Let \(S\sim \text{Wishart}_n(\Sigma)\) for some \(\Sigma\in \mathcal D_p^+\), \(S' \sim \text{Wishart}_n(I_p)\), and let \(R\) and \(R'\) be the corresponding correlation matrices. Show that \(R \stackrel{d}{=} R'\).
Analyze the pendigit data [pendigits.rds] in the [Code] directory for partial isotropy. Specifically, for each digit, use BIC to identify a plausible dimension of a subspace with isotropic errors. What do the results suggest about compressibility of the data?
Consider “Bayesian probabilistic PCA” using the model \(Y \sim N_{n\times p}(0,(AA^\top +\sigma^2 I_p )\otimes I_n)\).