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Evaluating statistical models

H : {yi,j , i 6= j} ∼ binary(θ), for some θ ∈ [0, 1]

We would like to evaluate this model, but we don’t know precisely what to
expect from it, as we don’t know which is the correct value of θ, if H were to
be true.

Problem: The null distribution of Y depends on the unknown θ.

A solution:

• Perhaps some aspect of the null distribution doesn’t depend on θ

• If so, then it could be used to evaluate the null model (for all θ ∈ [0, 1]).

The tool we need to develop this idea further is conditional probability
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Conditional distributions

Let y1, y2, y3 ∼ i.i.d. binary(θ).

Suppose we are told that y1 + y2 + y3 = 2.

• What is the probability that y1 = 1?

• What is the probability that y1 = y2 = 1 ?
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Intuitive calculation

Consider all possible outcomes, before we are told the sum:

y1 0 1 0 1 0 1 0 1
y2 0 0 1 1 0 0 1 1
y3 0 0 0 0 1 1 1 1
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Intuitive calculation

Compute the probabilities of each:

y1 0 1 0 1 0 1 0 1
y2 0 0 1 1 0 0 1 1
y3 0 0 0 0 1 1 1 1

Pr (1− θ)3 θ(1− θ)2 θ(1− θ)2 θ2(1− θ) θ(1− θ)2 θ2(1− θ) θ2(1− θ) θ3
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Intuitive calculation

Now we are told that y1 + y2 + y3 = 2:

y1 0 1 0 1 0 1 0 1
y2 0 0 1 1 0 0 1 1
y3 0 0 0 0 1 1 1 1

Pr (1− θ)3 θ(1− θ)2 θ(1− θ)2 θ2(1− θ) θ(1− θ)2 θ2(1− θ) θ2(1− θ) θ3

So it seems that having been told y1 + y2 + y3 = 2,

• (1, 1, 0), (1, 0, 1), (0, 1, 1) are the only possibilities;

• each of these was equally probable to begin with;

• they should be equally probable given the information.
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Intuitive calculation

Hence,
Pr((y1, y2, y3) = (1, 1, 0)|y1 + y2 + y3 = 2)
Pr((y1, y2, y3) = (1, 0, 1)|y1 + y2 + y3 = 2)
Pr((y1, y2, y3) = (0, 1, 1)|y1 + y2 + y3 = 2)

 = 1/3

Let’s answer our conditional probability questions:

Suppose we are told that y1 + y2 + y3 = 2.

• What is the probability that y1 = 1?
• 2/3

• What is the probability that y1 = y2 = 1 ?
• 1/3

7/41



Conditional probability

Let A and B be two uncertain events.

Pr(B|A) =
Pr(A and B)

Pr(A)

Example: Consider days with non-rainy mornings:

• B = rainy in the evening;

• A = cloudy in the morning.

B Bc

A .4 .2
Ac .1 .3

Pr(B) = Pr(B ∩ A) + Pr(B ∩ Ac) = .4 + .1 = .5

Pr(A) = Pr(B ∩ A) + Pr(Bc ∩ A) = .4 + .2 = .6

Pr(B|A) = Pr(B ∩ A)/Pr(A) = .4/.6 = 2/3
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Conditional probability

Let A and B be two uncertain events.

Pr(B|A) =
Pr(A and B)

Pr(A)

Example: A card deck is shuffled and a single card is dealt.

• B = the card is the 3 of hearts.

• A = the card is red.

Pr(B|A) =
Pr(A and B)

Pr(A)

=
Pr(the card is the 3 of hearts)

Pr(the card is red)

=
1/52

1/2
= 1/26
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Conditional probability

Example: Let y1, y2, y3 ∼ i.i.d. binary(θ).

• B = {(y1, y2, y3) = (0, 1, 1)}
• A = {y1 + y2 + y3 = 2}

Pr(B) = (1− θ)× θ × θ = θ2(1− θ)

Pr(A) = Pr((0, 1, 1)) + Pr((1, 0, 1)) + Pr((1, 1, 0)) = 3θ2(1− θ)

Pr(B|A) =
θ2(1− θ)

3θ2(1− θ)
=

1

3
.

Note that this probability doesn’t depend on the value of θ.
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Conditional probability distributions

A conditional probability distribution is an assignment of conditional
probabilities to a partition of the outcome space.

Let B1, . . . ,BK be a partition, so that

• Pr(Bj and Bk) = 0;

• Pr(B1 or · · · or BK ) = Pr(B1) + · · ·Pr(BK ) = 1

A conditional probability distribution over B1, . . . ,BK given A is simply the
collection {Pr(Bk |A), k = 1, . . . ,K}.
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Conditional probability distributions

Example: Let y1, y2, y3 ∼ i.i.d. binary(θ).

Conditional on A = {y1 + y2 + y3 = 2}, you should now be able to show that

• Pr((y1, y2, y3) = B|A) = 1/3 if B is either (0,1,1), (1,0,1) or (1,1,0) .

• Pr((y1, y2, y3) = B|A) = 0 otherwise

We say the distribution of y = (y1, y2, y3) given
∑

yi = 2 is uniform, as it
assigns equal probabilities to all possible events under the condition.
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Conditioning binary sequences

y1, . . . , ym ∼ i.i.d. binary(θ)

What is the conditional distribution of

y = (y1, . . . , ym) given

s =
∑

yi ?

Let ỹ = (ỹ1, . . . , ỹm) be a binary sequence.

Pr(y = ỹ|s) =
Pr(y = ỹ and

∑
yi = s)

Pr(
∑

yi = s)

First note that this must equal zero if
∑

ỹi 6= s.
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Conditioning binary sequences

y1, . . . , ym ∼ i.i.d. binary(θ)

Let ỹ = (ỹ1, . . . , ỹm) be a binary sequence with
∑

ỹi = s.

Pr(y = ỹ|s) =
Pr(y = ỹ and

∑
yi = s)

Pr(
∑

yi = s)

=
Pr(y = ỹ)

Pr(
∑

yi = s)

=
θs(1− θ)m−s(
m
s

)
θs(1− θ)m−s

=
1(
m
s

) .
Recall,

(
m
s

)
is the number of sequences that have s ones.

• the probability doesn’t depend on θ;

• the probability is the same for all sequences ỹ such that
∑

ỹi = s;

The distribution of y|s is called a conditionally uniform distribution - each
possible sequence gets equal probability.
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Simulating the conditional uniform distribution

A simulation of y|s can be generated as follows:

0. Put s ones into a bucket, along with m − s zeros.

1. Randomly select a number from the bucket, assign it to y1, and throw it
away.

2. Randomly select a number from the bucket, assign it to y2, and throw it
away.

...

m. Select the last number from the bucket and assign it to ym.

This is called (uniform) sampling without replacement.

Under this scheme, we will always have
∑

yi = s.
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ER graphs

Let’s return to our SRG model for a sociomatrix:

H : Y = {yi,j , i 6= j} ∼ binary(θ), for some θ ∈ [0, 1]

Under this model, (y1,2, . . . , yn−1,n) forms an i.i.d. binary sequence.

• The conditional distribution of this sequence given
∑

yi,j = s is simply the
conditional uniform distribution.

• Knowing
∑

yi,j is the same as knowing ȳ .

• The conditional distribution of Y given s is sometimes called the
Erdos-Reyni graph ( SRG(n, s) ).

• Conditioning on s is the same as conditioning on ȳ .
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Simulating from Y|s

rY.s<-function(n,s)
{

Y<-matrix(0,n,n) ; diag(Y)<-NA
Y[!is.na(Y)]<- sample( c(rep(1,s),rep(0,n*(n-1)-s )))

Y
}

rY.s(5,3)

## [,1] [,2] [,3] [,4] [,5]
## [1,] NA 0 0 1 0
## [2,] 0 NA 0 0 0
## [3,] 0 0 NA 0 0
## [4,] 0 0 0 NA 1
## [5,] 1 0 0 0 NA

rY.s(5,10)

## [,1] [,2] [,3] [,4] [,5]
## [1,] NA 0 1 0 0
## [2,] 1 NA 0 1 1
## [3,] 0 0 NA 0 0
## [4,] 1 0 1 NA 1
## [5,] 0 1 1 1 NA
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Conditional tests

Suppose Y ∼ SRG(n, θ) for some θ ∈ [0, 1]. Then

Y shoud “look like” another sample from SRG(n, θ)

• (but we can’t generate these).

Y should also “look like” another sample from SRG(n, s), where s =
∑

yi,j

• (we can generate these).

Conditional evaluation of the SRG: Given a test statistic t,

compare tobs = t(Y)

to t̃ = t(Ỹ),

where Ỹ ∼ SRG(n,
∑

yi,j).
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Example: Monk friendships
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mean(Y,na.rm=TRUE)

## [1] 0.2875817

Cd(Y)

## [1] 0.07352941

Cd(t(Y))

## [1] 0.4044118

##

nrow(Y)

## [1] 18

sum(Y,na.rm=TRUE)

## [1] 88
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Simulated networks

Ysim<-rY.s( nrow(Y), sum(Y,na.rm=TRUE) )
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Example: Monk friendships

CD.H<-NULL
for(s in 1:S)
{

Ysim<-rY.s( nrow(Y), sum(Y,na.rm=TRUE) )
CD.H<-rbind(CD.H, c(Cd(Ysim),Cd(t(Ysim))))
}
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Example: Monk friendships

mean(CD.H[,1] <= Cd(Y))

## [1] 0.0024

mean(CD.H[,2] >= Cd(t(Y)))

## [1] 0.025

These can be interpreted as p-values, but a better thing to say is

• observed outdegree centralization was below the lower 1-percentile of the
null distribution;

• observed indegree centralization was above the upper 3-percentile of the
null distribution;

The interpretation is that both statistics show evidence against H.
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Formal conditional testing

For any test statistic t, consider the following procedure:

1. observe Y

2. compute p = Pr(t(Ỹ) > t(Y)|H,
∑

ỹi,j =
∑

yi,j)

3. reject H if p < α.

If Y ∼ SRG(n, θ) for some θ ∈ [0, 1] (i.e. H is true) , then

Pr(reject H) = α.
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Comparison of principled to ad-hoc
CD.H<-NULL

for(s in 1:S)

{
Ysim<-rY.s( nrow(Y), sum(Y,na.rm=TRUE) )

#Ysim<-matrix(rbinom(nrow(Y)^2,1,mean(Y,na.rm=TRUE)),nrow(Y),nrow(Y))

CD.H<-rbind(CD.H, c(Cd(Ysim),Cd(t(Ysim))))

}
mean(CD.H[,1] <= Cd(Y))

## [1] 0.0022

mean(CD.H[,2] >= Cd(t(Y)))

## [1] 0.0322
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Comparison of principled to ad-hoc
CD.H<-NULL

for(s in 1:S)

{
#Ysim<-rY.s( nrow(Y), sum(Y,na.rm=TRUE) )

Ysim<-matrix(rbinom(nrow(Y)^2,1,mean(Y,na.rm=TRUE)),nrow(Y),nrow(Y))

CD.H<-rbind(CD.H, c(Cd(Ysim),Cd(t(Ysim))))

}
mean(CD.H[,1] <= Cd(Y))

## [1] 6e-04

mean(CD.H[,2] >= Cd(t(Y)))

## [1] 0.0214
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Example: High school friendships

CD.H<-NULL
for(s in 1:S)
{

Ysim<-rY.s( nrow(Y), sum(Y,na.rm=TRUE) )
CD.H<-rbind(CD.H, c(Cd(Ysim),Cd(t(Ysim))))
}
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Example: High school friendships

CD.H<-NULL
for(s in 1:S)
{
# Ysim<-rY.s( nrow(Y), sum(Y,na.rm=TRUE) )

Ysim<-matrix(rbinom(nrow(Y)^2,1,mean(Y,na.rm=TRUE)),nrow(Y),nrow(Y))
CD.H<-rbind(CD.H, c(Cd(Ysim),Cd(t(Ysim))))
}
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Example: High school friendships

Sd<-function(Y) { sd(apply(Y,1,sum,na.rm=TRUE)) }
SD.H<-NULL
for(s in 1:S)
{

Ysim<-rY.s( nrow(Y), sum(Y,na.rm=TRUE) )
SD.H<-rbind(SD.H, c(Sd(Ysim),Sd(t(Ysim))))
}

tH

D
en

si
ty

0.20 0.25 0.30 0.35

0
5

10
15

tH

D
en

si
ty

1.0 1.5 2.0 2.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

tH

D
en

si
ty

2.0 2.5 3.0 3.5 4.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

28/41



Example: High school friendships

SD.H<-NULL
for(s in 1:S)
{
# Ysim<-rY.s( nrow(Y), sum(Y,na.rm=TRUE) )
Ysim<-matrix(rbinom(nrow(Y)^2,1,mean(Y,na.rm=TRUE)),nrow(Y),nrow(Y))
SD.H<-rbind(SD.H, c(Sd(Ysim),Sd(t(Ysim))))
}
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SRG (n, θ) for undirected graphs

n<-10 ; theta<-.1
Y<-matrix(0,n,n)
Y[upper.tri(Y)]<-rbinom( n*(n-1)/2 , 1 , theta )
Y<-Y+t(Y)
diag(Y)<-NA

Y

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] NA 0 0 0 0 0 0 0 0 0
## [2,] 0 NA 0 0 0 0 0 0 0 0
## [3,] 0 0 NA 0 1 1 1 0 0 0
## [4,] 0 0 0 NA 0 0 0 0 0 0
## [5,] 0 0 1 0 NA 0 0 1 0 0
## [6,] 0 0 1 0 0 NA 0 0 0 0
## [7,] 0 0 1 0 0 0 NA 0 0 0
## [8,] 0 0 0 0 1 0 0 NA 0 0
## [9,] 0 0 0 0 0 0 0 0 NA 0
## [10,] 0 0 0 0 0 0 0 0 0 NA

sum(Y)

## [1] NA
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SRG (n, s) for undirected graphs

n<-10 ; s<-10
Y<-matrix(0,n,n)
Y[upper.tri(Y)]<-sample( c(rep(1,s),rep(0,n*(n-1)/2 - s)) )
Y<-Y+t(Y)
diag(Y)<-NA

Y

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] NA 0 0 0 1 0 1 1 1 0
## [2,] 0 NA 0 0 0 0 0 0 0 0
## [3,] 0 0 NA 1 1 1 0 0 0 0
## [4,] 0 0 1 NA 0 0 0 0 0 0
## [5,] 1 0 1 0 NA 0 0 1 0 0
## [6,] 0 0 1 0 0 NA 0 0 0 0
## [7,] 1 0 0 0 0 0 NA 0 0 0
## [8,] 1 0 0 0 1 0 0 NA 0 1
## [9,] 1 0 0 0 0 0 0 0 NA 1
## [10,] 0 0 0 0 0 0 0 1 1 NA

sum(Y)

## [1] NA
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Permutation tests for covariate effects
Recall the high-school girls friendship data:

• yi,j = indicator of friendship, among 144 students;
• xi = indicator of above-average smoking behavior.

xj=0 xj=1
xi=0 0.044 0.044
xi=1 0.031 0.045

Table : friendship rates between smoking categories

Xrow<-outer(x,rep(1,n))
Xcol<-outer(rep(1,n),x)
Xint<-outer(x,x)

fit<-glm( c(Y) ~ c(Xrow) + c(Xcol) + c(Xint) ,family=binomial)

fit$coef

## (Intercept) c(Xrow) c(Xcol) c(Xint)
## -3.072443033 -0.382355105 -0.006106814 0.400634157

exp(fit$coef)

## (Intercept) c(Xrow) c(Xcol) c(Xint)
## 0.04630788 0.68225274 0.99391180 1.49277105
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SRG null distribution

ebeta.obs<-exp( fit$coef )
ebeta.obs

## (Intercept) c(Xrow) c(Xcol) c(Xint)
## 0.04630788 0.68225274 0.99391180 1.49277105

EBETA.sim<-NULL
for(s in 1:1000)
{

Ysim<-rY.s( nrow(Y), sum(Y,na.rm=TRUE) )
beta.sim<-glm( c(Ysim) ~ c(Xrow) + c(Xcol) + c(Xint) , family=binomial)$coef
EBETA.sim<-rbind(EBETA.sim,exp(beta.sim) )
}

head(EBETA.sim)

## (Intercept) c(Xrow) c(Xcol) c(Xint)
## [1,] 0.04649499 0.8854832 0.9307677 1.0051026
## [2,] 0.04295135 1.0370672 0.9243420 1.0544853
## [3,] 0.04054054 1.0466761 1.1824768 0.7870772
## [4,] 0.03887804 1.1729487 0.9996460 1.0664013
## [5,] 0.04500000 0.9102323 0.9429514 1.0795469
## [6,] 0.04444048 1.0213677 0.8745243 1.0442391
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SRG null comparisons

The null distribution we are using is a conditional null distribution:

• It is conditional on the observed number of ties
∑

i 6= jyi,j ;

• It is also conditional on the observed values of x, smoking behavior.

This distribution tests the following joint model for relational and nodal data:

Model: {Y, x} ∼ p(Y, x)

Null Hypothesis:

• p(Y, x) = p(Y)× p(x), (ties are independent of covariates) and

• p(Y) is a SRG(θ) distribution, for some θ.

Null Distribution: Test statistics are generated by

• simulating Ỹ from the SRG conditional on
∑

ỹi,j =
∑

yi,j ;

• simulating x̃ conditional on x̃ = x.
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SRG null comparisons
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SRG null comparisons

As compared to any SRG distribution for Y independent of x,

• the data show lower smoker sociability (βr )

• the data show higher homophily (βint).

We reject the following hypothesis:

Null Hypothesis:

• p(Y, x) = p(Y)× p(x), (ties are independent of covariates) and

• p(Y) is a SRG(θ) distribution, for some θ.

But what are we rejecting?

• Are we rejecting because x and Y are not independent?

• Are we rejecting the SRG for Y?

The rejection of the test isn’t particularly compelling if we already suspect the
SRG to be a poor model.
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Tests based on exchangeability

Consider instead the following nonparametric null hypothesis:

Null Hypothesis:

• p(Y, x) = p(Y)× p(x), (ties are independent of covariates) and

• x1, . . . , xn ∼ i.i.d. p(x) for some distributon p(x).

Consider simulating values of (x̃, Ỹ) the null distribution:

• Can’t do it unconditionally, don’t know p(Y) or p(x).

• What about conditionally?

Null Distribution: Condition on Ỹ = Y, sort(x̃1, . . . , x̃n) = sort(x1, . . . , xn).

• Simulate Ỹ conditional on Ỹ = Y;

• Simulate x̃ by permuting the entries of x.

Null scenario: The scenario that is being mimicked here is Y being fixed, x
determined independent of Y.
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Permutation null distribution

EBETA.psim<-NULL
for(s in 1:1000)
{

xs<-sample(x)
Xsrow<-outer(xs,rep(1,n)) ; Xscol<-t(Xsrow) ; Xsint<-Xsrow*Xscol

beta.sim<-glm( c(Y) ~ c(Xsrow) + c(Xscol) + c(Xsint) , family=binomial)$coef
EBETA.psim<-rbind(EBETA.psim,exp(beta.sim) )
}

head(EBETA.psim)

## (Intercept) c(Xsrow) c(Xscol) c(Xsint)
## [1,] 0.04724409 0.9921875 0.8137748 0.9586459
## [2,] 0.04855761 0.8565281 0.7188310 1.5099572
## [3,] 0.03814086 1.1900643 1.0959716 0.9323231
## [4,] 0.04500000 0.9289176 0.9335937 1.0558645
## [5,] 0.03447057 1.2187706 1.3475352 0.8806846
## [6,] 0.05006280 0.8813055 0.7721326 1.0520387
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Permutation null comparisons
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SRG null comparisons
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Comparison

While the conclusions for this dataset are basically the same, the evidence
against the permutation null is generally weaker than against the SRG null.

• The SRG null makes stronger assumptions (that are generally false);

• The permutation null test requires conditioning on much of the data
(which lowers power).

Recommendations:
If your goal is just to reject a null, then use the SRG null.

If you’d like to make more meaningful conclusions, use the permutation null.

Limitations: Permutation approaches only test coarse hypotheses:

• can test for no effect of a nodal covariate;

• can’t test for homophily, in the presence of row and column effects.
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