
Measure and probability

Peter D. Hoff

September 26, 2013

This is a very brief introduction to measure theory and measure-theoretic probability, de-

signed to familiarize the student with the concepts used in a PhD-level mathematical statis-

tics course. The presentation of this material was influenced by Williams [1991].
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1 Algebras and measurable spaces

A measure µ assigns positive numbers to sets A: µ(A) ∈ R

• A a subset of Euclidean space, µ(A) = length, area or volume.

• A an event, µ(A) = probability of the event.

Let X be a space. What kind of sets should we be able to measure?

µ(X ) = measure of whole space. It could be ∞, could be 1.

If we can measure A, we should be able to measure AC .

If we can measure A and B, we should be able to measure A ∪B.

Definition 1 (algebra). A collection A of subsets of X is an algebra if

1. X ∈ A;

2. A ∈ A ⇒ Ac ∈ A;

3. A,B ∈ A ⇒ A ∪B ∈ A.

A is closed under finitely many set operations.

For many applications we need a slightly richer collection of sets.

Definition 2 (σ-algebra). A is a σ-algebra if it is an algebra and for An ∈ A, n ∈ N, we

have ∪An ∈ A.

A is closed under countably many set operations.

Exercise: Show ∩An ∈ A.
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Definition 3 (measurable space). A space X and a σ-algebra A on X is a measurable space

(X ,A).

2 Generated σ-algebras

Let C be a set of subsets of X

Definition 4 (generated σ-algebra). The σ-algebra generated by C is the smallest σ-algebra

that contains C, and is denoted σ(C).

Examples:

1. C = {φ} → σ(C) = {φ,X}

2. C = C ∈ A → σ(C) = {φ,C,Cc,X}

Example (Borel sets):

Let X = R
C = {C : C = (a, b), a < b, (a, b) ∈ R2} = open intervals

σ(C) = smallest σ-algebra containing the open intervals

Now let
G ∈ G = open sets ⇒ G = ∪Cn for some countable collection {Cn} ⊂ C.

⇒ G ∈ σ(C)
⇒ σ(G) ⊂ σ(C)

Exercise: Convince yourself that σ(C) = σ(G).

Exercise: Let D be the closed intervals, F the closed sets. Show

σ(C) = σ(G) = σ(F) = σ(D)

Hint:
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• (a, b) = ∪n[a+ c/n, b− c/n]

• [a, b] = ∩n(a− 1/n, b+ 1/n)

The sets of σ(G) are called the “Borel sets of R.”

Generally, for any topological space (X ,G), σ(G) are known as the Borel sets.

3 Measure

Definition 5 (measure). Let (X ,A) be a measurable space. A map µ : A → [0,∞] is a

measure if it is countably additive, meaning if Ai ∩ Aj = φ for {An : n ∈ N} ⊂ A, then

µ(∪nAn) =
∑
n

µ(An).

A measure is finite if µ(X ) <∞ (e.g. a probability measure)

A measure is σ-finite if ∃{Cn : n ∈ N} ⊂ A with

1. µ(Cn) <∞,

2. ∪nCn = X .

Definition 6 (measure space). The triple (X ,A, µ) is called a measure space.

Examples:

1. Counting measure: Let X be countable.

• A = all subsets of X (show this is a σ-algebra)

• µ(A) = number of points in A

2. Lebesgue measure: Let X = Rn
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• A = Borel sets of X

• µ(A) =
∏n

k=1(a
H
k −aLk ), for rectangles A = {x ∈ Rn : aLk < xk < aHk , k = 1, . . . , n}.

The following is the foundation of the integration theorems to come.

Theorem 1 (monotonic convergence of measures). Given a measure space (X ,A, µ),

1. If {An} ⊂ A, An ⊂ An+1 then µ(An) ↑ µ(∪An).

2. If {Bn} ⊂ A, Bn+1 ⊂ Bn, and µ(Bk) <∞ for some k, then µ(Bn) ↓ µ(∩Bn).

Exercise: Prove the theorem.

Example (what can go wrong):

Let X = R, A = B(R), µ = Leb

Letting Bn = (n,∞) , then

• µ(Bn) =∞ ∀n;

• ∩Bn = φ.

4 Integration of measurable functions

Let (Ω,A) be a measurable space.

Let X(ω) : Ω→ R (or Rp, or X )

Definition 7 (measurable function). A function X : Ω→ R is measurable if

{ω : X(ω) ∈ B} ∈ A ∀B ∈ B(R).

So X is measurable if we can “measure it” in terms of (Ω,A).

Shorthand notation for a measurable function is “X ∈ mA”.

Exercise: If X, Y measurable, show the following are measurable:

• X + Y , XY , X/Y

• g(X), h(X, Y ) if g, h are measurable.
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Probability preview: Let µ(A) = Pr(ω ∈ A)

Some ω ∈ Ω “will happen.” We want to know

Pr(X ∈ B) = Pr(w : X(ω) ∈ B)

= µ(X−1(B))

For the measure of X−1(B) to be defined, it has to be a measurable set,

i.e. we need X−1(B) = {ω : X(ω) ∈ B} ∈ A}

We will now define the abstract Lebesgue integral for a very simple class of measurable

functions, known as “simple functions.” Our strategy for extending the definition is as

follows:

1. Define the integral for “simple functions”;

2. Extend definition to positive measurable functions;

3. Extend definition to arbitrary measurable functions.

Integration of simple functions

For a measurable set A, define its indicator function as follows:

IA(ω) =

{
1 if ω ∈ A
0 else

Definition 8 (simple function). X(ω) is simple if X(ω) =
∑K

k=1 xkIAk
(ω), where

• xk ∈ [0,∞)

• Aj ∩ Ak = φ, {Ak} ⊂ A

Exercise: Show a simple function is measurable.

Definition 9 (integral of a simple function). If X is simple, define

µ(X) =

∫
X(ω)µ(dω) =

K∑
k=1

xkµ(Ak)

6



Various other expressions are supposed to represent the same integral:∫
Xdµ ,

∫
Xdµ(ω) ,

∫
Xdω.

We will sometimes use the first of these when we are lazy, and will avoid the latter two.

Exercise: Make the analogy to expectation of a discrete random variable.

Integration of positive measurable functions

Let X(ω) be a measurable function for which µ(ω : X(ω) < 0) = 0

• we say “X ≥ 0 a.e. µ”

• we might write “X ∈ (mA)+”.

Definition 10. For X ∈ (mA)+, define

µ(X) =

∫
X(ω)µ(dω) = sup{µ(X∗) : X∗is simple, X∗ ≤ X}

Draw the picture

Exercise: For a, b ∈ R, show
∫

(aX + bY )dµ = a
∫
Xdµ+ b

∫
Y dµ.

Most people would prefer to deal with limits rather than sups over classes of functions.

Fortunately we can “calculate” the integral of a positive function X as the limit of the inte-

grals of functions Xn that converge to X, using something called the monotone convergence

theorem.

Theorem 2 (monotone convergence theorem). If {Xn} ⊂ (mA)+ and Xn(ω) ↑ X(ω) as

n→∞ a.e. µ, then

µ(Xn) =

∫
Xnµ(dω) ↑

∫
Xµ(dω) = µ(X) as n→∞

With the MCT, we can explicitly construct µ(X): Any sequence of SF {Xn} such that

Xn ↑ X pointwise gives µ(Xn) ↑ µ(X) as n→∞.

Here is one in particular:

Xn(ω) =


0 if X(ω) = 0

(k − 1)/2n if (k − 1)/2n < X(ω) < k/2n < n, k = 1, . . . , n2n

n if X(ω) > n

Exercise: Draw the picture, and confirm the following:
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1. Xn(ω) ∈ (mA)+;

2. Xn ↑ X;

3. µ(Xn) ↑ µ(X) (by MCT).

Riemann versus Lebesgue

Draw picture

Example:

Let (Ω,A) = ([0, 1],B([0, 1]))

X(ω) =

{
1 if ω is rational

0 if ω is irrational

Then ∫ 1

0

X(ω)dω is undefined, but

∫ 1

0

X(ω)µ(dω)

Integration of integrable functions

We now have a definition of
∫
X(ω)µ(dω) for positive measurable X. What about for

measurable X in general?

Let X ∈ mA. Define

• X+(ω) = X(ω) ∨ 0 > 0, the positive part of X;

• X−(ω) = (−X(ω)) ∨ 0 > 0, the negative part of X.

Exercise: Show

• X = X+ −X−

• X+, X− both measurable

Definition 11 (integrable, integral). X ∈ mA is integrable if
∫
X+dµ and

∫
X−dµ are both

finite. In this case, we define

µ(X) =

∫
X(ω)µ(dω) =

∫
X+(ω)µ(dω)−

∫
X−(ω)µ(dω).

Exercise: Show |µ(X)| ≤ µ(|X|).
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5 Basic integration theorems

Recall lim infn→∞ cn = limn→∞(infk≥n ck)

lim supn→∞ cn = limn→∞(supk≥n ck)

Theorem 3 (Fatou’s lemma). For {Xn} ⊂ (mA)+,

µ(lim inf Xn) ≤ lim inf µ(Xn)

Theorem 4 (Fatou’s reverse lemma). For {Xn} ⊂ (mA)+ and Xn ≤ Z ∀n, µ(Z) <∞,

µ(lim supXn) ≥ lim supµ(Xn)

I most frequently encounter Fatou’s lemmas in the proof of the following:

Theorem 5 (dominated convergence theorem). If {Xn} ⊂ mA, |Xn| < Z a.e. µ, µ(Z) <∞
and Xn → X a.e. µ, then

µ(|Xn −X|)→ 0, which implies µ(Xn)→ µ(X).

Proof.

|Xn −X| ≤ 2Z , µ(2Z) = 2µ(Z) <∞
By reverse Fatou, lim supµ(|Xn −X|) ≤ µ(lim sup |Xn −X|) = µ(0) = 0.

To show µ(Xn)→ µ(X) , note

|µ(Xn)− µ(X)| = |µ(Xn −X)| ≤ µ(|Xn −X|)→ 0.

Among the four integration theorems, we will make the most use of the MCT and the DCT:

MCT : If {Xn} ∈ (mA)+ and Xn ↑ X, then µ(Xn)→ µ(X).

DCT : If {Xn} are dominated by an integrable function and Xn → X, then µ(Xn)→ µ(X).
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6 Densities and dominating measures

One of the main concepts from measure theory we need to be familiar with for statistics is

the idea of a family of distributions (a model) the have densities with respect to a common

dominating measure.

Examples:

• The normal distributions have densities with respect to Lebesgue measure on R.

• The Poisson distributions have densities with respect to counting measure on N0.

Density

Theorem 6. Let (X ,A, µ) be a measure space, f ∈ (mA)+. Define

ν(A) =

∫
A

fdµ =

∫
1A(x)f(x)µ(dx)

Then ν is a measure on (X ,A).

Proof. We need to show that ν is countably additive. Let {An} ⊂ A be disjoint. Then

ν(∪An) =

∫
∪An

fdµ

=

∫
1∪An(x)f(x)µ(dx)

=

∫ ∞∑
n=1

f(x)1An(x)µ(dx)

=

∫
lim
k→∞

gk(x)µ(dx),

where gk(x) =
∑k

n=1 f(x)1An(x). Since 0 ≤ gk(x) ↑ 1∪An(x)f(x) ≡ g(x), by the MCT

ν(∪An) =

∫
lim
k→∞

gkdµ = lim
k→∞

∫
gkdµ

= lim
k→∞

∫ k∑
n=1

f(x)1An(x)dµ

= lim
k→∞

k∑
n=1

∫
An

fdµ =
∞∑
n=1

ν(An)
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Definition 12 (density). If ν(A) =
∫
A
fdµ for some f ∈ (mA)+ and all A ∈ A, we say that

the measure ν has density f with respect to µ.

Examples:

• X = R, µ is Lebesgue measure on R, f a normal density⇒ ν is the normal distribution

(normal probability measure).

• X = N0, µ is counting measure on N0, f a Poisson density ⇒ ν is the Poisson distri-

bution (Poisson probability measure).

Note that in the latter example, f is a density even though it isn’t continuous in x ∈ R.

Radon-Nikodym theorem

For f ∈ (mA)+ and ν(A) =
∫
A
fdµ,

• ν is a measure on (X ,A),

• f is called the density of ν w.r.t. µ (or “ν has density f w.r.t. µ).

Exercise: If ν has density f w.r.t. µ, show µ(A) = 0⇒ ν(A) = 0.

Definition 13 (absolutely continuous). Let µ, ν be measures on X ,A. The measure ν is

absolutely continuous with respect to µ if µ(A) = 0⇒ ν(A) = 0.

If ν is absolutely continuous w.r.t. µ, we might write either

• “ν is dominated by µ” or

• “ν � µ.”

Therefore, µ(A) =
∫
A
fdµ⇒ ν � µ.

What about the other direction?

Theorem 7 (Radon-Nikodym theorem). Let (X ,A, µ) be a σ-finite measure space, and

suppose ν � µ. Then there exists an f ∈ (mA)+ s.t.

ν(A) =

∫
A

f dµ ∀A ∈ A.
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In other words

ν � µ⇔ ν has a density w.r.t. µ

Change of measure Sometimes we will say “f is the RN derivative of ν w.r.t. µ”, and

write f = dν
dµ

.

This helps us with notation when “changing measure:”∫
g dν =

∫
g

[
dν

dµ

]
dµ =

∫
gfdµ

You can think of ν as a probability measure, and g as a function of the random variable.

The expectation of g w.r.t. ν can be computed from the integral of gf w.r.t µ.

Example: ∫
x2σ−1φ([x− θ]/σ)dx

• g(x) = x2;

• µ is Lebesgue measure, here denoted with “dx”;

• ν is the normal(θ, σ2) probability measure;

• dν/dµ = f = σ−1φ([x− θ]/σ) is the density of ν w.r.t. µ.

7 Product measures

We often have to work with joint distributions of multiple random variables living on poten-

tially different measure spaces, and will want to compute integrals/expectations of multivari-

ate functions of these variables. We need to define integration for such cases appropriately,

and develop some tools to actually do the integration.

12



Let (X ,Ax, µx) and (Y ,By, µy) be σ-finite measure spaces. Define

Axy = σ(F ×G : F ∈ Ax, G ∈ Ay)

µxy(F ×G) = µx(F )µy(G)

Here, (X × Y ,Axy) is the “product space”, and µx × µy is the “product measure.”

Suppose f(x, y) is an Axy-measurable function. We then might be interested in∫
X×Y

f(x, y)µxy(dx× dy).

The “calculus” way of doing this integral is to integrate first w.r.t. one variable, and then

w.r.t. the other. The following theorems give conditions under which this is possible.

Theorem 8 (Fubini’s theorem). Let (X ,Ax, µx) and (Y ,Ay, µy) be two complete measure

spaces and f be Axy-measurable and µx × µy-integrable. Then∫
X×Y

f d(µx × µy) =

∫
X

[∫
Y

f dµy

]
dµx =

∫
Y

[∫
X

f dµx

]
dµy

Additionally,

1. fx(y) = f(x, y) is an integrable function of y for x a.e. µx.

2.
∫
f(x, y) dµx(x) is µy-integrable as a function of y.

Also, items 1 and 2 hold with the roles of x and y reversed.

The problem with Fubini’s theorem is that often you don’t know of f is µx × µy-integrable

without being able to integrate variable-wise. In such cases the following theorem can be

helpful.

Theorem 9 (Tonelli’s theorem). Let (X ,Ax, µx) and (Y ,Ay, µy) be two σ-finite measure

spaces and f in(mAxy)+. Then∫
X×Y

f d(µx × µy) =

∫
X

[∫
Y

f dµy

]
dµx =

∫
Y

[∫
X

f dµx

]
dµy

Additionally,

1. fx(y) = f(x, y) is a measurable function of y for x a.e. µx.

2.
∫
f(x, y) dµx(x) is Ay-measurable as a function of y.

Also, 1 and 2 hold with the roles of x and y reversed.
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8 Probability measures

Definition 14 (probability space). A measure space (Ω, A, P ) is a probability space if

P (Ω) = 1. In this case, P is called a probability measure.

Interpretation: Ω is the space of all possible outcomes, ω ∈ Ω is a possible outcome.

Numerical data X is a function of the outcome ω: X = X(ω)

Uncertainty in the outcome leads to uncertainty in the data.

This uncertainty is referred to as “randomness”, and so X(ω) is a “random variable.”

Definition 15 (random variable). A random variable X(ω) is a real-valued measurable

function in a probability space.

Examples:

• multivariate data: X : Ω→ Rp

• replications: X : Ω→ Rn

• replications of multivariate data: X : Ω→ Rn×p

Suppose X : Ω→ Rk.

For B ∈ B(Rk), we might write P ({ω : X(ω) ∈ B}) as P (B).

Often, the “Ω-layer” is dropped and we just work with the “data-layer:”

(X ,A, P ) is a measure space , P (A) = Pr(X ∈ A) for A ∈ A.

Densities

Suppose P � µ on (X ,A). Then by the RN theorem, ∃p ∈ (mA)+ s.t.

P (A) =

∫
A

p dµ =

∫
A

p(x)µ(dx).

Then p is the probability density of P w.r.t. µ.

(probability density = Radon-Nikodym derivative )

Examples:

1. Discrete:

X = {xk : k ∈ N}, A = all subsets of X .

Typically we write P ({xk}) = p(xk) = pk, 0 ≤ pk ≤ 1,
∑
pk = 1.
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2. Continuous:

X = Rk, A = B(Rk).

P (A) =
∫
A
p(x)µ(dx), µ =Lebesgue measure on B(Rk).

3. Mixed discrete and continuous:

Z ∼ N(0, 1), X =

{
Z w.p. 1/2

0 w.p. 1/2

Define P by P (A) = Pr(X ∈ A) for A ∈ B(R). Then

(a) P 6� µL (µL({0}) = 0, P ({0}) = 1/2 )

(b) P � µ = µL + µ0, where µ0 = #(A ∩ {0}) for A ∈ A.

Exercise: Verify (R,B(R), P ) is a measure space and P � µ.

The following is a concept you are probably already familiar with:

Definition 16 (support). Let (X ,G) be a topological space, and (X ,B(G), P ) be a probability

space. The support of P is given by

supp(P ) = {x ∈ X : P (G) > 0 for all G ∈ G containing x}

Note that the notion of support requires a topology on X .

Examples:

• Let P be a univariate normal probability measure. Then supp(P ) = R.

• Let X = [0, 1], G be the open sets defined by Euclidean distance, and P (Q∩ [0, 1]) = 1.

1. (Qc ∩ [0, 1]) ⊂ supp(P ) but

2. P (Qc ∩ [0, 1]) = 0.
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9 Expectation

In probability and statistics, a weighted average of a function, i.e. the integral of a function

w.r.t. a probability measure, is (unfortunately) referred to as its expectation or expected

value.

Definition 17 (expectation). Let (X ,A, P ) be a probability space and let T (X) be a mea-

surable function of X (i.e. a statistic). The expectation of T is its integral over X :

E[T ] =

∫
T (x)P (dx).

Why is this definition unfortunate? Consider a highly skewed probability distribution.

Where do you “expect” a sample from this distribution to be?

Jensen’s inequality

Recall that a convex function g : R→ R is one for which

g(pX1 + (1− p)X2) ≤ pg(X1) + (1− p)g(X2), X1, X2 ∈ R, p ∈ [0, 1],

i.e. “the function at the average is less than the average of the function.”

Draw a picture.

The following theorem should therefore be no surprise:

Theorem 10 (Jensen’s inequality). Let g : R→ R be a convex function and X be a random

variable on (R,B(R), P ) such that E[|X|] <∞ and E[|g(X)|] <∞. Then

g(E[X]) ≤ E[g(X)].

i.e. “the function at the average is less than the average of the function.”

The result generalizes to more general sample spaces.

Schwarz’s inequality

Theorem 11 (Schwarz’s inequality). If
∫
X2 dP and

∫
Y 2 dP are finite, then

∫
XY dP is

finite and

|
∫
XY dP | ≤

∫
|XY | dP ≤ (

∫
X2 dP )1/2(

∫
Y 2 dP )1/2.
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In terms of expectation, the result is

E[XY ]2 ≤ E[|XY |]2 ≤ E[X2]E[Y 2].

One statistical application is to show that the correlation coefficient is always between -1

and 1.

Hölders inequality

A more general version of Schwarz’s inequality is Hölder’s inequality.

Theorem 12 (Hölder’s inequuality). Let

• w ∈ (0, 1),

• E[X1/w] <∞ and

• E[Y 1/(1−w)] <∞.

Then E[|XY |] <∞ and

|E[XY ]| ≤ E[|XY |] ≤ E[X1/w]wE[Y 1/(1−w)]1−w.

Exercise: Prove this inequality from Jensen’s inequality.

10 Conditional expectation and probability

Conditioning in simple cases:

X ∈ {x1, . . . , xK} = X
Y ∈ {y1, . . . , yM} = Y
Pr(X = xk|Y = ym) = Pr(X = xk, Y = ym)/Pr(Y = ym)

E[X|Y = ym] =
∑K

k=1 xk Pr(X = xk|Y = ym)

This discrete case is fairly straightforward and intuitive. We are also familiar with the

extension to the continuous case:

E[X|Y = y] =

∫
xp(x|y) dx =

∫
x

[
p(x, y)

p(y)

]
dx
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Where does this extension come from, and why does it work? Can it be extended to more

complicated random variables?

Introduction to Kolmogorov’s formal theory:

Let {Ω,A, P} be a probability space and X, Y random variables with finite supports X , Y .

Suppose A contains all sets of the form {ω : X(ω) = x, Y (ω) = y} for (x, y) ∈ X × Y .

Draw the picture.

Let F , G be the σ-algebras consisting of all subsets of X and Y , respectively.

Add F , G to the picture (rows and columns of X × Y-space)

In the Kolmogorov theory, E[X|Y ] is a random variable Z defined as follows:

Z(ω) =


E[X|Y = y1] if Y (ω) = y1

E[X|Y = y2] if Y (ω) = y1
...

E[X|Y = yM ] if Y (ω) = yM

We say that Z = E[X|Y ] is a (version) of the conditional expectation of X given Y . Note

the following:

1. E[X|Y ] is a random variable;

2. E[X|Y ] is a function of ω only through Y (ω).

This latter fact makes E[X|Y ] “σ(Y )-measurable”, where

σ(Y ) = σ({ω : Y (ω) ∈ F}, F ∈ F})

σ(Y ) is the smallest σ-algebra on Ω that makes Y measurable.

This means we don’t need the whole σ-algebra A to “measure” E[X|Y ], we just need the

part that determines Y .

Defining properties of conditional expectation

∫
Y=y

E[X|Y ] dP = E[X|Y = y]P (Y = y) =
∑
x

xP (X = x|Y = y)P (Y = y)

=
∑
x

xPr(X = x, Y = y) =

∫
Y=y

X dP

In words, the integral of E[X|Y ] over the set Y = y equals the integral of X over Y = y.
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In this simple case, it is easy to show∫
A

E[X|Y ] dP =

∫
A

X dP ∀G ∈ σ(Y )

In words, the integral of E[X|Y ] over any σ(Y )-measurable set is the same as that of X.

Intuitively, E[X|Y ] is “an approximation” to X, matching X in terms of expectations over

sets defined by Y .

Kolmogorov’s fundamental theorem and definition

Theorem 13 (Kolmogorov,1933). Let (Ω,A, P ) be a probability space, and X a r.v. with

E[|X|] <∞. Let G ⊂ A be a sub-σ algebra of A. Then ∃ a r.v. E[X|G] s.t.

1. E[X|G] is G-measurable

2. E[|E[X|G]|] <∞

3. ∀G ∈ G, ∫
G

E[X|G]dP =

∫
G

XdP.

Technically, a random variable satisfying 1, 2 and 3 is called “a version of E[X|G]”, as the

conditions only specify things a.e. P .

From 1,2 and 3, the following properties hold

(a) E[E[X|G]] = E[X].

(b) If X ∈ mG, then E[X|G] = X.

(c) If H ⊂ G, H a σ-algebra, then E[E[X|G]|H] = E[X|H]

(d) If Z ∈ mG and |ZX| is integrable, E[ZX|G] = ZE[X|G].

Proving (a) and (b) should be trivial.

For (c), we need to show that E[X|H] “is a version of” E[Z|H], where Z = E[X|G]

This means the integral of E[X|H] over any H-measurable set H must equal that of Z over

H. Let’s check: ∫
H

E[X|H] dP =

∫
H

X dP, by definition of E[X|H]

=

∫
H

E[X|G] dP, since H ∈ H ⊂ G.
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Exercise: Prove (d).

Independence

Definition 18 (independent σ-algebras). Let (Ω,A, P ) be a probability space. The sub-σ-

algebras G and H are independent if P (A ∩B) = P (A)P (B) ∀A ∈ G, B ∈ H.

This notion of independence allows us to describe one more intuitive property of conditional

expectation.

(e) If H is independent of σ(X), then E[X|H] = E[X].

Intuitively, if X is independent of H, then knowing where you are in H isn’t going to give you

any information about X, and so the conditional expectation is the same as the unconditional

one.

Interpretation as a projection

Let X ∈ mA, with E[X2] <∞.

Let G ⊂ A be a sub-σ-algebra.

Problem: Represent X by a G-measurable function/r.v. Y s.t. expected squared error is

minimized, i.e.

minimizeE[(X − Y )2]among Y ∈ mG

Solution: Suppose Y is the minimizer, and let Z ∈ mG, E[Z2] <∞.

E[(X − Y )2] ≤ E[X − Y − εZ)2]

= E[(X − Y )2]− 2εE[Z(X − Y )] + ε2E[Z2].

This implies

2εE[Z(X − Y )] ≤ ε2E[Z2]

2E[Z(X − Y )] ≤ εE[Z2] for ε > 0

2E[Z(X − Y )] ≥ εE[Z2] for ε < 0

which implies that E[Z(X − Y )] = 0. Thus if Y is the minimizer then it must satisfy

E[ZX] = E[ZY ] ∀Z ∈ mG.
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In particular, let Z = 1G(ω) for any G ∈ G. Then∫
G

X dP =

∫
G

Y dP,

so Y must be a version of E[X|G].

11 Conditional probability

Conditional probability

For A ∈ A, Pr(A) = E[1A(ω)].

For a σ-algebra G ⊂ A, define Pr(A|G) = E[1A(ω)|G].

Exercise: Use linearity of expectation and MCT to show

Pr(∪An|G) =
∑

Pr(An|G)

if the {An} are disjoint.

Conditional density

Let f(x, y) be a joint probability density for X, Y w.r.t. a dominating measure µ× ν, i.e.

P ((X, Y ) ∈ B) =

∫∫
B

f(x, y)µ(dx)ν(dy).

Let f(x|y) = f(x, y)/
∫
f(x, y)ν(dy)

Exercise: Prove
∫
A
f(x|y)µ(dx) is a version of Pr(X ∈ A|Y ).

This, and similar exercises, show that our “simple” approach to conditional probability

generally works fine.
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