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Mortality tables

(Joint work with Bailey Fosdick)
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Deep interactions

(Joint work with Alex Volfovsky)

Consider the usual three-factor “ANOVA decomposition” model:

Yigkt = Mkt €kl

w+ [aj + bk + C/} + [(ab)j,k + (ac)j, + (bC)k,/] + [(abc)j,k,/] + €ij k1

Parameters are vectors, matrices and arrays based on three index sets.
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Parameters are vectors, matrices and arrays based on three index sets.

Estimation methods:
e OLS estimation
e OLS with reduced model

e Bayes/penalized estimation

Parameters in models for contingency table data are similar.
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Neuropsychology imaging data
Blood flow in the brain: Y = {yij.k,i,mn}
(7,4, k) index spatial location
e | indexes time
e m indexes treatment/stimulus
e n indexes subject
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Examples of multiway data Models and methods

PC decomposition

Y=0+E

Matrix decomposition: If @ is a rank-R matrix, then

ei,j = ul7vj § Ui rVj,r o= E UrVr E u Qv,

Array decomposition: If @ is a rank-R array, then

R
Ok = (Ui, Vjy Wie) = > Ui, Vj, Wi r 0= uavaw

r=1

(PARAFAC/CANDECOMP: Harshman[1970], Kruskal[1976,1977] )
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Tucker decomposition and HOSVD

Y=0+E

Decompose O using the Tucker decomposition (Tucker 1964,1966):

R s T
Oijk = E g Ezr,s,tai,rbj,rck,r

r=1 s=1 t=1

Zx {A,B,C}

O]
I
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Covariance modeling

Matrix-variate data:
Additive random effects
Yij=0ij+a+b+tei;
{ai} ~i.i.d.N(0,03)
{b;} ~ i.i.d.N(0,0p)
{eij} ~iid.N(0,0?)
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Covariance modeling

Matrix-variate data:

Additive random effects
Yij=0ij+a+b+tei;
{ai} ~i.i.d.N(0,03)
{b;} ~ i.i.d.N(0,0p)
{eij} ~iid.N(0,0?)
Multiplicative factors
vij=0ij+ UiTVj + €
Multilinear transformations

Y = O + AEB”

In this case, we have Cov[Y] = AAT 0 BB" = X; 0 X,.
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Categorical data
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Model selection
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