STA 732 Homework 2 Assigned 2025-01-21 Due 2025-01-28

- 1. Consider an exponential family \mathcal{P} having parameter space $\mathcal{H} \subset \mathbb{R}^p$ and densities $\{p(x|\eta) = \exp(t(x) \cdot \eta A(\eta)) : \eta \in \mathcal{H}\}$ with respect to a dominating measure ν . Here, \mathcal{H} is the natural parameter space, $\mathcal{H} = \{\eta : \int \exp(t(x) \cdot \eta) \nu(dx) < \infty\}$, and $A(\eta) = \log \int \exp(t(x) \cdot \eta) \nu(dx)$ is the normalizing constant. Derive expressions for $\mathrm{E}[t(x)|\eta]$ and $\mathrm{Var}[t(x)|\eta]$ as a function of the derivatives of $A(\eta)$. Apply this result to obtain $\mathrm{E}[t(x)|\eta]$ and $\mathrm{Var}[t(x)|\eta]$ for the following families:
 - (a) the normal(μ, σ^2) family;
 - (b) the gamma(a, b) family, having mean ab and variance ab^2 .
 - (c) the multinomial(θ) family, where $\theta = (\theta_1, \ldots, \theta_K)$ with $\theta_k \ge 0$ and $\sum \theta_k = 1$.
- 2. Consider the Kullback-Leibler loss:

$$L(\theta, d) = \int \log \frac{p(x|\theta)}{p(x|d)} p(x|\theta) \ \mu(dx),$$

which measures the predictive accuracy of p(x|d) against the truth $p(x|\theta)$.

- (a) Show that $L(\theta, d) \ge 0$ unless $p(x|\theta) = p(x|d)$ a.e. μ .
- (b) Obtain an expression for this loss function for estimating the natural parameter in a (multiparameter) exponential family model in the natural parameter space, and show that this loss function is convex.
- (c) Obtain expressions for the loss function when the model is
 - i. Poisson with unknown mean;
 - ii. normal with unknown mean and variance;
 - iii. gamma with unknown shape and scale.
- 3. Let $X \sim N(\theta, 1)$ and $L(\theta, d) = (\theta d)^2$ for some $\theta \in \mathbb{R}$.
 - (a) Show formally that $\delta(X) = \theta_0$ is an admissible estimator.

- (b) Consider a randomized estimator of the form $\delta(X, U) = \theta_0 \times 1(U < c) + \theta_1 \times 1(U > c)$, where $U \sim$ uniform(0,1). Decide whether or not δ is admissible, and prove your result.
- 4. Use a limiting Bayes argument to show that x/a is an admissible estimator of b based on $X \sim \text{gamma}(a, b), \ b > 0$ and a known, under loss $L(b, d) = (b - d)^2/b^2$.