samples from it don't look like **Y**;
- We would reject all $SRG(\theta)$ distributions if none of them look like **Y**;
- Instead of comparing **Y** to each θ , just compare **Y** to the "most similar" θ .

Which value of $\theta \in [0, 1]$ makes $\tilde{\mathbf{Y}} \sim SRG(\theta)$ most similar to \mathbf{Y} ?

Maximum likelihood estimation:

 $\mathbf{Y} \sim p(\mathbf{Y}| heta), \ heta$ unknown. $heta \in \Theta$

The maximum likelihood estimator(MLE) of θ is the value $\hat{\theta}$ that maximizes the probability of the observed data:

Idea:

- We reject the $SRG(\theta)$ distribution if samples from it don't look like **Y**;
- We would reject all $SRG(\theta)$ distributions if none of them look like **Y**;
- Instead of comparing **Y** to each θ , just compare **Y** to the "most similar" θ .

Which value of $\theta \in [0, 1]$ makes $\tilde{\mathbf{Y}} \sim SRG(\theta)$ most similar to \mathbf{Y} ?

Maximum likelihood estimation:

 $\mathbf{Y} \sim p(\mathbf{Y}| heta), \ heta$ unknown. $heta \in \Theta$

The maximum likelihood estimator(MLE) of θ is the value $\hat{\theta}$ that maximizes the probability of the observed data:

Idea:

- We reject the $SRG(\theta)$ distribution if samples from it don't look like **Y**;
- We would reject all $SRG(\theta)$ distributions if none of them look like **Y**;
- Instead of comparing **Y** to each θ , just compare **Y** to the "most similar" θ .

Which value of $\theta \in [0, 1]$ makes $\tilde{\mathbf{Y}} \sim SRG(\theta)$ most similar to \mathbf{Y} ?

Maximum likelihood estimation:

 $\mathbf{Y} \sim p(\mathbf{Y}|\theta), \ heta$ unknown. $heta \in \Theta$

The maximum likelihood estimator(MLE) of θ is the value $\hat{\theta}$ that maximizes the probability of the observed data:

Idea:

- We reject the SRG(θ) distribution if samples from it don't look like Υ;
- We would reject all $SRG(\theta)$ distributions if none of them look like **Y**;
- Instead of comparing **Y** to each θ , just compare **Y** to the "most similar" θ .

Which value of $\theta \in [0, 1]$ makes $\tilde{\mathbf{Y}} \sim SRG(\theta)$ most similar to \mathbf{Y} ?

Maximum likelihood estimation:

 $\mathbf{Y} \sim p(\mathbf{Y}|\theta), \ \theta$ unknown.

 $\theta \in \Theta$

The maximum likelihood estimator(MLE) of θ is the value $\hat{\theta}$ that maximizes the probability of the observed data:

Idea:

- We reject the SRG(θ) distribution if samples from it don't look like Υ;
- We would reject all $SRG(\theta)$ distributions if none of them look like **Y**;
- Instead of comparing **Y** to each θ , just compare **Y** to the "most similar" θ .

Which value of $\theta \in [0, 1]$ makes $\tilde{\mathbf{Y}} \sim SRG(\theta)$ most similar to \mathbf{Y} ?

Maximum likelihood estimation:

$$\mathbf{Y} \sim p(\mathbf{Y}|\theta), \ \theta \text{ unknown.}$$
$$\theta \in \Theta$$

The maximum likelihood estimator(MLE) of θ is the value $\hat{\theta}$ that maximizes the probability of the observed data:

Idea:

- We reject the SRG(θ) distribution if samples from it don't look like Υ;
- We would reject all $SRG(\theta)$ distributions if none of them look like **Y**;
- Instead of comparing **Y** to each θ , just compare **Y** to the "most similar" θ .

Which value of $\theta \in [0, 1]$ makes $\tilde{\mathbf{Y}} \sim SRG(\theta)$ most similar to \mathbf{Y} ?

Maximum likelihood estimation:

$$\mathbf{Y} \sim p(\mathbf{Y}|\theta), \ \theta \ \text{unknown}.$$

 $\theta \in \Theta$

The maximum likelihood estimator(MLE) of θ is the value $\hat{\theta}$ that maximizes the probability of the observed data:

Idea:

- We reject the SRG(θ) distribution if samples from it don't look like Υ;
- We would reject all $SRG(\theta)$ distributions if none of them look like **Y**;
- Instead of comparing **Y** to each θ , just compare **Y** to the "most similar" θ .

Which value of $\theta \in [0, 1]$ makes $\tilde{\mathbf{Y}} \sim SRG(\theta)$ most similar to \mathbf{Y} ?

Maximum likelihood estimation:

$$\mathbf{Y} \sim p(\mathbf{Y}|\theta), \ \theta \ unknown.$$

 $\theta \in \Theta$

The maximum likelihood estimator(MLE) of θ is the value $\hat{\theta}$ that maximizes the probability of the observed data:

$$p(\mathbf{Y}|\hat{ heta}) \geq p(\mathbf{Y}| heta) \;\; ext{for all} \;\; heta \in \Theta$$

Let's find the MLE for the SRG:

$$p(\mathbf{Y}|\theta) = \theta^{\sum y_{i,j}} (1-\theta)^{\sum (1-y_{i,j})}$$
$$= \theta^{m\bar{y}} (1-\theta)^{m(1-\bar{y})}$$

where

• m = n(n-1) = the number of pairs;

• $\bar{y} = \sum y_{i,j}/m$ = the density.

Recall that $\log x$ is an increasing function of x.

Therefore, the maximizer of $p(\mathbf{Y}|\theta)$ is the maximizer of $\log p(\mathbf{Y}|\theta)$:

$$\log p(\mathbf{Y}|\theta) = m\bar{y}\log\theta + m(1-\bar{y})\log(1-\theta)$$
$$= m[\bar{y}\log\theta + (1-\bar{y})\log(1-\theta)]$$

Let's find the MLE for the SRG:

$$p(\mathbf{Y}|\theta) = \theta^{\sum y_{i,j}} (1-\theta)^{\sum (1-y_{i,j})}$$
$$= \theta^{m\bar{y}} (1-\theta)^{m(1-\bar{y})}$$

where

- m = n(n-1) = the number of pairs;
- $\bar{y} = \sum y_{i,j}/m$ = the density.

Recall that $\log x$ is an increasing function of x.

Therefore, the maximizer of $p(\mathbf{Y}|\theta)$ is the maximizer of $\log p(\mathbf{Y}|\theta)$:

$$\log p(\mathbf{Y}|\theta) = m\bar{y}\log\theta + m(1-\bar{y})\log(1-\theta)$$
$$= m[\bar{y}\log\theta + (1-\bar{y})\log(1-\theta)]$$

Let's find the MLE for the SRG:

$$p(\mathbf{Y}|\theta) = \theta^{\sum y_{i,j}} (1-\theta)^{\sum (1-y_{i,j})}$$
$$= \theta^{m\bar{y}} (1-\theta)^{m(1-\bar{y})}$$

where

• $\bar{y} = \sum y_{i,j}/m$ = the density.

Recall that $\log x$ is an increasing function of x.

Therefore, the maximizer of $p(\mathbf{Y}|\theta)$ is the maximizer of log $p(\mathbf{Y}|\theta)$:

$$\log p(\mathbf{Y}|\theta) = m\bar{y}\log\theta + m(1-\bar{y})\log(1-\theta)$$
$$= m[\bar{y}\log\theta + (1-\bar{y})\log(1-\theta)]$$

Let's find the MLE for the SRG:

$$\begin{split} p(\mathbf{Y}|\theta) &= \theta^{\sum y_{i,j}} (1-\theta)^{\sum (1-y_{i,j})} \\ &= \theta^{m\bar{y}} (1-\theta)^{m(1-\bar{y})} \end{split}$$

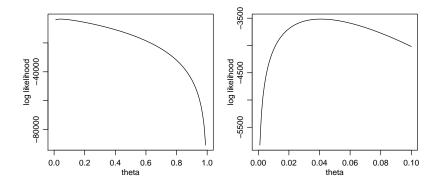
where

• $\bar{y} = \sum y_{i,j}/m$ = the density.

Recall that $\log x$ is an increasing function of x.

Therefore, the maximizer of $p(\mathbf{Y}|\theta)$ is the maximizer of $\log p(\mathbf{Y}|\theta)$:

$$\log p(\mathbf{Y}|\theta) = m\bar{y}\log\theta + m(1-\bar{y})\log(1-\theta)$$
$$= m[\bar{y}\log\theta + (1-\bar{y})\log(1-\theta)]$$



Recall, the maximum occurs where the derivative (slope) is zero:

$$egin{aligned} rac{d}{d heta}\log p(\mathbf{Y}| heta)&=m[rac{ar{y}}{ heta}-rac{1-ar{y}}{1- heta}]\ &=m[rac{ar{y}}{ heta}-rac{1-ar{y}}{1-ar{ heta}}]=0\ &rac{ar{y}}{ar{ heta}}=rac{1-ar{y}}{1-ar{ heta}}\ &rac{ar{y}}{1-ar{ heta}}\ &rac{ar{y}}{1-ar{ heta}} =rac{ar{ heta}}{1-ar{ heta}} \end{aligned}$$

which is satisfied by

$$\hat{\theta} = \bar{y}.$$

Convince yourself that this makes intuitive sense.

Result: By the maximum likelihood criterion, the member of $\mathcal{P} = \{SRG(\theta) : \theta \in [0,1]\}$ that is closest to **Y** is the $SRG(\bar{y})$ distribution.

MLE for SRG

Recall, the maximum occurs where the derivative (slope) is zero:

$$\frac{d}{d\theta} \log p(\mathbf{Y}|\theta) = m[\frac{\bar{y}}{\theta} - \frac{1-\bar{y}}{1-\theta}] \\ = m[\frac{\bar{y}}{\hat{\theta}} - \frac{1-\bar{y}}{1-\hat{\theta}}] = 0 \\ \frac{\bar{y}}{\hat{\theta}} = \frac{1-\bar{y}}{1-\hat{\theta}} \\ \frac{\bar{y}}{1-\bar{y}} = \frac{\hat{\theta}}{1-\hat{\theta}}$$

which is satisfied by

$$\hat{\theta} = \bar{y}.$$

Convince yourself that this makes intuitive sense.

Result: By the maximum likelihood criterion, the member of $\mathcal{P} = \{SRG(\theta) : \theta \in [0,1]\}$ that is closest to **Y** is the $SRG(\bar{y})$ distribution.

Intuition: If we reject $\mathbf{Y} \sim \text{binomial}(\hat{\theta})$, we should reject $\mathbf{Y} \sim \text{binomial}(\theta)$ for all $\theta \in \Theta$.

Model evaluation procedure: Given a test statistic $t(\mathbf{Y})$,

- 1. compute $\hat{\theta}$ from **Y**
- 2. simulate $\tilde{\mathbf{Y}}_1, \ldots, \tilde{\mathbf{Y}}_S$ from $p(\mathbf{Y}|\hat{\theta})$;
- 3. compare $t(\mathbf{Y})$ to $t(\mathbf{\tilde{Y}}_1), \ldots, t(\mathbf{\tilde{Y}}_S)$.

- t_{odc} = C_{od}(Y) (outdegree centralization)
- t_{idc} = C_{id}(Y) (indegree centralization)

Intuition:

If we reject $\mathbf{Y} \sim \text{binomial}(\hat{\theta})$, we should reject $\mathbf{Y} \sim \text{binomial}(\theta)$ for all $\theta \in \Theta$.

Model evaluation procedure: Given a test statistic $t(\mathbf{Y})$,

- 1. compute $\hat{\theta}$ from **Y**
- 2. simulate $\tilde{\mathbf{Y}}_1, \dots, \tilde{\mathbf{Y}}_S$ from $p(\mathbf{Y}|\hat{\theta})$;
- 3. compare $t(\mathbf{Y})$ to $t(\mathbf{\tilde{Y}}_1), \ldots, t(\mathbf{\tilde{Y}}_S)$.

- t_{odc} = C_{od}(Y) (outdegree centralization)
- t_{idc} = C_{id}(Y) (indegree centralization)

Intuition:

If we reject $\mathbf{Y} \sim \text{binomial}(\hat{\theta})$, we should reject $\mathbf{Y} \sim \text{binomial}(\theta)$ for all $\theta \in \Theta$.

Model evaluation procedure: Given a test statistic $t(\mathbf{Y})$,

- 1. compute $\hat{\theta}$ from **Y**
- 2. simulate $\tilde{\mathbf{Y}}_1, \dots, \tilde{\mathbf{Y}}_S$ from $p(\mathbf{Y}|\hat{\theta})$;
- 3. compare $t(\mathbf{Y})$ to $t(\mathbf{\tilde{Y}}_1), \ldots, t(\mathbf{\tilde{Y}}_S)$.

- $t_{odc} = C_{od}(\mathbf{Y})$ (outdegree centralization)
- $t_{idc} = C_{id}(\mathbf{Y})$ (indegree centralization)

Intuition:

If we reject $\mathbf{Y} \sim \text{binomial}(\hat{\theta})$, we should reject $\mathbf{Y} \sim \text{binomial}(\theta)$ for all $\theta \in \Theta$.

Model evaluation procedure: Given a test statistic $t(\mathbf{Y})$,

- 1. compute $\hat{\theta}$ from **Y**
- 2. simulate $\tilde{\mathbf{Y}}_1, \dots, \tilde{\mathbf{Y}}_S$ from $p(\mathbf{Y}|\hat{\theta})$;
- 3. compare $t(\mathbf{Y})$ to $t(\mathbf{\tilde{Y}}_1), \ldots, t(\mathbf{\tilde{Y}}_S)$.

- $t_{odc} = C_{od}(\mathbf{Y})$ (outdegree centralization)
- $t_{idc} = C_{id}(\mathbf{Y})$ (indegree centralization)

Intuition:

If we reject $\mathbf{Y} \sim \text{binomial}(\hat{\theta})$, we should reject $\mathbf{Y} \sim \text{binomial}(\theta)$ for all $\theta \in \Theta$.

Model evaluation procedure: Given a test statistic $t(\mathbf{Y})$,

- 1. compute $\hat{\theta}$ from **Y**
- 2. simulate $\tilde{\mathbf{Y}}_1, \ldots, \tilde{\mathbf{Y}}_S$ from $p(\mathbf{Y}|\hat{\theta})$;
- 3. compare $t(\mathbf{Y})$ to $t(\mathbf{\tilde{Y}}_1), \ldots, t(\mathbf{\tilde{Y}}_S)$.

- $t_{odc} = C_{od}(\mathbf{Y})$ (outdegree centralization)
- $t_{idc} = C_{id}(\mathbf{Y})$ (indegree centralization)

Intuition:

If we reject $\mathbf{Y} \sim \text{binomial}(\hat{\theta})$, we should reject $\mathbf{Y} \sim \text{binomial}(\theta)$ for all $\theta \in \Theta$.

Model evaluation procedure: Given a test statistic $t(\mathbf{Y})$,

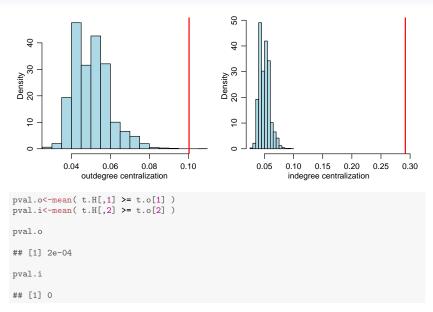
- 1. compute $\hat{\theta}$ from **Y**
- 2. simulate $\tilde{\mathbf{Y}}_1, \ldots, \tilde{\mathbf{Y}}_S$ from $p(\mathbf{Y}|\hat{\theta})$;
- 3. compare $t(\mathbf{Y})$ to $t(\mathbf{\tilde{Y}}_1), \ldots, t(\mathbf{\tilde{Y}}_S)$.

- $t_{odc} = C_{od}(\mathbf{Y})$ (outdegree centralization)
- $t_{idc} = C_{id}(\mathbf{Y})$ (indegree centralization)

Rejecting the best SRG

```
theta<-mean(Y,na.rm=TRUE)
t.H<-NULL
for(s in 1:S)
{
    Ysim<-matrix(rbinom(nrow(Y)^2,1,theta),nrow(Y),nrow(Y)); diag(Ysim)<-NA
    t.H<-rbind(t.H, c(Cd(Ysim),Cd(t(Ysim))))
}
t.o<- c(Cd(Y),Cd(t(Y)))</pre>
```

Rejecting the SRG based on centralization



The null distributions and *p*-values here are not exactly proper.

Suppose $\mathbf{Y} \sim \text{binary}(\theta)$ for some true but unknown θ .

- θ is only approximated by $\hat{\theta}$.
- the distribution of t under binary(heta) is not the same as under binary($\hat{ heta}$).

In principle: For some models, we can develop a testing procedure with a correct null distribution.

The null distributions and *p*-values here are not exactly proper.

Suppose $\mathbf{Y} \sim \text{binary}(\theta)$ for some true but unknown θ .

- θ is only approximated by $\hat{\theta}$.
- the distribution of t under $binary(\theta)$ is not the same as under $binary(\hat{\theta})$.
 - Note this latter distribution is "random", as θ̂ is random.

In principle: For some models, we can develop a testing procedure with a correct null distribution.

The null distributions and *p*-values here are not exactly proper.

Suppose $\mathbf{Y} \sim \text{binary}(\theta)$ for some true but unknown θ .

- θ is only approximated by $\hat{\theta}$.
- the distribution of t under binary(θ) is not the same as under binary($\hat{\theta}$).
 - Note this latter distribution is "random", as $\hat{\theta}$ is random.

In principle: For some models, we can develop a testing procedure with a correct null distribution.

The null distributions and *p*-values here are not exactly proper.

Suppose $\mathbf{Y} \sim \text{binary}(\theta)$ for some true but unknown θ .

- θ is only approximated by $\hat{\theta}$.
- the distribution of t under binary(θ) is not the same as under binary($\hat{\theta}$).
 - Note this latter distribution is "random", as $\hat{\theta}$ is random.

In principle: For some models, we can develop a testing procedure with a correct null distribution.

The null distributions and *p*-values here are not exactly proper.

Suppose $\mathbf{Y} \sim \text{binary}(\theta)$ for some true but unknown θ .

- θ is only approximated by $\hat{\theta}$.
- the distribution of t under binary(θ) is not the same as under binary($\hat{\theta}$).
 - Note this latter distribution is "random", as $\hat{\theta}$ is random.

In principle: For some models, we can develop a testing procedure with a correct null distribution.

The null distributions and *p*-values here are not exactly proper.

Suppose $\mathbf{Y} \sim \text{binary}(\theta)$ for some true but unknown θ .

- θ is only approximated by $\hat{\theta}$.
- the distribution of t under binary(θ) is not the same as under binary($\hat{\theta}$).
 - Note this latter distribution is "random", as $\hat{\theta}$ is random.

In principle: For some models, we can develop a testing procedure with a correct null distribution.

The null distributions and *p*-values here are not exactly proper.

Suppose $\mathbf{Y} \sim \text{binary}(\theta)$ for some true but unknown θ .

- θ is only approximated by $\hat{\theta}$.
- the distribution of t under binary(θ) is not the same as under binary($\hat{\theta}$).
 - Note this latter distribution is "random", as $\hat{\theta}$ is random.

In principle: For some models, we can develop a testing procedure with a correct null distribution.