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Array-valued data

yi,j,k =

• jth measurement on ith subject
under condition k (psychometrics)

• sample mean of variable i for group
j in state k (cross-classified data)

• type-k relationship between i and j
(multivariate relational data)

• time-k relationship between i and j
(dynamic relational data)
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Mortality tables

(Joint work with Bailey Fosdick)
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Human Mortality Database: (log) probability of dying in the next year

• 38 countries

• 23 age levels (0, 1 and then every 5 years)

• 9 times periods (1960 to 2000 every 5 years)

• 2 sexes

A 39× 23× 9× 2-dimensional table.
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Longitudinal trade
Yearly change in log exports (2000 dollars) : Y = {yi,j,k,l} ∈ R30×30×6×10

• i ∈ {1, . . . , 30} indexes exporting nation
• j ∈ {1, . . . , 30} indexes importing nation
• k ∈ {1, . . . , 6} indexes commodity
• l ∈ {1, . . . , 10} indexes year

Germany Italy France Spain

Thailand Rep. of Korea Malaysia Indonesia
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Longitudinal network example

Cold war cooperation and conflict

• 66 countries

• 8 years (1950,1955,. . . ,1980,1985)

• yi,j,t =relation between i , j in year t

• also have data on gdp and polity
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Longitudinal network example
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Longitudinal network example
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Deep interactions

(Joint work with Alex Volfovsky)

Consider the usual three-factor “ANOVA decomposition” model:

yi,j,k,l = µj,k,l + εi,j,k,l

= µ+
[
aj + bk + cl

]
+

[
(ab)j,k + (ac)j,l + (bc)k,l

]
+

[
(abc)j,k,l

]
+ εi,j,k,l

Parameters are vectors, matrices and arrays based on three index sets.

Estimation methods:

• OLS estimation

• OLS with reduced model

• Bayes/penalized estimation

Parameters in models for contingency table data are similar.
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• OLS with reduced model

• Bayes/penalized estimation

Parameters in models for contingency table data are similar.
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Neuropsychology imaging data
Blood flow in the brain: Y = {yi,j,k,l,m,n}

• (i , j , k) index spatial location
• l indexes time
• m indexes treatment/stimulus
• n indexes subject
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Data models and Probability models

Y = Θ + E

Θ contains the “main features” we hope to recover,

E is “patternless.”

Data model:

• Θ represents main features of the data

• E represents “residual” features

• Goal is to compactly represent/summarize/describe the data

Probability model:

• Θ represents a fixed process or population parameter

• E represents measurement error or sample-to-sample variation

• Goal is to estimate Θ and describe our estimation uncertainty

17/26



Examples of multiway data Models and methods Course outline

Data models and Probability models

Y = Θ + E

Θ contains the “main features” we hope to recover,

E is “patternless.”

Data model:

• Θ represents main features of the data

• E represents “residual” features

• Goal is to compactly represent/summarize/describe the data

Probability model:

• Θ represents a fixed process or population parameter

• E represents measurement error or sample-to-sample variation

• Goal is to estimate Θ and describe our estimation uncertainty

17/26



Examples of multiway data Models and methods Course outline

Data models and Probability models

Y = Θ + E

Θ contains the “main features” we hope to recover,

E is “patternless.”

Data model:

• Θ represents main features of the data

• E represents “residual” features

• Goal is to compactly represent/summarize/describe the data

Probability model:

• Θ represents a fixed process or population parameter

• E represents measurement error or sample-to-sample variation

• Goal is to estimate Θ and describe our estimation uncertainty

17/26



Examples of multiway data Models and methods Course outline

Data models and Probability models

Y = Θ + E

Θ contains the “main features” we hope to recover,

E is “patternless.”

Data model:

• Θ represents main features of the data

• E represents “residual” features

• Goal is to compactly represent/summarize/describe the data

Probability model:

• Θ represents a fixed process or population parameter

• E represents measurement error or sample-to-sample variation

• Goal is to estimate Θ and describe our estimation uncertainty

17/26



Examples of multiway data Models and methods Course outline

Data models and Probability models

Y = Θ + E

Θ contains the “main features” we hope to recover,

E is “patternless.”

Data model:

• Θ represents main features of the data

• E represents “residual” features

• Goal is to compactly represent/summarize/describe the data

Probability model:

• Θ represents a fixed process or population parameter

• E represents measurement error or sample-to-sample variation

• Goal is to estimate Θ and describe our estimation uncertainty

17/26



Examples of multiway data Models and methods Course outline

Data models and Probability models

Y = Θ + E

Θ contains the “main features” we hope to recover,

E is “patternless.”

Data model:

• Θ represents main features of the data

• E represents “residual” features

• Goal is to compactly represent/summarize/describe the data

Probability model:

• Θ represents a fixed process or population parameter

• E represents measurement error or sample-to-sample variation

• Goal is to estimate Θ and describe our estimation uncertainty

17/26



Examples of multiway data Models and methods Course outline

Data models and Probability models

Y = Θ + E

Θ contains the “main features” we hope to recover,

E is “patternless.”

Data model:

• Θ represents main features of the data

• E represents “residual” features

• Goal is to compactly represent/summarize/describe the data

Probability model:

• Θ represents a fixed process or population parameter

• E represents measurement error or sample-to-sample variation

• Goal is to estimate Θ and describe our estimation uncertainty

17/26



Examples of multiway data Models and methods Course outline

Mean models

“Θ = main features” means “Θ = low dimensional”

dimension(Θ) < ambient dimension(Θ) = dimension(Y)

Modeling possibilities:

• regression: Θ = Θ(B,X), X known.

• replication: Θ = µ ◦ 1

• rank reduction/factor model: Θ = Θ(A,B)
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PC decomposition

Y = Θ + E

Matrix decomposition: If Θ is a rank-R matrix, then

θi,j = 〈ui , vj〉 =
R∑

r=1

ui,rvj,r Θ =
R∑

r=1

urv
T
r =

R∑
r=1

ur ⊗ vr

Array decomposition: If Θ is a rank-R array, then

θi,j,k = 〈ui , vj ,wk〉 =
R∑

r=1

ui,rvj,rwk,r Θ =
R∑

r=1

ur ⊗ vr ⊗ wr

(PARAFAC/CANDECOMP: Harshman[1970], Kruskal[1976,1977] )
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Tucker decomposition and HOSVD

Y = Θ + E

Decompose Θ using the Tucker decomposition (Tucker 1964,1966):

θi,j,k =
R∑

r=1

S∑
s=1

T∑
t=1

zr,s,tai,rbj,rck,r

Θ = Z× {A,B,C}

• Z is the R × S × T core array

• A , B , C are R ×m1, S ×m2, T ×m3 matrices.

• R, S and T are the 1-rank, 2-rank and 3-rank of Θ

• “×” is array-matrix multiplication (De Lathauwer et al., 2000)
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Covariance modeling

Matrix-variate data:

Additive random effects

yi,j = θi,j + ai + bj + εi,j

{ai} ∼ i.i.d.N(0, σ2
a)

{bi} ∼ i.i.d.N(0, σ2
b)

{εi,j} ∼ i.i.d.N(0, σ2
ε)

Multiplicative factors

yi,j = θi,j + uT
i vj + εi,j

Multilinear transformations

Y = Θ + AEBT

In this case, we have Cov[Y] = AAT ◦ BBT ≡ Σ1 ◦ Σ2.
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Statistical analysis of matrix data

1. Reduced rank representations
1.1 singular value decomposition
1.2 ANOVA decomposition

2. Error models
2.1 additive random effects
2.2 multiplicative effects and the matrix normal model
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Higher order array decompositions

1. Notions of tensor rank

2. CANDECOMP/PARAFAC

3. Higher order SVD

4. Theoretical concerns
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Estimation methods

1. Alternating least squares

2. Penalized likelihoods

3. Bayesian estimation

4. Equivariant estimation
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Covariance models and estimation

1. Additive random effects

2. Multiplicative effects/Multiway factor models

3. Separable covariance models
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Statistical concerns

1. Missing data

2. Non-normality/outliers

3. Categorical data

4. Model selection
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