STA 732 Homework 1 Assigned 2025-01-14 Due 2025-01-21

- 1. Let L be a loss function for which $\mathcal{D} = \Theta$ and $L(\theta, d) = 0$ if $d = \theta$ and is strictly greater than zero otherwise. Obtain an example of a model for which there is a $\theta_0 \in \Theta$ such that $\delta(X) = \theta_0$ is not admissible.
- 2. Later we will show that X is an admissible estimator of θ in the model $X \sim N(\theta, 1), \theta \in \mathbb{R}$ under squared error loss. Using this fact, show the following:
 - (a) If $X \sim N(\theta, \sigma_0^2)$, σ_0^2 known, then X is admissible for θ .
 - (b) If $X \sim N(\theta, \sigma^2)$, σ^2 unknown, then X is admissible for θ .
 - (c) If $X_1, \ldots, X_n \sim \text{i.i.d.} N(\theta, \sigma_0^2), \sigma_0^2$ known, then \overline{X} is admissible for θ .
 - (d) If $X_1, \ldots, X_n \sim \text{i.i.d. } N(\theta, \sigma^2), \sigma^2$ unknown, then \bar{X} is admissible for θ .
- 3. Let $\theta \in (0, \infty)$ be an unknown parameter and X be a random variable such that $E[X|\theta] = \theta$ and $Var[X|\theta] = v(\theta)$ where $v(\theta)$ is specified. Consider estimation of θ by linear functions of the form

$$\delta_a(X) = aX$$

for $a \in (0, 1)$, with squared-error loss

$$L(\delta(X), \theta) = [\delta(X) - \theta]^2.$$

Let \mathcal{A} be the set of all such estimators, indexed by $a \in (0, 1)$.

- (a) For $v(\theta) = \theta^2$, calculate the risk function of δ_a , and find a value of a that makes δ_a admissible within the class \mathcal{A} (i.e., no member of \mathcal{A} dominates it). Show that this estimator dominates the unbiased estimator $\delta_1(X) = X$.
- (b) For $v(\theta) = \theta$, prove that every member of \mathcal{A} is admissible among the class \mathcal{A} (i.e., no member dominates another), and that no member of \mathcal{A} dominates δ_1 .
- (c) Suppose $v(\theta) = \theta^k$ where k is a positive integer. Find a closed form expression for the Bayes estimator in the class \mathcal{A} when θ has prior density $p(\theta) = e^{-\theta}, \ \theta > 0$.

- 4. Let X_1, \ldots, X_n be i.i.d. "failure times" with pdf $p(x|\theta) = e^{-x/\theta}/\theta$ on $0 < x < \infty$. Suppose we only see the censored variables Y_1, \ldots, Y_n where $Y_i = \min(X_i, t)$ and t is a known censoring time.
 - (a) Calculate $\Pr(Y = t | \theta)$ and the CDF F(y) for a single observation $Y = \min(X, t)$.
 - (b) Explain why the class of distributions $\mathcal{P}_Y = \{\Pr(Y \in \cdot | \theta) : 0 < \theta < \infty\}$ for the Y_i 's is not dominated by Lebesgue measure μ . Define a new measure ν which is a simple modification of μ that dominates \mathcal{P}_Y .
 - (c) Find the corresponding Radon-Nikodym derivatives, i.e. the probability densities $p(y|\theta)$ for Y, such that $\Pr(Y \in A|\theta) = \int_A p(y|\theta)\nu(dy)$.
 - (d) Find a minimal sufficient statistic for θ based on the observed data Y_1, \ldots, Y_n and explain why it is minimal.
- 5. Let $X \sim \text{binary}(\theta), \theta \in \{\theta_l, \theta_h\}$ where $0 < \theta_l < \theta_h < 1$. Consider estimation of θ with 0-1 loss.
 - (a) Characterize all non-randomized estimators of θ .
 - (b) Characterize all estimators of θ , in terms of the randomized and non-randomized estimators.
 - (c) The risk function $R(\theta, \delta)$ of each estimator δ can be expressed as a two dimensional vector, $r(\delta) = (R(\theta_l, \delta), R(\theta_h, \delta))$. Draw the risk set the set of all risk functions.
 - (d) Using your drawing, characterize all admissible estimators.