Measure and probability

Peter D. Hoff

September 26, 2013

This is a very brief introduction to measure theory and measure-theoretic probability, designed to familiarize the student with the concepts used in a PhD-level mathematical statistics course. The presentation of this material was influenced by Williams [1991].

Contents

1	Algebras and measurable spaces	2
2	Generated σ -algebras	3
3	Measure	4
4	Integration of measurable functions	5
5	Basic integration theorems	9
6	Densities and dominating measures	10
7	Product measures	12
8	Probability measures	14

9	Expectation	16
10	Conditional expectation and probability	17
11	Conditional probability	21

1 Algebras and measurable spaces

A measure μ assigns positive numbers to sets A: $\mu(A) \in \mathbb{R}$

- A a subset of Euclidean space, $\mu(A) = \text{length}$, area or volume.
- A an event, $\mu(A) =$ probability of the event.

Let \mathcal{X} be a space. What kind of sets should we be able to measure?

 $\mu(\mathcal{X}) = \text{measure of whole space. It could be } \infty$, could be 1. If we can measure A, we should be able to measure A^C . If we can measure A and B, we should be able to measure $A \cup B$.

Definition 1 (algebra). A collection \mathcal{A} of subsets of \mathcal{X} is an algebra if

- 1. $\mathcal{X} \in \mathcal{A}$;
- 2. $A \in \mathcal{A} \Rightarrow A^c \in \mathcal{A};$
- 3. $A, B \in \mathcal{A} \Rightarrow A \cup B \in \mathcal{A}$.

 \mathcal{A} is closed under finitely many set operations.

For many applications we need a slightly richer collection of sets.

Definition 2 (σ -algebra). \mathcal{A} is a σ -algebra if it is an algebra and for $A_n \in \mathcal{A}$, $n \in \mathbb{N}$, we have $\cup A_n \in \mathcal{A}$.

 \mathcal{A} is closed under countably many set operations.

<u>Exercise</u>: Show $\cap A_n \in \mathcal{A}$.

Definition 3 (measurable space). A space \mathcal{X} and a σ -algebra \mathcal{A} on \mathcal{X} is a measurable space $(\mathcal{X}, \mathcal{A})$.

2 Generated σ -algebras

Let \mathcal{C} be a set of subsets of \mathcal{X}

Definition 4 (generated σ -algebra). The σ -algebra generated by C is the smallest σ -algebra that contains C, and is denoted $\sigma(C)$.

Examples:

1.
$$C = \{\phi\} \rightarrow \sigma(C) = \{\phi, \mathcal{X}\}$$

2. $C = C \in \mathcal{A} \rightarrow \sigma(C) = \{\phi, C, C^c, \mathcal{X}\}$

Example (Borel sets):

Let $\mathcal{X} = \mathbb{R}$ $\mathcal{C} = \{C : C = (a, b), a < b, (a, b) \in \mathbb{R}^2\} = \text{open intervals}$ $\sigma(\mathcal{C}) = \text{smallest } \sigma\text{-algebra containing the open intervals}$ Now let

 $G \in \mathcal{G} = \text{open sets} \quad \Rightarrow \quad G = \cup C_n \text{ for some countable collection } \{C_n\} \subset \mathcal{C}.$ $\Rightarrow \quad G \in \sigma(\mathcal{C})$ $\Rightarrow \quad \sigma(\mathcal{G}) \subset \sigma(\mathcal{C})$

<u>Exercise</u>: Convince yourself that $\sigma(\mathcal{C}) = \sigma(\mathcal{G})$.

Exercise: Let \mathcal{D} be the closed intervals, \mathcal{F} the closed sets. Show

$$\sigma(\mathcal{C}) = \sigma(\mathcal{G}) = \sigma(\mathcal{F}) = \sigma(\mathcal{D})$$

Hint:

- $(a,b) = \bigcup_n [a+c/n, b-c/n]$
- $[a,b] = \cap_n (a 1/n, b + 1/n)$

The sets of $\sigma(\mathcal{G})$ are called the "Borel sets of \mathbb{R} ."

Generally, for any topological space $(\mathcal{X}, \mathcal{G}), \sigma(\mathcal{G})$ are known as the Borel sets.

3 Measure

Definition 5 (measure). Let $(\mathcal{X}, \mathcal{A})$ be a measurable space. A map $\mu : \mathcal{A} \to [0, \infty]$ is a measure if it is countably additive, meaning if $A_i \cap A_j = \phi$ for $\{A_n : n \in \mathbb{N}\} \subset \mathcal{A}$, then

$$\mu(\cup_n A_n) = \sum_n \mu(A_n).$$

A measure is <u>finite</u> if $\mu(\mathcal{X}) < \infty$ (e.g. a probability measure) A measure is <u> σ -finite</u> if $\exists \{C_n : n \in \mathbb{N}\} \subset \mathcal{A}$ with

- 1. $\mu(C_n) < \infty$,
- 2. $\cup_n C_n = \mathcal{X}$.

Definition 6 (measure space). The triple $(\mathcal{X}, \mathcal{A}, \mu)$ is called a measure space.

Examples:

- 1. Counting measure: Let \mathcal{X} be countable.
 - \mathcal{A} = all subsets of \mathcal{X} (show this is a σ -algebra)
 - $\mu(A)$ = number of points in A
- 2. Lebesgue measure: Let $\mathcal{X} = \mathbb{R}^n$

- $\mathcal{A} = \text{Borel sets of } \mathcal{X}$
- $\mu(A) = \prod_{k=1}^{n} (a_k^H a_k^L)$, for rectangles $A = \{x \in \mathbb{R}^n : a_k^L < x_k < a_k^H, k = 1, \dots, n\}.$

The following is the foundation of the integration theorems to come.

Theorem 1 (monotonic convergence of measures). Given a measure space $(\mathcal{X}, \mathcal{A}, \mu)$,

1. If $\{A_n\} \subset \mathcal{A}, A_n \subset A_{n+1}$ then $\mu(A_n) \uparrow \mu(\cup A_n)$.

2. If
$$\{B_n\} \subset \mathcal{A}$$
, $B_{n+1} \subset B_n$, and $\mu(B_k) < \infty$ for some k, then $\mu(B_n) \downarrow \mu(\cap B_n)$

Exercise: Prove the theorem.

Example (what can go wrong): Let $\mathcal{X} = \mathbb{R}$, $\mathcal{A} = \mathcal{B}(\mathbb{R})$, $\mu = \text{Leb}$ Letting $B_n = (n, \infty)$, then

- $\mu(B_n) = \infty \ \forall n;$
- $\cap B_n = \phi$.

4 Integration of measurable functions

Let (Ω, \mathcal{A}) be a measurable space.

Let $X(\omega) : \Omega \to \mathbb{R}$ (or \mathbb{R}^p , or \mathcal{X})

Definition 7 (measurable function). A function $X : \Omega \to \mathbb{R}$ is measurable if

$$\{\omega: X(\omega) \in B\} \in \mathcal{A} \ \forall B \in \mathcal{B}(\mathbb{R}).$$

So X is measurable if we can "measure it" in terms of (Ω, \mathcal{A}) . Shorthand notation for a measurable function is " $X \in m\mathcal{A}$ ". <u>Exercise:</u> If X, Y measurable, show the following are measurable:

- X + Y, XY, X/Y
- g(X), h(X, Y) if g, h are measurable.

Probability preview: Let $\mu(A) = Pr(\omega \in A)$ Some $\omega \in \Omega$ "will happen." We want to know

$$Pr(X \in B) = Pr(w : X(\omega) \in B)$$
$$= \mu(X^{-1}(B))$$

For the measure of $X^{-1}(B)$ to be defined, it has to be a measurable set, i.e. we need $X^{-1}(B) = \{\omega : X(\omega) \in B\} \in \mathcal{A}\}$

We will now define the abstract Lebesgue integral for a very simple class of measurable functions, known as "simple functions." Our strategy for extending the definition is as follows:

- 1. Define the integral for "simple functions";
- 2. Extend definition to positive measurable functions;
- 3. Extend definition to arbitrary measurable functions.

Integration of simple functions

For a measurable set A, define its indicator function as follows:

$$I_A(\omega) = \begin{cases} 1 \text{ if } \omega \in A \\ 0 \text{ else} \end{cases}$$

Definition 8 (simple function). $X(\omega)$ is simple if $X(\omega) = \sum_{k=1}^{K} x_k I_{A_k}(\omega)$, where

- $x_k \in [0,\infty)$
- $A_j \cap A_k = \phi, \{A_k\} \subset \mathcal{A}$

Exercise: Show a simple function is measurable.

Definition 9 (integral of a simple function). If X is simple, define

$$\mu(X) = \int X(\omega)\mu(d\omega) = \sum_{k=1}^{K} x_k \mu(A_k)$$

Various other expressions are supposed to represent the same integral:

$$\int X d\mu \quad , \quad \int X d\mu(\omega) \quad , \quad \int X d\omega$$

We will sometimes use the first of these when we are lazy, and will avoid the latter two. Exercise: Make the analogy to expectation of a discrete random variable.

Integration of positive measurable functions

Let $X(\omega)$ be a measurable function for which $\mu(\omega : X(\omega) < 0) = 0$

- we say " $X \ge 0$ a.e. μ "
- we might write " $X \in (m\mathcal{A})^+$ ".

Definition 10. For $X \in (m\mathcal{A})^+$, define

$$\mu(X) = \int X(\omega)\mu(d\omega) = \sup\{\mu(X^*) : X^* \text{ is simple}, X^* \le X\}$$

Draw the picture

<u>Exercise</u>: For $a, b \in \mathbb{R}$, show $\int (aX + bY)d\mu = a \int Xd\mu + b \int Yd\mu$.

Most people would prefer to deal with limits rather than sups over classes of functions. Fortunately we can "calculate" the integral of a positive function X as the limit of the integrals of functions X_n that converge to X, using something called the monotone convergence theorem.

Theorem 2 (monotone convergence theorem). If $\{X_n\} \subset (m\mathcal{A})^+$ and $X_n(\omega) \uparrow X(\omega)$ as $n \to \infty$ a.e. μ , then

$$\mu(X_n) = \int X_n \mu(d\omega) \uparrow \int X \mu(d\omega) = \mu(X) \text{ as } n \to \infty$$

With the MCT, we can explicitly construct $\mu(X)$: Any sequence of SF $\{X_n\}$ such that $X_n \uparrow X$ pointwise gives $\mu(X_n) \uparrow \mu(X)$ as $n \to \infty$.

Here is one in particular:

$$X_n(\omega) = \begin{cases} 0 & \text{if } X(\omega) = 0\\ (k-1)/2^n & \text{if } (k-1)/2^n < X(\omega) < k/2^n < n, k = 1, \dots, n2^n\\ n & \text{if } X(\omega) > n \end{cases}$$

Exercise: Draw the picture, and confirm the following:

- 1. $X_n(\omega) \in (m\mathcal{A})^+;$
- 2. $X_n \uparrow X;$
- 3. $\mu(X_n) \uparrow \mu(X)$ (by MCT).

Riemann versus Lebesgue

Draw picture

Example:

Let $(\Omega, \mathcal{A}) = ([0, 1], \mathcal{B}([0, 1]))$

$$X(\omega) = \begin{cases} 1 & \text{if } \omega \text{ is rational} \\ 0 & \text{if } \omega \text{ is irrational} \end{cases}$$

Then

$$\int_0^1 X(\omega) d\omega$$
 is undefined, but $\int_0^1 X(\omega) \mu(d\omega)$

Integration of integrable functions

We now have a definition of $\int X(\omega)\mu(d\omega)$ for positive measurable X. What about for measurable X in general?

Let $X \in m\mathcal{A}$. Define

- $X^+(\omega) = X(\omega) \lor 0 > 0$, the positive part of X;
- $X^{-}(\omega) = (-X(\omega)) \lor 0 > 0$, the negative part of X.

Exercise: Show

- $X = X^+ X^-$
- X^+, X^- both measurable

Definition 11 (integrable, integral). $X \in m\mathcal{A}$ is integrable if $\int X^+ d\mu$ and $\int X^- d\mu$ are both finite. In this case, we define

$$\mu(X) = \int X(\omega)\mu(d\omega) = \int X^+(\omega)\mu(d\omega) - \int X^-(\omega)\mu(d\omega).$$

<u>Exercise</u>: Show $|\mu(X)| \le \mu(|X|)$.

5 Basic integration theorems

Recall $\liminf_{n \to \infty} c_n = \lim_{n \to \infty} (\inf_{k \ge n} c_k)$ $\limsup_{n \to \infty} c_n = \lim_{n \to \infty} (\sup_{k \ge n} c_k)$

Theorem 3 (Fatou's lemma). For $\{X_n\} \subset (m\mathcal{A})^+$,

 $\mu(\liminf X_n) \le \liminf \mu(X_n)$

Theorem 4 (Fatou's reverse lemma). For $\{X_n\} \subset (m\mathcal{A})^+$ and $X_n \leq Z \ \forall n, \ \mu(Z) < \infty$,

 $\mu(\limsup X_n) \ge \limsup \mu(X_n)$

I most frequently encounter Fatou's lemmas in the proof of the following:

Theorem 5 (dominated convergence theorem). If $\{X_n\} \subset m\mathcal{A}, |X_n| < Z \text{ a.e. } \mu, \mu(Z) < \infty$ and $X_n \to X$ a.e. μ , then

$$\mu(|X_n - X|) \to 0$$
, which implies $\mu(X_n) \to \mu(X)$.

Proof.

$$\begin{split} |X_n-X| &\leq 2Z \ , \ \mu(2Z) = 2\mu(Z) < \infty \\ \text{By reverse Fatou, } \limsup \mu(|X_n-X|) \leq \mu(\limsup |X_n-X|) = \mu(0) = 0. \\ \text{To show } \mu(X_n) \to \mu(X) \ , \ \text{note} \end{split}$$

$$|\mu(X_n) - \mu(X)| = |\mu(X_n - X)| \le \mu(|X_n - X|) \to 0.$$

Among the four integration theorems, we will make the most use of the MCT and the DCT:

MCT : If $\{X_n\} \in (m\mathcal{A})^+$ and $X_n \uparrow X$, then $\mu(X_n) \to \mu(X)$.

DCT : If $\{X_n\}$ are dominated by an integrable function and $X_n \to X$, then $\mu(X_n) \to \mu(X)$.

6 Densities and dominating measures

One of the main concepts from measure theory we need to be familiar with for statistics is the idea of a family of distributions (a model) the have densities with respect to a common dominating measure.

Examples:

- The normal distributions have densities with respect to Lebesgue measure on \mathbb{R} .
- The Poisson distributions have densities with respect to counting measure on \mathbb{N}_0 .

Density

Theorem 6. Let $(\mathcal{X}, \mathcal{A}, \mu)$ be a measure space, $f \in (m\mathcal{A})^+$. Define

$$\nu(A) = \int_A f d\mu = \int \mathbf{1}_A(x) f(x) \mu(dx)$$

Then ν is a measure on $(\mathcal{X}, \mathcal{A})$.

Proof. We need to show that ν is countably additive. Let $\{A_n\} \subset \mathcal{A}$ be disjoint. Then

$$\nu(\cup A_n) = \int_{\cup A_n} f d\mu$$

= $\int 1_{\cup A_n}(x) f(x) \mu(dx)$
= $\int \sum_{n=1}^{\infty} f(x) 1_{A_n}(x) \mu(dx)$
= $\int \lim_{k \to \infty} g_k(x) \mu(dx),$

where $g_k(x) = \sum_{n=1}^k f(x) 1_{A_n}(x)$. Since $0 \le g_k(x) \uparrow 1_{\cup A_n}(x) f(x) \equiv g(x)$, by the MCT

$$\nu(\cup A_n) = \int \lim_{k \to \infty} g_k d\mu = \lim_{k \to \infty} \int g_k d\mu$$
$$= \lim_{k \to \infty} \int \sum_{n=1}^k f(x) \mathbf{1}_{A_n}(x) d\mu$$
$$= \lim_{k \to \infty} \sum_{n=1}^k \int_{A_n} f d\mu = \sum_{n=1}^\infty \nu(A_n)$$

Definition 12 (density). If $\nu(A) = \int_A f d\mu$ for some $f \in (m\mathcal{A})^+$ and all $A \in \mathcal{A}$, we say that the measure ν has density f with respect to μ .

Examples:

- $\mathcal{X} = \mathbb{R}, \mu$ is Lebesgue measure on \mathbb{R}, f a normal density $\Rightarrow \nu$ is the normal distribution (normal probability measure).
- $\mathcal{X} = \mathbb{N}_0$, μ is counting measure on \mathbb{N}_0 , f a Poisson density $\Rightarrow \nu$ is the Poisson distribution (Poisson probability measure).

Note that in the latter example, f is a density even though it isn't continuous in $x \in \mathbb{R}$.

Radon-Nikodym theorem

For $f \in (m\mathcal{A})^+$ and $\nu(A) = \int_A f d\mu$,

- ν is a measure on $(\mathcal{X}, \mathcal{A})$,
- f is called the density of ν w.r.t. μ (or " ν has density f w.r.t. μ).

Exercise: If ν has density f w.r.t. μ , show $\mu(A) = 0 \Rightarrow \nu(A) = 0$.

Definition 13 (absolutely continuous). Let μ, ν be measures on \mathcal{X}, \mathcal{A} . The measure ν is absolutely continuous with respect to μ if $\mu(A) = 0 \Rightarrow \nu(A) = 0$.

If ν is absolutely continuous w.r.t. μ , we might write either

- " ν is dominated by μ " or
- " $\nu \ll \mu$."

Therefore, $\mu(A) = \int_A f d\mu \Rightarrow \nu \ll \mu$. What about the other direction?

Theorem 7 (Radon-Nikodym theorem). Let $(\mathcal{X}, \mathcal{A}, \mu)$ be a σ -finite measure space, and suppose $\nu \ll \mu$. Then there exists an $f \in (m\mathcal{A})^+$ s.t.

$$\nu(A) = \int_A f \ d\mu \ \forall A \in \mathcal{A}.$$

In other words

$$\nu \ll \mu \Leftrightarrow \nu$$
 has a density w.r.t. μ

Change of measure Sometimes we will say "f is the RN derivative of ν w.r.t. μ ", and write $f = \frac{d\nu}{d\mu}$.

This helps us with notation when "changing measure:"

$$\int g \, d\nu = \int g \left[\frac{d\nu}{d\mu} \right] \, d\mu = \int g f d\mu$$

You can think of ν as a probability measure, and g as a function of the random variable. The expectation of g w.r.t. ν can be computed from the integral of gf w.r.t μ . Example:

$$\int x^2 \sigma^{-1} \phi([x-\theta]/\sigma) dx$$

- $g(x) = x^2;$
- μ is Lebesgue measure, here denoted with "dx";
- ν is the normal (θ, σ^2) probability measure;
- $d\nu/d\mu = f = \sigma^{-1}\phi([x \theta]/\sigma)$ is the density of ν w.r.t. μ .

7 Product measures

We often have to work with joint distributions of multiple random variables living on potentially different measure spaces, and will want to compute integrals/expectations of multivariate functions of these variables. We need to define integration for such cases appropriately, and develop some tools to actually do the integration. Let $(\mathcal{X}, \mathcal{A}_x, \mu_x)$ and $(\mathcal{Y}, \mathcal{B}_y, \mu_y)$ be σ -finite measure spaces. Define

$$\mathcal{A}_{xy} = \sigma(F \times G : F \in \mathcal{A}_x, G \in \mathcal{A}_y)$$
$$\mu_{xy}(F \times G) = \mu_x(F)\mu_y(G)$$

Here, $(\mathcal{X} \times \mathcal{Y}, \mathcal{A}_{xy})$ is the "product space", and $\mu_x \times \mu_y$ is the "product measure." Suppose f(x, y) is an \mathcal{A}_{xy} -measurable function. We then might be interested in

$$\int_{\mathcal{X}\times\mathcal{Y}} f(x,y)\mu_{xy}(dx\times dy).$$

The "calculus" way of doing this integral is to integrate first w.r.t. one variable, and then w.r.t. the other. The following theorems give conditions under which this is possible.

Theorem 8 (Fubini's theorem). Let $(\mathcal{X}, \mathcal{A}_x, \mu_x)$ and $(\mathcal{Y}, \mathcal{A}_y, \mu_y)$ be two complete measure spaces and f be \mathcal{A}_{xy} -measurable and $\mu_x \times \mu_y$ -integrable. Then

$$\int_{\mathcal{X}\times\mathcal{Y}} f \ d(\mu_x \times \mu_y) = \int_X \left[\int_Y f \ d\mu_y \right] \ d\mu_x = \int_Y \left[\int_X f \ d\mu_x \right] \ d\mu_y$$

Additionally,

- 1. $f_x(y) = f(x, y)$ is an integrable function of y for x a.e. μ_x .
- 2. $\int f(x,y) d\mu_x(x)$ is μ_y -integrable as a function of y.

Also, items 1 and 2 hold with the roles of x and y reversed.

The problem with Fubini's theorem is that often you don't know of f is $\mu_x \times \mu_y$ -integrable without being able to integrate variable-wise. In such cases the following theorem can be helpful.

Theorem 9 (Tonelli's theorem). Let $(\mathcal{X}, \mathcal{A}_x, \mu_x)$ and $(\mathcal{Y}, \mathcal{A}_y, \mu_y)$ be two σ -finite measure spaces and f in $(m\mathcal{A}_{xy})^+$. Then

$$\int_{\mathcal{X}\times\mathcal{Y}} f \ d(\mu_x \times \mu_y) = \int_X \left[\int_Y f \ d\mu_y \right] \ d\mu_x = \int_Y \left[\int_X f \ d\mu_x \right] \ d\mu_y$$

Additionally,

- 1. $f_x(y) = f(x, y)$ is a measurable function of y for x a.e. μ_x .
- 2. $\int f(x,y) d\mu_x(x)$ is \mathcal{A}_y -measurable as a function of y.

Also, 1 and 2 hold with the roles of x and y reversed.

8 Probability measures

Definition 14 (probability space). A measure space (Ω, A, P) is a probability space if $P(\Omega) = 1$. In this case, P is called a probability measure.

Interpretation: Ω is the space of all possible outcomes, $\omega \in \Omega$ is a possible outcome.

Numerical data X is a function of the outcome ω : $X = X(\omega)$ Uncertainty in the outcome leads to uncertainty in the data. This uncertainty is referred to as "randomness", and so $X(\omega)$ is a "random variable."

Definition 15 (random variable). A random variable $X(\omega)$ is a real-valued measurable function in a probability space.

Examples:

- multivariate data: $X: \Omega \to \mathbb{R}^p$
- replications: $X : \Omega \to \mathbb{R}^n$
- replications of multivariate data: $X : \Omega \to \mathbb{R}^{n \times p}$

Suppose $X : \Omega \to \mathbb{R}^k$. For $B \in \mathcal{B}(\mathbb{R}^k)$, we might write $P(\{\omega : X(\omega) \in B\})$ as P(B).

Often, the " Ω -layer" is dropped and we just work with the "data-layer:" $(\mathcal{X}, \mathcal{A}, P)$ is a measure space, $P(A) = \Pr(X \in A)$ for $A \in \mathcal{A}$.

Densities

Suppose $P \ll \mu$ on $(\mathcal{X}, \mathcal{A})$. Then by the RN theorem, $\exists p \in (m\mathcal{A})^+$ s.t.

$$P(A) = \int_{A} p \ d\mu = \int_{A} p(x)\mu(dx).$$

Then p is the probability density of P w.r.t. μ . (probability density = Radon-Nikodym derivative) Examples:

1. Discrete:

$$\mathcal{X} = \{x_k : k \in \mathbb{N}\}, \ \mathcal{A} = \text{all subsets of } \mathcal{X}.$$

Typically we write $P(\{x_k\}) = p(x_k) = p_k, \ 0 \le p_k \le 1, \ \sum p_k = 1.$

2. Continuous:

$$\begin{split} &\mathcal{X} = \mathbb{R}^k, \, \mathcal{A} = \mathcal{B}(\mathbb{R}^k). \\ &P(A) = \int_A p(x) \mu(dx), \, \mu = & \text{Lebesgue measure on } \mathcal{B}(\mathbb{R}^k). \end{split}$$

3. Mixed discrete and continuous:

$$Z \sim N(0,1), \ X = \begin{cases} Z & \text{w.p. } 1/2 \\ 0 & \text{w.p. } 1/2 \end{cases}$$

Define P by $P(A) = \Pr(X \in A)$ for $A \in \mathcal{B}(\mathbb{R})$. Then

- (a) $P \not\ll \mu_L$ $(\mu_L(\{0\}) = 0, P(\{0\}) = 1/2)$
- (b) $P \ll \mu = \mu_L + \mu_0$, where $\mu_0 = \#(A \cap \{0\})$ for $A \in \mathcal{A}$.

<u>Exercise</u>: Verify $(\mathbb{R}, \mathcal{B}(\mathbb{R}), P)$ is a measure space and $P \ll \mu$.

The following is a concept you are probably already familiar with:

Definition 16 (support). Let $(\mathcal{X}, \mathcal{G})$ be a topological space, and $(\mathcal{X}, \mathcal{B}(\mathcal{G}), P)$ be a probability space. The support of P is given by

$$\operatorname{supp}(P) = \{ x \in \mathcal{X} : P(G) > 0 \text{ for all } G \in \mathcal{G} \text{ containing } x \}$$

Note that the notion of support requires a topology on \mathcal{X} . Examples:

- Let P be a univariate normal probability measure. Then $\operatorname{supp}(P) = \mathbb{R}$.
- Let X = [0, 1], \mathcal{G} be the open sets defined by Euclidean distance, and $P(\mathbb{Q} \cap [0, 1]) = 1$.
 - 1. $(\mathbb{Q}^c \cap [0,1]) \subset \operatorname{supp}(P)$ but
 - 2. $P(\mathbb{Q}^c \cap [0,1]) = 0.$

9 Expectation

In probability and statistics, a weighted average of a function, i.e. the integral of a function w.r.t. a probability measure, is (unfortunately) referred to as its expectation or expected value.

Definition 17 (expectation). Let $(\mathcal{X}, \mathcal{A}, P)$ be a probability space and let T(X) be a measurable function of X (i.e. a statistic). The expectation of T is its integral over \mathcal{X} :

$$\mathbf{E}[T] = \int T(x)P(dx).$$

Why is this definition unfortunate? Consider a highly skewed probability distribution. Where do you "expect" a sample from this distribution to be?

Jensen's inequality

Recall that a convex function $g: \mathbb{R} \to \mathbb{R}$ is one for which

$$g(pX_1 + (1-p)X_2) \le pg(X_1) + (1-p)g(X_2), \quad X_1, X_2 \in \mathbb{R}, \ p \in [0,1],$$

i.e. "the function at the average is less than the average of the function."

Draw a picture.

The following theorem should therefore be no surprise:

Theorem 10 (Jensen's inequality). Let $g : \mathbb{R} \to \mathbb{R}$ be a convex function and X be a random variable on $(\mathbb{R}, \mathcal{B}(\mathbb{R}), P)$ such that $\mathbb{E}[|X|] < \infty$ and $\mathbb{E}[|g(X)|] < \infty$. Then

$$g(\mathbf{E}[X]) \le \mathbf{E}[g(X)].$$

i.e. "the function at the average is less than the average of the function."

The result generalizes to more general sample spaces.

Schwarz's inequality

Theorem 11 (Schwarz's inequality). If $\int X^2 dP$ and $\int Y^2 dP$ are finite, then $\int XY dP$ is finite and

$$|\int XY \ dP| \le \int |XY| \ dP \le (\int X^2 \ dP)^{1/2} (\int Y^2 \ dP)^{1/2}$$

In terms of expectation, the result is

$$\mathbf{E}[XY]^2 \le \mathbf{E}[|XY|]^2 \le \mathbf{E}[X^2]\mathbf{E}[Y^2].$$

One statistical application is to show that the correlation coefficient is always between -1 and 1.

Hölders inequality

A more general version of Schwarz's inequality is Hölder's inequality.

Theorem 12 (Hölder's inequality). Let

- $w \in (0,1),$
- $\operatorname{E}[X^{1/w}] < \infty$ and
- $E[Y^{1/(1-w)}] < \infty$.

Then $E[|XY|] < \infty$ and

$$|\mathbf{E}[XY]| \le \mathbf{E}[|XY|] \le \mathbf{E}[X^{1/w}]^w \mathbf{E}[Y^{1/(1-w)}]^{1-w}.$$

Exercise: Prove this inequality from Jensen's inequality.

10 Conditional expectation and probability

Conditioning in simple cases:

$$X \in \{x_1, \dots, x_K\} = \mathcal{X}$$

$$Y \in \{y_1, \dots, y_M\} = \mathcal{Y}$$

$$\Pr(X = x_k | Y = y_m) = \Pr(X = x_k, Y = y_m) / \Pr(Y = y_m)$$

$$\mathbb{E}[X | Y = y_m] = \sum_{k=1}^K x_k \Pr(X = x_k | Y = y_m)$$

This discrete case is fairly straightforward and intuitive. We are also familiar with the extension to the continuous case:

$$E[X|Y = y] = \int xp(x|y) \, dx = \int x \left[\frac{p(x,y)}{p(y)}\right] \, dx$$

Where does this extension come from, and why does it work? Can it be extended to more complicated random variables?

Introduction to Kolmogorov's formal theory:

Let $\{\Omega, \mathcal{A}, P\}$ be a probability space and X, Y random variables with finite supports \mathcal{X}, \mathcal{Y} . Suppose \mathcal{A} contains all sets of the form $\{\omega : X(\omega) = x, Y(\omega) = y\}$ for $(x, y) \in \mathcal{X} \times \mathcal{Y}$. Draw the picture.

Let \mathcal{F}, \mathcal{G} be the σ -algebras consisting of all subsets of \mathcal{X} and \mathcal{Y} , respectively.

Add \mathcal{F}, \mathcal{G} to the picture (rows and columns of $\mathcal{X} \times \mathcal{Y}$ -space)

In the Kolmogorov theory, E[X|Y] is a random variable Z defined as follows:

$$Z(\omega) = \begin{cases} \mathbf{E}[X|Y = y_1] & \text{if } Y(\omega) = y_1 \\ \mathbf{E}[X|Y = y_2] & \text{if } Y(\omega) = y_1 \\ & \vdots \\ \mathbf{E}[X|Y = y_M] & \text{if } Y(\omega) = y_M \end{cases}$$

We say that Z = E[X|Y] is a (version) of the conditional expectation of X given Y. Note the following:

- 1. E[X|Y] is a random variable;
- 2. E[X|Y] is a function of ω only through $Y(\omega)$.

This latter fact makes E[X|Y] " $\sigma(Y)$ -measurable", where

$$\sigma(Y) = \sigma(\{\omega : Y(\omega) \in F\}, F \in \mathcal{F}\})$$

 $\sigma(Y)$ is the smallest σ -algebra on Ω that makes Y measurable.

This means we don't need the whole σ -algebra \mathcal{A} to "measure" $\mathbb{E}[X|Y]$, we just need the part that determines Y.

Defining properties of conditional expectation

$$\begin{split} \int_{Y=y} \mathbf{E}[X|Y] \ dP &= \mathbf{E}[X|Y=y] P(Y=y) = \sum_{x} x P(X=x|Y=y) P(Y=y) \\ &= \sum_{x} x \Pr(X=x, Y=y) = \int_{Y=y} X \ dP \end{split}$$

In words, the integral of E[X|Y] over the set Y = y equals the integral of X over Y = y.

In this simple case, it is easy to show

$$\int_{A} \mathbb{E}[X|Y] \ dP = \int_{A} X \ dP \ \forall G \in \sigma(Y)$$

In words, the integral of E[X|Y] over any $\sigma(Y)$ -measurable set is the same as that of X. Intuitively, E[X|Y] is "an approximation" to X, matching X in terms of expectations over sets defined by Y.

Kolmogorov's fundamental theorem and definition

Theorem 13 (Kolmogorov,1933). Let (Ω, \mathcal{A}, P) be a probability space, and X a r.v. with $E[|X|] < \infty$. Let $\mathcal{G} \subset \mathcal{A}$ be a sub- σ algebra of \mathcal{A} . Then \exists a r.v. $E[X|\mathcal{G}]$ s.t.

- 1. $E[X|\mathcal{G}]$ is \mathcal{G} -measurable
- 2. $\mathrm{E}[|\mathrm{E}[X|\mathcal{G}]|] < \infty$
- 3. $\forall G \in \mathcal{G}$,

$$\int_{G} \mathbb{E}[X|\mathcal{G}]dP = \int_{G} XdP.$$

Technically, a random variable satisfying 1, 2 and 3 is called "a version of $E[X|\mathcal{G}]$ ", as the conditions only specify things a.e. P.

From 1,2 and 3, the following properties hold

(a)
$$\operatorname{E}[\operatorname{E}[X|\mathcal{G}]] = \operatorname{E}[X].$$

- (b) If $X \in m\mathcal{G}$, then $E[X|\mathcal{G}] = X$.
- (c) If $\mathcal{H} \subset \mathcal{G}$, \mathcal{H} a σ -algebra, then $\mathrm{E}[\mathrm{E}[X|\mathcal{G}]|\mathcal{H}] = \mathrm{E}[X|\mathcal{H}]$
- (d) If $Z \in m\mathcal{G}$ and |ZX| is integrable, $\mathbb{E}[ZX|\mathcal{G}] = Z\mathbb{E}[X|\mathcal{G}]$.

Proving (a) and (b) should be trivial.

For (c), we need to show that $E[X|\mathcal{H}]$ "is a version of" $E[Z|\mathcal{H}]$, where $Z = E[X|\mathcal{G}]$ This means the integral of $E[X|\mathcal{H}]$ over any \mathcal{H} -measurable set H must equal that of Z over H. Let's check:

$$\int_{H} \mathbf{E}[X|\mathcal{H}] \, dP = \int_{H} X \, dP, \text{ by definition of } \mathbf{E}[X|\mathcal{H}]$$
$$= \int_{H} \mathbf{E}[X|\mathcal{G}] \, dP, \text{ since } H \in \mathcal{H} \subset \mathcal{G}.$$

Exercise: Prove (d).

Independence

Definition 18 (independent σ -algebras). Let (Ω, \mathcal{A}, P) be a probability space. The sub- σ algebras \mathcal{G} and \mathcal{H} are independent if $P(A \cap B) = P(A)P(B) \ \forall A \in \mathcal{G}, B \in \mathcal{H}$.

This notion of independence allows us to describe one more intuitive property of conditional expectation.

(e) If \mathcal{H} is independent of $\sigma(X)$, then $\mathbb{E}[X|\mathcal{H}] = \mathbb{E}[X]$.

Intuitively, if X is independent of \mathcal{H} , then knowing where you are in \mathcal{H} isn't going to give you any information about X, and so the conditional expectation is the same as the unconditional one.

Interpretation as a projection

Let $X \in m\mathcal{A}$, with $\mathbb{E}[X^2] < \infty$.

Let $\mathcal{G} \subset A$ be a sub- σ -algebra.

<u>Problem:</u> Represent X by a \mathcal{G} -measurable function/r.v. Y s.t. expected squared error is minimized, i.e.

minimizeE
$$[(X - Y)^2]$$
among $Y \in m\mathcal{G}$

Solution: Suppose Y is the minimizer, and let $Z \in m\mathcal{G}$, $\mathbb{E}[Z^2] < \infty$.

$$E[(X - Y)^2] \le E[X - Y - \epsilon Z)^2]$$

= $E[(X - Y)^2] - 2\epsilon E[Z(X - Y)] + \epsilon^2 E[Z^2].$

This implies

$$2\epsilon \mathbf{E}[Z(X - Y)] \le \epsilon^2 \mathbf{E}[Z^2]$$

$$2\mathbf{E}[Z(X - Y)] \le \epsilon \mathbf{E}[Z^2] \text{ for } \epsilon > 0$$

$$2\mathbf{E}[Z(X - Y)] \ge \epsilon \mathbf{E}[Z^2] \text{ for } \epsilon < 0$$

which implies that E[Z(X - Y)] = 0. Thus if Y is the minimizer then it must satisfy

$$\mathbf{E}[ZX] = \mathbf{E}[ZY] \; \forall Z \in m\mathcal{G}.$$

In particular, let $Z = 1_G(\omega)$ for any $G \in \mathcal{G}$. Then

$$\int_G X \ dP = \int_G Y \ dP$$

so Y must be a version of $E[X|\mathcal{G}]$.

11 Conditional probability

Conditional probability

For $A \in \mathcal{A}$, $\Pr(A) = \mathbb{E}[1_A(\omega)]$.

For a σ -algebra $\mathcal{G} \subset \mathcal{A}$, <u>define</u> $\Pr(A|\mathcal{G}) = \mathbb{E}[1_A(\omega)|\mathcal{G}].$

Exercise: Use linearity of expectation and MCT to show

$$\Pr(\cup A_n | \mathcal{G}) = \sum \Pr(A_n | \mathcal{G})$$

if the $\{A_n\}$ are disjoint.

Conditional density

Let f(x, y) be a joint probability density for X, Y w.r.t. a dominating measure $\mu \times \nu$, i.e.

$$P((X,Y) \in B) = \iint_{B} f(x,y)\mu(dx)\nu(dy).$$

Let $f(x|y) = f(x,y) / \int f(x,y)\nu(dy)$

<u>Exercise</u>: Prove $\int_A f(x|y)\mu(dx)$ is a version of $\Pr(X \in A|Y)$.

This, and similar exercises, show that our "simple" approach to conditional probability generally works fine.

References

David Williams. *Probability with martingales*. Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge, 1991. ISBN 0-521-40455-X; 0-521-40605-6.