Measure and probability

Peter D. Hoff

September 26, 2013

This is a very brief introduction to measure theory and measure-theoretic probability, designed to familiarize the student with the concepts used in a PhD-level mathematical statistics course. The presentation of this material was influenced by Williams 1991.

Contents

1 Algebras and measurable spaces 2
2 Generated σ-algebras 3
3 Measure 4
4 Integration of measurable functions 5
$\begin{array}{lll}5 \text { Basic integration theorems } & 9\end{array}$
6 Densities and dominating measures 10

7 Product measures	12

$\begin{array}{lll}8 \text { Probability measures } & 14\end{array}$

| 9 Expectation | 16 |
| :--- | :--- | :--- |

10 Conditional expectation and probability 17
11 Conditional probability 21

1 Algebras and measurable spaces

A measure μ assigns positive numbers to sets $A: \mu(A) \in \mathbb{R}$

- A a subset of Euclidean space, $\mu(A)=$ length, area or volume.
- A an event, $\mu(A)=$ probability of the event.

Let \mathcal{X} be a space. What kind of sets should we be able to measure?
$\mu(\mathcal{X})=$ measure of whole space. It could be ∞, could be 1 .
If we can measure A, we should be able to measure A^{C}.
If we can measure A and B, we should be able to measure $A \cup B$.
Definition 1 (algebra). A collection \mathcal{A} of subsets of \mathcal{X} is an algebra if

1. $\mathcal{X} \in \mathcal{A}$;
2. $A \in \mathcal{A} \Rightarrow A^{c} \in \mathcal{A}$;
3. $A, B \in \mathcal{A} \Rightarrow A \cup B \in \mathcal{A}$.
\mathcal{A} is closed under finitely many set operations.

For many applications we need a slightly richer collection of sets.
Definition 2 (σ-algebra). \mathcal{A} is a σ-algebra if it is an algebra and for $A_{n} \in \mathcal{A}, n \in \mathbb{N}$, we have $\cup A_{n} \in \mathcal{A}$.
\mathcal{A} is closed under countably many set operations.
Exercise: Show $\cap A_{n} \in \mathcal{A}$.

Definition 3 (measurable space). A space \mathcal{X} and a σ-algebra \mathcal{A} on \mathcal{X} is a measurable space $(\mathcal{X}, \mathcal{A})$.

2 Generated σ-algebras

Let \mathcal{C} be a set of subsets of \mathcal{X}
Definition 4 (generated σ-algebra). The σ-algebra generated by \mathcal{C} is the smallest σ-algebra that contains \mathcal{C}, and is denoted $\sigma(\mathcal{C})$.

Examples:

1. $\mathcal{C}=\{\phi\} \rightarrow \sigma(\mathcal{C})=\{\phi, \mathcal{X}\}$
2. $\mathcal{C}=C \in \mathcal{A} \rightarrow \sigma(C)=\left\{\phi, C, C^{c}, \mathcal{X}\right\}$

Example (Borel sets):
Let $\mathcal{X}=\mathbb{R}$

$$
\mathcal{C}=\left\{C: C=(a, b), a<b,(a, b) \in \mathbb{R}^{2}\right\}=\text { open intervals }
$$

$\sigma(\mathcal{C})=$ smallest σ-algebra containing the open intervals
Now let

$$
\begin{aligned}
G \in \mathcal{G}=\text { open sets } & \Rightarrow G=\cup C_{n} \text { for some countable collection }\left\{C_{n}\right\} \subset \mathcal{C} . \\
& \Rightarrow G \in \sigma(\mathcal{C}) \\
& \Rightarrow \sigma(\mathcal{G}) \subset \sigma(\mathcal{C})
\end{aligned}
$$

Exercise: Convince yourself that $\sigma(\mathcal{C})=\sigma(\mathcal{G})$.
Exercise: Let \mathcal{D} be the closed intervals, \mathcal{F} the closed sets. Show

$$
\sigma(\mathcal{C})=\sigma(\mathcal{G})=\sigma(\mathcal{F})=\sigma(\mathcal{D})
$$

Hint:

- $(a, b)=\cup_{n}[a+c / n, b-c / n]$
- $[a, b]=\cap_{n}(a-1 / n, b+1 / n)$

The sets of $\sigma(\mathcal{G})$ are called the "Borel sets of \mathbb{R}."
Generally, for any topological space $(\mathcal{X}, \mathcal{G}), \sigma(\mathcal{G})$ are known as the Borel sets.

3 Measure

Definition 5 (measure). Let $(\mathcal{X}, \mathcal{A})$ be a measurable space. A map $\mu: \mathcal{A} \rightarrow[0, \infty]$ is a measure if it is countably additive, meaning if $A_{i} \cap A_{j}=\phi$ for $\left\{A_{n}: n \in \mathbb{N}\right\} \subset \mathcal{A}$, then

$$
\mu\left(\cup_{n} A_{n}\right)=\sum_{n} \mu\left(A_{n}\right) .
$$

A measure is finite if $\mu(\mathcal{X})<\infty$ (e.g. a probability measure)
A measure is $\underline{\sigma \text {-finite }}$ if $\exists\left\{C_{n}: n \in \mathbb{N}\right\} \subset \mathcal{A}$ with

1. $\mu\left(C_{n}\right)<\infty$,
2. $\cup_{n} C_{n}=\mathcal{X}$.

Definition 6 (measure space). The triple $(\mathcal{X}, \mathcal{A}, \mu)$ is called a measure space.
Examples:

1. Counting measure: Let \mathcal{X} be countable.

- $\mathcal{A}=$ all subsets of \mathcal{X} (show this is a σ-algebra)
- $\mu(A)=$ number of points in A

2. Lebesgue measure: Let $\mathcal{X}=\mathbb{R}^{n}$

- $\mathcal{A}=$ Borel sets of \mathcal{X}
- $\mu(A)=\prod_{k=1}^{n}\left(a_{k}^{H}-a_{k}^{L}\right)$, for rectangles $A=\left\{x \in \mathbb{R}^{n}: a_{k}^{L}<x_{k}<a_{k}^{H}, k=1, \ldots, n\right\}$.

The following is the foundation of the integration theorems to come.
Theorem 1 (monotonic convergence of measures). Given a measure space $(\mathcal{X}, \mathcal{A}, \mu)$,

1. If $\left\{A_{n}\right\} \subset \mathcal{A}, A_{n} \subset A_{n+1}$ then $\mu\left(A_{n}\right) \uparrow \mu\left(\cup A_{n}\right)$.
2. If $\left\{B_{n}\right\} \subset \mathcal{A}, B_{n+1} \subset B_{n}$, and $\mu\left(B_{k}\right)<\infty$ for some k, then $\mu\left(B_{n}\right) \downarrow \mu\left(\cap B_{n}\right)$.

Exercise: Prove the theorem.
Example (what can go wrong):
Let $\mathcal{X}=\mathbb{R}, \mathcal{A}=\mathcal{B}(\mathbb{R}), \mu=$ Leb
Letting $B_{n}=(n, \infty)$, then

- $\mu\left(B_{n}\right)=\infty \forall n$;
- $\cap B_{n}=\phi$.

4 Integration of measurable functions

Let (Ω, \mathcal{A}) be a measurable space.
Let $X(\omega): \Omega \rightarrow \mathbb{R}\left(\right.$ or \mathbb{R}^{p}, or $\left.\mathcal{X}\right)$
Definition 7 (measurable function). A function $X: \Omega \rightarrow \mathbb{R}$ is measurable if

$$
\{\omega: X(\omega) \in B\} \in \mathcal{A} \forall B \in \mathcal{B}(\mathbb{R})
$$

So X is measurable if we can "measure it" in terms of (Ω, \mathcal{A}).
Shorthand notation for a measurable function is " $X \in m \mathcal{A}$ ".
Exercise: If X, Y measurable, show the following are measurable:

- $X+Y, X Y, X / Y$
- $g(X), h(X, Y)$ if g, h are measurable.

Probability preview: Let $\mu(A)=\operatorname{Pr}(\omega \in A)$
Some $\omega \in \Omega$ "will happen." We want to know

$$
\begin{aligned}
\operatorname{Pr}(X \in B) & =\operatorname{Pr}(w: X(\omega) \in B) \\
& =\mu\left(X^{-1}(B)\right)
\end{aligned}
$$

For the measure of $X^{-1}(B)$ to be defined, it has to be a measurable set, i.e. we need $\left.X^{-1}(B)=\{\omega: X(\omega) \in B\} \in \mathcal{A}\right\}$

We will now define the abstract Lebesgue integral for a very simple class of measurable functions, known as "simple functions." Our strategy for extending the definition is as follows:

1. Define the integral for "simple functions";
2. Extend definition to positive measurable functions;
3. Extend definition to arbitrary measurable functions.

Integration of simple functions

For a measurable set A, define its indicator function as follows:

$$
I_{A}(\omega)=\left\{\begin{array}{l}
1 \text { if } \omega \in A \\
0 \text { else }
\end{array}\right.
$$

Definition 8 (simple function). $X(\omega)$ is simple if $X(\omega)=\sum_{k=1}^{K} x_{k} I_{A_{k}}(\omega)$, where

- $x_{k} \in[0, \infty)$
- $A_{j} \cap A_{k}=\phi,\left\{A_{k}\right\} \subset \mathcal{A}$

Exercise: Show a simple function is measurable.
Definition 9 (integral of a simple function). If X is simple, define

$$
\mu(X)=\int X(\omega) \mu(d \omega)=\sum_{k=1}^{K} x_{k} \mu\left(A_{k}\right)
$$

Various other expressions are supposed to represent the same integral:

$$
\int X d \mu, \quad \int X d \mu(\omega), \quad \int X d \omega .
$$

We will sometimes use the first of these when we are lazy, and will avoid the latter two. Exercise: Make the analogy to expectation of a discrete random variable.

Integration of positive measurable functions

Let $X(\omega)$ be a measurable function for which $\mu(\omega: X(\omega)<0)=0$

- we say " $X \geq 0$ a.e. μ "
- we might write " $X \in(m \mathcal{A})^{+}$".

Definition 10. For $X \in(m \mathcal{A})^{+}$, define

$$
\mu(X)=\int X(\omega) \mu(d \omega)=\sup \left\{\mu\left(X^{*}\right): X^{*} \text { is simple, } X^{*} \leq X\right\}
$$

Draw the picture
Exercise: For $a, b \in \mathbb{R}$, show $\int(a X+b Y) d \mu=a \int X d \mu+b \int Y d \mu$.
Most people would prefer to deal with limits rather than sups over classes of functions. Fortunately we can "calculate" the integral of a positive function X as the limit of the integrals of functions X_{n} that converge to X, using something called the monotone convergence theorem.

Theorem 2 (monotone convergence theorem). If $\left\{X_{n}\right\} \subset(m \mathcal{A})^{+}$and $X_{n}(\omega) \uparrow X(\omega)$ as $n \rightarrow \infty$ a.e. μ, then

$$
\mu\left(X_{n}\right)=\int X_{n} \mu(d \omega) \uparrow \int X \mu(d \omega)=\mu(X) \text { as } n \rightarrow \infty
$$

With the MCT, we can explicitly construct $\mu(X)$: Any sequence of SF $\left\{X_{n}\right\}$ such that $X_{n} \uparrow X$ pointwise gives $\mu\left(X_{n}\right) \uparrow \mu(X)$ as $n \rightarrow \infty$.
Here is one in particular:

$$
X_{n}(\omega)= \begin{cases}0 & \text { if } X(\omega)=0 \\ (k-1) / 2^{n} & \text { if }(k-1) / 2^{n}<X(\omega)<k / 2^{n}<n, k=1, \ldots, n 2^{n} \\ n & \text { if } X(\omega)>n\end{cases}
$$

Exercise: Draw the picture, and confirm the following:

1. $X_{n}(\omega) \in(m \mathcal{A})^{+}$;
2. $X_{n} \uparrow X$;
3. $\mu\left(X_{n}\right) \uparrow \mu(X)($ by MCT).

Riemann versus Lebesgue
Draw picture
Example:
Let $(\Omega, \mathcal{A})=([0,1], \mathcal{B}([0,1]))$

$$
X(\omega)= \begin{cases}1 & \text { if } \omega \text { is rational } \\ 0 & \text { if } \omega \text { is irrational }\end{cases}
$$

Then

$$
\int_{0}^{1} X(\omega) d \omega \text { is undefined, but } \int_{0}^{1} X(\omega) \mu(d \omega)
$$

Integration of integrable functions

We now have a definition of $\int X(\omega) \mu(d \omega)$ for positive measurable X. What about for measurable X in general?
Let $X \in m \mathcal{A}$. Define

- $X^{+}(\omega)=X(\omega) \vee 0>0$, the positive part of X;
- $X^{-}(\omega)=(-X(\omega)) \vee 0>0$, the negative part of X.

Exercise: Show

- $X=X^{+}-X^{-}$
- X^{+}, X^{-}both measurable

Definition 11 (integrable, integral). $X \in m \mathcal{A}$ is integrable if $\int X^{+} d \mu$ and $\int X^{-} d \mu$ are both finite. In this case, we define

$$
\mu(X)=\int X(\omega) \mu(d \omega)=\int X^{+}(\omega) \mu(d \omega)-\int X^{-}(\omega) \mu(d \omega)
$$

Exercise: Show $|\mu(X)| \leq \mu(|X|)$.

5 Basic integration theorems

Recall $\lim \inf _{n \rightarrow \infty} c_{n}=\lim _{n \rightarrow \infty}\left(\inf _{k \geq n} c_{k}\right)$

$$
\limsup _{n \rightarrow \infty} c_{n}=\lim _{n \rightarrow \infty}\left(\sup _{k \geq n} c_{k}\right)
$$

Theorem 3 (Fatou's lemma). For $\left\{X_{n}\right\} \subset(m \mathcal{A})^{+}$,

$$
\mu\left(\lim \inf X_{n}\right) \leq \liminf \mu\left(X_{n}\right)
$$

Theorem 4 (Fatou's reverse lemma). For $\left\{X_{n}\right\} \subset(m \mathcal{A})^{+}$and $X_{n} \leq Z \forall n, \mu(Z)<\infty$,

$$
\mu\left(\limsup X_{n}\right) \geq \limsup \mu\left(X_{n}\right)
$$

I most frequently encounter Fatou's lemmas in the proof of the following:
Theorem 5 (dominated convergence theorem). If $\left\{X_{n}\right\} \subset m \mathcal{A},\left|X_{n}\right|<Z$ a.e. $\mu, \mu(Z)<\infty$ and $X_{n} \rightarrow X$ a.e. μ, then

$$
\mu\left(\left|X_{n}-X\right|\right) \rightarrow 0, \quad \text { which implies } \mu\left(X_{n}\right) \rightarrow \mu(X)
$$

Proof.
$\left|X_{n}-X\right| \leq 2 Z, \mu(2 Z)=2 \mu(Z)<\infty$
By reverse Fatou, $\lim \sup \mu\left(\left|X_{n}-X\right|\right) \leq \mu\left(\lim \sup \left|X_{n}-X\right|\right)=\mu(0)=0$.
To show $\mu\left(X_{n}\right) \rightarrow \mu(X)$, note

$$
\left|\mu\left(X_{n}\right)-\mu(X)\right|=\left|\mu\left(X_{n}-X\right)\right| \leq \mu\left(\left|X_{n}-X\right|\right) \rightarrow 0 .
$$

Among the four integration theorems, we will make the most use of the MCT and the DCT:
MCT : If $\left\{X_{n}\right\} \in(m \mathcal{A})^{+}$and $X_{n} \uparrow X$, then $\mu\left(X_{n}\right) \rightarrow \mu(X)$.
DCT : If $\left\{X_{n}\right\}$ are dominated by an integrable function and $X_{n} \rightarrow X$, then $\mu\left(X_{n}\right) \rightarrow \mu(X)$.

6 Densities and dominating measures

One of the main concepts from measure theory we need to be familiar with for statistics is the idea of a family of distributions (a model) the have densities with respect to a common dominating measure.
Examples:

- The normal distributions have densities with respect to Lebesgue measure on \mathbb{R}.
- The Poisson distributions have densities with respect to counting measure on \mathbb{N}_{0}.

Density

Theorem 6. Let $(\mathcal{X}, \mathcal{A}, \mu)$ be a measure space, $f \in(m \mathcal{A})^{+}$. Define

$$
\nu(A)=\int_{A} f d \mu=\int 1_{A}(x) f(x) \mu(d x)
$$

Then ν is a measure on $(\mathcal{X}, \mathcal{A})$.
Proof. We need to show that ν is countably additive. Let $\left\{A_{n}\right\} \subset \mathcal{A}$ be disjoint. Then

$$
\begin{aligned}
\nu\left(\cup A_{n}\right) & =\int_{\cup A_{n}} f d \mu \\
& =\int 1_{\cup A_{n}}(x) f(x) \mu(d x) \\
& =\int \sum_{n=1}^{\infty} f(x) 1_{A_{n}}(x) \mu(d x) \\
& =\int \lim _{k \rightarrow \infty} g_{k}(x) \mu(d x),
\end{aligned}
$$

where $g_{k}(x)=\sum_{n=1}^{k} f(x) 1_{A_{n}}(x)$. Since $0 \leq g_{k}(x) \uparrow 1_{\cup A_{n}}(x) f(x) \equiv g(x)$, by the MCT

$$
\begin{aligned}
\nu\left(\cup A_{n}\right)=\int \lim _{k \rightarrow \infty} g_{k} d \mu & =\lim _{k \rightarrow \infty} \int g_{k} d \mu \\
& =\lim _{k \rightarrow \infty} \int \sum_{n=1}^{k} f(x) 1_{A_{n}}(x) d \mu \\
& =\lim _{k \rightarrow \infty} \sum_{n=1}^{k} \int_{A_{n}} f d \mu=\sum_{n=1}^{\infty} \nu\left(A_{n}\right)
\end{aligned}
$$

Definition 12 (density). If $\nu(A)=\int_{A}$ fd for some $f \in(m \mathcal{A})^{+}$and all $A \in \mathcal{A}$, we say that the measure ν has density f with respect to μ.

Examples:

- $\mathcal{X}=\mathbb{R}, \mu$ is Lebesgue measure on \mathbb{R}, f a normal density $\Rightarrow \nu$ is the normal distribution (normal probability measure).
- $\mathcal{X}=\mathbb{N}_{0}, \mu$ is counting measure on \mathbb{N}_{0}, f a Poisson density $\Rightarrow \nu$ is the Poisson distribution (Poisson probability measure).

Note that in the latter example, f is a density even though it isn't continuous in $x \in \mathbb{R}$.

Radon-Nikodym theorem

For $f \in(m \mathcal{A})^{+}$and $\nu(A)=\int_{A} f d \mu$,

- ν is a measure on $(\mathcal{X}, \mathcal{A})$,
- f is called the density of ν w.r.t. μ (or " ν has density f w.r.t. μ).

Exercise: If ν has density f w.r.t. μ, show $\mu(A)=0 \Rightarrow \nu(A)=0$.
Definition 13 (absolutely continuous). Let μ, ν be measures on \mathcal{X}, \mathcal{A}. The measure ν is absolutely continuous with respect to μ if $\mu(A)=0 \Rightarrow \nu(A)=0$.

If ν is absolutely continuous w.r.t. μ, we might write either

- " ν is dominated by μ " or
- " $\nu \ll \mu$."

Therefore, $\mu(A)=\int_{A} f d \mu \Rightarrow \nu \ll \mu$.
What about the other direction?
Theorem 7 (Radon-Nikodym theorem). Let $(\mathcal{X}, \mathcal{A}, \mu)$ be a σ-finite measure space, and suppose $\nu \ll \mu$. Then there exists an $f \in(m \mathcal{A})^{+}$s.t.

$$
\nu(A)=\int_{A} f d \mu \forall A \in \mathcal{A}
$$

In other words

$$
\nu \ll \mu \Leftrightarrow \nu \text { has a density w.r.t. } \mu
$$

Change of measure Sometimes we will say " f is the RN derivative of ν w.r.t. μ ", and write $f=\frac{d \nu}{d \mu}$.
This helps us with notation when "changing measure:"

$$
\int g d \nu=\int g\left[\frac{d \nu}{d \mu}\right] d \mu=\int g f d \mu
$$

You can think of ν as a probability measure, and g as a function of the random variable.
The expectation of g w.r.t. ν can be computed from the integral of $g f$ w.r.t μ.
Example:

$$
\int x^{2} \sigma^{-1} \phi([x-\theta] / \sigma) d x
$$

- $g(x)=x^{2} ;$
- μ is Lebesgue measure, here denoted with " $d x$ ";
- ν is the normal $\left(\theta, \sigma^{2}\right)$ probability measure;
- $d \nu / d \mu=f=\sigma^{-1} \phi([x-\theta] / \sigma)$ is the density of ν w.r.t. μ.

7 Product measures

We often have to work with joint distributions of multiple random variables living on potentially different measure spaces, and will want to compute integrals/expectations of multivariate functions of these variables. We need to define integration for such cases appropriately, and develop some tools to actually do the integration.

Let $\left(\mathcal{X}, \mathcal{A}_{x}, \mu_{x}\right)$ and $\left(\mathcal{Y}, \mathcal{B}_{y}, \mu_{y}\right)$ be σ-finite measure spaces. Define

$$
\begin{aligned}
\mathcal{A}_{x y} & =\sigma\left(F \times G: F \in \mathcal{A}_{x}, G \in \mathcal{A}_{y}\right) \\
\mu_{x y}(F \times G) & =\mu_{x}(F) \mu_{y}(G)
\end{aligned}
$$

Here, $\left(\mathcal{X} \times \mathcal{Y}, \mathcal{A}_{x y}\right)$ is the "product space", and $\mu_{x} \times \mu_{y}$ is the "product measure."
Suppose $f(x, y)$ is an $\mathcal{A}_{x y}$-measurable function. We then might be interested in

$$
\int_{\mathcal{X} \times \mathcal{Y}} f(x, y) \mu_{x y}(d x \times d y)
$$

The "calculus" way of doing this integral is to integrate first w.r.t. one variable, and then w.r.t. the other. The following theorems give conditions under which this is possible.

Theorem 8 (Fubini's theorem). Let $\left(\mathcal{X}, \mathcal{A}_{x}, \mu_{x}\right)$ and $\left(\mathcal{Y}, \mathcal{A}_{y}, \mu_{y}\right)$ be two complete measure spaces and f be $\mathcal{A}_{x y}$-measurable and $\mu_{x} \times \mu_{y}$-integrable. Then

$$
\int_{\mathcal{X} \times \mathcal{Y}} f d\left(\mu_{x} \times \mu_{y}\right)=\int_{X}\left[\int_{Y} f d \mu_{y}\right] d \mu_{x}=\int_{Y}\left[\int_{X} f d \mu_{x}\right] d \mu_{y}
$$

Additionally,

1. $f_{x}(y)=f(x, y)$ is an integrable function of y for x a.e. μ_{x}.
2. $\int f(x, y) d \mu_{x}(x)$ is μ_{y}-integrable as a function of y.

Also, items 1 and 2 hold with the roles of x and y reversed.
The problem with Fubini's theorem is that often you don't know of f is $\mu_{x} \times \mu_{y}$-integrable without being able to integrate variable-wise. In such cases the following theorem can be helpful.

Theorem 9 (Tonelli's theorem). Let $\left(\mathcal{X}, \mathcal{A}_{x}, \mu_{x}\right)$ and $\left(\mathcal{Y}, \mathcal{A}_{y}, \mu_{y}\right)$ be two σ-finite measure spaces and $f \operatorname{in}\left(m \mathcal{A}_{x y}\right)^{+}$. Then

$$
\int_{\mathcal{X} \times \mathcal{Y}} f d\left(\mu_{x} \times \mu_{y}\right)=\int_{X}\left[\int_{Y} f d \mu_{y}\right] d \mu_{x}=\int_{Y}\left[\int_{X} f d \mu_{x}\right] d \mu_{y}
$$

Additionally,

1. $f_{x}(y)=f(x, y)$ is a measurable function of y for x a.e. μ_{x}.
2. $\int f(x, y) d \mu_{x}(x)$ is \mathcal{A}_{y}-measurable as a function of y.

Also, 1 and 2 hold with the roles of x and y reversed.

8 Probability measures

Definition 14 (probability space). A measure space (Ω, A, P) is a probability space if $P(\Omega)=1$. In this case, P is called a probability measure.

Interpretation: Ω is the space of all possible outcomes, $\omega \in \Omega$ is a possible outcome.
Numerical data X is a function of the outcome $\omega: X=X(\omega)$
Uncertainty in the outcome leads to uncertainty in the data.
This uncertainty is referred to as "randomness", and so $X(\omega)$ is a "random variable."
Definition 15 (random variable). A random variable $X(\omega)$ is a real-valued measurable function in a probability space.

Examples:

- multivariate data: $X: \Omega \rightarrow \mathbb{R}^{p}$
- replications: $X: \Omega \rightarrow \mathbb{R}^{n}$
- replications of multivariate data: $X: \Omega \rightarrow \mathbb{R}^{n \times p}$

Suppose $X: \Omega \rightarrow \mathbb{R}^{k}$.
For $B \in \mathcal{B}\left(\mathbb{R}^{k}\right)$, we might write $P(\{\omega: X(\omega) \in B\})$ as $P(B)$.
Often, the " Ω-layer" is dropped and we just work with the "data-layer:"
$(\mathcal{X}, \mathcal{A}, P)$ is a measure space,$P(A)=\operatorname{Pr}(X \in A)$ for $A \in \mathcal{A}$.

Densities

Suppose $P \ll \mu$ on $(\mathcal{X}, \mathcal{A})$. Then by the RN theorem, $\exists p \in(m \mathcal{A})^{+}$s.t.

$$
P(A)=\int_{A} p d \mu=\int_{A} p(x) \mu(d x)
$$

Then p is the probability density of P w.r.t. μ.
(probability density $=$ Radon-Nikodym derivative)
Examples:

1. Discrete:
$\mathcal{X}=\left\{x_{k}: k \in \mathbb{N}\right\}, \mathcal{A}=$ all subsets of \mathcal{X}.
Typically we write $P\left(\left\{x_{k}\right\}\right)=p\left(x_{k}\right)=p_{k}, 0 \leq p_{k} \leq 1, \sum p_{k}=1$.
2. Continuous:
$\mathcal{X}=\mathbb{R}^{k}, \mathcal{A}=\mathcal{B}\left(\mathbb{R}^{k}\right)$.
$P(A)=\int_{A} p(x) \mu(d x), \mu=$ Lebesgue measure on $\mathcal{B}\left(\mathbb{R}^{k}\right)$.
3. Mixed discrete and continuous:

$$
Z \sim N(0,1), X= \begin{cases}Z & \text { w.p. } 1 / 2 \\ 0 & \text { w.p. } 1 / 2\end{cases}
$$

Define P by $P(A)=\operatorname{Pr}(X \in A)$ for $A \in \mathcal{B}(\mathbb{R})$. Then
(a) $P \ll \mu_{L}\left(\mu_{L}(\{0\})=0, P(\{0\})=1 / 2\right)$
(b) $P \ll \mu=\mu_{L}+\mu_{0}$, where $\mu_{0}=\#(A \cap\{0\})$ for $A \in \mathcal{A}$.

Exercise: Verify $(\mathbb{R}, \mathcal{B}(\mathbb{R}), P)$ is a measure space and $P \ll \mu$.

The following is a concept you are probably already familiar with:
Definition 16 (support). Let $(\mathcal{X}, \mathcal{G})$ be a topological space, and $(\mathcal{X}, \mathcal{B}(\mathcal{G}), P)$ be a probability space. The support of P is given by

$$
\operatorname{supp}(P)=\{x \in \mathcal{X}: P(G)>0 \text { for all } G \in \mathcal{G} \text { containing } x\}
$$

Note that the notion of support requires a topology on \mathcal{X}.
Examples:

- Let P be a univariate normal probability measure. Then $\operatorname{supp}(P)=\mathbb{R}$.
- Let $X=[0,1], \mathcal{G}$ be the open sets defined by Euclidean distance, and $P(\mathbb{Q} \cap[0,1])=1$.

1. $\left(\mathbb{Q}^{c} \cap[0,1]\right) \subset \operatorname{supp}(P)$ but
2. $P\left(\mathbb{Q}^{c} \cap[0,1]\right)=0$.

9 Expectation

In probability and statistics, a weighted average of a function, i.e. the integral of a function w.r.t. a probability measure, is (unfortunately) referred to as its expectation or expected value.

Definition 17 (expectation). Let $(\mathcal{X}, \mathcal{A}, P)$ be a probability space and let $T(X)$ be a measurable function of X (i.e. a statistic). The expectation of T is its integral over \mathcal{X} :

$$
\mathrm{E}[T]=\int T(x) P(d x)
$$

Why is this definition unfortunate? Consider a highly skewed probability distribution. Where do you "expect" a sample from this distribution to be?

Jensen's inequality

Recall that a convex function $g: \mathbb{R} \rightarrow \mathbb{R}$ is one for which

$$
g\left(p X_{1}+(1-p) X_{2}\right) \leq p g\left(X_{1}\right)+(1-p) g\left(X_{2}\right), \quad X_{1}, X_{2} \in \mathbb{R}, p \in[0,1]
$$

i.e. "the function at the average is less than the average of the function."

Draw a picture.
The following theorem should therefore be no surprise:
Theorem 10 (Jensen's inequality). Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a convex function and X be a random variable on $(\mathbb{R}, \mathcal{B}(\mathbb{R}), P)$ such that $\mathrm{E}[|X|]<\infty$ and $\mathrm{E}[|g(X)|]<\infty$. Then

$$
g(\mathrm{E}[X]) \leq \mathrm{E}[g(X)] .
$$

i.e. "the function at the average is less than the average of the function."

The result generalizes to more general sample spaces.

Schwarz's inequality

Theorem 11 (Schwarz's inequality). If $\int X^{2} d P$ and $\int Y^{2} d P$ are finite, then $\int X Y d P$ is finite and

$$
\left|\int X Y d P\right| \leq \int|X Y| d P \leq\left(\int X^{2} d P\right)^{1 / 2}\left(\int Y^{2} d P\right)^{1 / 2}
$$

In terms of expectation, the result is

$$
\mathrm{E}[X Y]^{2} \leq \mathrm{E}[|X Y|]^{2} \leq \mathrm{E}\left[X^{2}\right] \mathrm{E}\left[Y^{2}\right]
$$

One statistical application is to show that the correlation coefficient is always between -1 and 1.

Hölders inequality

A more general version of Schwarz's inequality is Hölder's inequality.
Theorem 12 (Hölder's inequuality). Let

- $w \in(0,1)$,
- $\mathrm{E}\left[X^{1 / w}\right]<\infty$ and
- $\mathrm{E}\left[Y^{1 /(1-w)}\right]<\infty$.

Then $\mathrm{E}[|X Y|]<\infty$ and

$$
|\mathrm{E}[X Y]| \leq \mathrm{E}[|X Y|] \leq \mathrm{E}\left[X^{1 / w}\right]^{w} \mathrm{E}\left[Y^{1 /(1-w)}\right]^{1-w}
$$

Exercise: Prove this inequality from Jensen's inequality.

10 Conditional expectation and probability

Conditioning in simple cases:
$X \in\left\{x_{1}, \ldots, x_{K}\right\}=\mathcal{X}$
$Y \in\left\{y_{1}, \ldots, y_{M}\right\}=\mathcal{Y}$
$\operatorname{Pr}\left(X=x_{k} \mid Y=y_{m}\right)=\operatorname{Pr}\left(X=x_{k}, Y=y_{m}\right) / \operatorname{Pr}\left(Y=y_{m}\right)$
$\mathrm{E}\left[X \mid Y=y_{m}\right]=\sum_{k=1}^{K} x_{k} \operatorname{Pr}\left(X=x_{k} \mid Y=y_{m}\right)$
This discrete case is fairly straightforward and intuitive. We are also familiar with the extension to the continuous case:

$$
\mathrm{E}[X \mid Y=y]=\int x p(x \mid y) d x=\int x\left[\frac{p(x, y)}{p(y)}\right] d x
$$

Where does this extension come from, and why does it work? Can it be extended to more complicated random variables?

Introduction to Kolmogorov's formal theory:

Let $\{\Omega, \mathcal{A}, P\}$ be a probability space and X, Y random variables with finite supports \mathcal{X}, \mathcal{Y}.
Suppose \mathcal{A} contains all sets of the form $\{\omega: X(\omega)=x, Y(\omega)=y\}$ for $(x, y) \in \mathcal{X} \times \mathcal{Y}$.
Draw the picture.
Let \mathcal{F}, \mathcal{G} be the σ-algebras consisting of all subsets of \mathcal{X} and \mathcal{Y}, respectively.
Add \mathcal{F}, \mathcal{G} to the picture (rows and columns of $\mathcal{X} \times \mathcal{Y}$-space)
In the Kolmogorov theory, $\mathrm{E}[X \mid Y]$ is a random variable Z defined as follows:

$$
Z(\omega)= \begin{cases}\mathrm{E}\left[X \mid Y=y_{1}\right] & \text { if } Y(\omega)=y_{1} \\ \mathrm{E}\left[X \mid Y=y_{2}\right] & \text { if } Y(\omega)=y_{1} \\ & \vdots \\ \mathrm{E}\left[X \mid Y=y_{M}\right] & \text { if } Y(\omega)=y_{M}\end{cases}
$$

We say that $Z=\mathrm{E}[X \mid Y]$ is a (version) of the conditional expectation of X given Y. Note the following:

1. $\mathrm{E}[X \mid Y]$ is a random variable;
2. $\mathrm{E}[X \mid Y]$ is a function of ω only through $Y(\omega)$.

This latter fact makes $\mathrm{E}[X \mid Y]$ " $\sigma(Y)$-measurable", where

$$
\sigma(Y)=\sigma(\{\omega: Y(\omega) \in F\}, F \in \mathcal{F}\})
$$

$\sigma(Y)$ is the smallest σ-algebra on Ω that makes Y measurable.
This means we don't need the whole σ-algebra \mathcal{A} to "measure" $\mathrm{E}[X \mid Y]$, we just need the part that determines Y.
Defining properties of conditional expectation

$$
\begin{aligned}
\int_{Y=y} \mathrm{E}[X \mid Y] d P=\mathrm{E}[X \mid Y=y] P(Y=y) & =\sum_{x} x P(X=x \mid Y=y) P(Y=y) \\
& =\sum_{x} x \operatorname{Pr}(X=x, Y=y)=\int_{Y=y} X d P
\end{aligned}
$$

In words, the integral of $\mathrm{E}[X \mid Y]$ over the set $Y=y$ equals the integral of X over $Y=y$.

In this simple case, it is easy to show

$$
\int_{A} \mathrm{E}[X \mid Y] d P=\int_{A} X d P \forall G \in \sigma(Y)
$$

In words, the integral of $\mathrm{E}[X \mid Y]$ over any $\sigma(Y)$-measurable set is the same as that of X. Intuitively, $\mathrm{E}[X \mid Y]$ is "an approximation" to X, matching X in terms of expectations over sets defined by Y.

Kolmogorov's fundamental theorem and definition

Theorem 13 (Kolmogorov,1933). Let (Ω, \mathcal{A}, P) be a probability space, and X a r.v. with $\mathrm{E}[|X|]<\infty$. Let $\mathcal{G} \subset \mathcal{A}$ be a sub- σ algebra of \mathcal{A}. Then \exists a r.v. $\mathrm{E}[X \mid \mathcal{G}]$ s.t.

1. $\mathrm{E}[X \mid \mathcal{G}]$ is \mathcal{G}-measurable
2. $\mathrm{E}[|\mathrm{E}[X \mid \mathcal{G}]|]<\infty$
3. $\forall G \in \mathcal{G}$,

$$
\int_{G} \mathrm{E}[X \mid \mathcal{G}] d P=\int_{G} X d P
$$

Technically, a random variable satisfying 1,2 and 3 is called "a version of $\mathrm{E}[X \mid \mathcal{G}]$ ", as the conditions only specify things a.e. P.

From 1,2 and 3, the following properties hold
(a) $\mathrm{E}[\mathrm{E}[X \mid \mathcal{G}]]=\mathrm{E}[X]$.
(b) If $X \in m \mathcal{G}$, then $\mathrm{E}[X \mid \mathcal{G}]=X$.
(c) If $\mathcal{H} \subset \mathcal{G}, \mathcal{H}$ a σ-algebra, then $\mathrm{E}[\mathrm{E}[X \mid \mathcal{G}] \mid \mathcal{H}]=\mathrm{E}[X \mid \mathcal{H}]$
(d) If $Z \in m \mathcal{G}$ and $|Z X|$ is integrable, $\mathrm{E}[Z X \mid \mathcal{G}]=Z \mathrm{E}[X \mid \mathcal{G}]$.

Proving (a) and (b) should be trivial.
For (c), we need to show that $\mathrm{E}[X \mid \mathcal{H}]$ "is a version of" $\mathrm{E}[Z \mid \mathcal{H}]$, where $Z=\mathrm{E}[X \mid \mathcal{G}]$
This means the integral of $\mathrm{E}[X \mid \mathcal{H}]$ over any \mathcal{H}-measurable set H must equal that of Z over H. Let's check:

$$
\begin{aligned}
\int_{H} \mathrm{E}[X \mid \mathcal{H}] d P & =\int_{H} X d P, \quad \text { by definition of } \mathrm{E}[X \mid \mathcal{H}] \\
& =\int_{H} \mathrm{E}[X \mid \mathcal{G}] d P, \quad \text { since } H \in \mathcal{H} \subset \mathcal{G}
\end{aligned}
$$

Exercise: Prove (d).

Independence

Definition 18 (independent σ-algebras). Let (Ω, \mathcal{A}, P) be a probability space. The sub- σ algebras \mathcal{G} and \mathcal{H} are independent if $P(A \cap B)=P(A) P(B) \forall A \in \mathcal{G}, B \in \mathcal{H}$.

This notion of independence allows us to describe one more intuitive property of conditional expectation.
(e) If \mathcal{H} is independent of $\sigma(X)$, then $\mathrm{E}[X \mid \mathcal{H}]=\mathrm{E}[X]$.

Intuitively, if X is independent of \mathcal{H}, then knowing where you are in \mathcal{H} isn't going to give you any information about X, and so the conditional expectation is the same as the unconditional one.

Interpretation as a projection

Let $X \in m \mathcal{A}$, with $\mathrm{E}\left[X^{2}\right]<\infty$.
Let $\mathcal{G} \subset A$ be a sub- σ-algebra.
Problem: Represent X by a \mathcal{G}-measurable function/r.v. Y s.t. expected squared error is minimized, i.e.

$$
\text { minimizeE }\left[(X-Y)^{2}\right] \text { among } Y \in m \mathcal{G}
$$

Solution: Suppose Y is the minimizer, and let $Z \in m \mathcal{G}, \mathrm{E}\left[Z^{2}\right]<\infty$.

$$
\begin{aligned}
\mathrm{E}\left[(X-Y)^{2}\right] & \left.\leq \mathrm{E}[X-Y-\epsilon Z)^{2}\right] \\
& =\mathrm{E}\left[(X-Y)^{2}\right]-2 \epsilon \mathrm{E}[Z(X-Y)]+\epsilon^{2} \mathrm{E}\left[Z^{2}\right] .
\end{aligned}
$$

This implies

$$
\begin{aligned}
2 \epsilon \mathrm{E}[Z(X-Y)] & \leq \epsilon^{2} \mathrm{E}\left[Z^{2}\right] \\
2 \mathrm{E}[Z(X-Y)] & \leq \epsilon \mathrm{E}\left[Z^{2}\right] \text { for } \epsilon>0 \\
2 \mathrm{E}[Z(X-Y)] & \geq \epsilon \mathrm{E}\left[Z^{2}\right] \text { for } \epsilon<0
\end{aligned}
$$

which implies that $\mathrm{E}[Z(X-Y)]=0$. Thus if Y is the minimizer then it must satisfy

$$
\mathrm{E}[Z X]=\mathrm{E}[Z Y] \forall Z \in m \mathcal{G} .
$$

In particular, let $Z=1_{G}(\omega)$ for any $G \in \mathcal{G}$. Then

$$
\int_{G} X d P=\int_{G} Y d P
$$

so Y must be a version of $\mathrm{E}[X \mid \mathcal{G}]$.

11 Conditional probability

Conditional probability

For $A \in \mathcal{A}, \operatorname{Pr}(A)=\mathrm{E}\left[1_{A}(\omega)\right]$.
For a σ-algebra $\mathcal{G} \subset \mathcal{A}$, define $\operatorname{Pr}(A \mid \mathcal{G})=\mathrm{E}\left[1_{A}(\omega) \mid \mathcal{G}\right]$.
Exercise: Use linearity of expectation and MCT to show

$$
\operatorname{Pr}\left(\cup A_{n} \mid \mathcal{G}\right)=\sum \operatorname{Pr}\left(A_{n} \mid \mathcal{G}\right)
$$

if the $\left\{A_{n}\right\}$ are disjoint.

Conditional density

Let $f(x, y)$ be a joint probability density for X, Y w.r.t. a dominating measure $\mu \times \nu$, i.e.

$$
P((X, Y) \in B)=\iint_{B} f(x, y) \mu(d x) \nu(d y) .
$$

Let $f(x \mid y)=f(x, y) / \int f(x, y) \nu(d y)$
Exercise: Prove $\int_{A} f(x \mid y) \mu(d x)$ is a version of $\operatorname{Pr}(X \in A \mid Y)$.
This, and similar exercises, show that our "simple" approach to conditional probability generally works fine.

References

David Williams. Probability with martingales. Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge, 1991. ISBN 0-521-40455-X; 0-521-40605-6.

