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Chapter 1

Motivations and
Introduction to Bayesian
Inference

1.1 Motivational Examples

Example 1.1: The New York Times article listed below talks about the finan-
cial crisis of 2008. Specifically it points to risk analysis and model failure. We
will discuss risk in our last chapter of this class. What can we learn from this
article?

http://www.nytimes.com/2009/09/13/business/13unboxed.html?_r=1

Example 1.2: We want to generate a random integer between 1 and 10. Let’s
try doing this ourselves and see what happens. Everyone in the class choose a
random number quickly and write it down. What has happened?

The goal of generating a random integer between 1 and 10 is that each integer
should have an equally likely chance of being chosen.

From our experiment, did this occur? What went wrong?
Since we cannot generate a random number ourselves because we are likely

to choose some numbers more frequently than others, we can generate this
number using software. We will come back to this example and go through how
to generate such an integer in R. When you go home today, download R and
begin reading Chapter 1 of Using R for Introductory Statistics if you bought
the book. Also, read the R Help document I have posted on the course webpage
when you go home.

Example 1.3: The article listed below in the New York Times from April 25,
2010, talks about the confusion that students as well as professionals such as
physicians have regarding Bayes’ Theorem and conditional probabilities.

http://opinionator.blogs.nytimes.com/2010/04/25/chances-are/
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5 1.1. MOTIVATIONAL EXAMPLES

The article deals with calculating the probability that a woman has breast
cancer given she has a positive mammogram, which is a calculation that needs
to be done correctly in a real-world situation.

Let’s take a few minutes to read through the article. Focus specifically on the
section where a doctor estimates a womans probability of having breast cancer,
given that she has a positive mammogram, to be 90 percent. What is wrong
with his answer intuitively? Notice that as Gigerenzer talks to many other
doctors their estimates are very different, some giving estimates at 10 percent
and others giving estimates between 50 and 80 percent. So, what’s the correct
answer and how do we reason this out? First, let’s look at all the information
we have.

Let’s look at an example from the article where we’re interested in the prob-
ability that a woman has breast cancer given she has a positive mammogram
even though she is in a low-risk group (i.e., 40–50 years old with no family
history of breast cancer). The probability that one of these women has breast
cancer is 0.008. If a woman has breast cancer, then 90 percent of the time she
will have a positive mammogram. If a woman does not have breast cancer, the
probability is 0.07 that she will still have a positive mammogram. Suppose a
woman has a positive mammogram. What is the probability that she actually
has breast cancer?

Solution: Natural Frequencies Approach (Gigerenzer’s Approach). We start
with a simple, intuitive approach, bypassing Bayes’ method since often times
people confuse the conditional probability that A occurs given B, P (A|B), with
the conditional probability that B occurs given A, P (B|A). Another common
mistake is that people mistake P (A|B) with P (A,B). We will discuss these
more in the next chapter.

Let BC denote the event that a woman has breast cancer and let M+ denote
the event that a woman receives a positive mammogram. We are interested in
finding P (BC|M+).

From our assumptions, we know P(BC) = 0.008. That is, 8 out of 1000
women have breast cancer. Also, 90 percent of 8 women have a positive mam-
mogram which implies that approximately 7 women will have a positive mammo-
gram. Of the remaining 992 women who don’t have breast cancer, (992)(0.07) ≈
70 have a positive mammogram. Thus, given a sample of women who have a
positive mammogram screening, what percentage of them have breast cancer?
Since we found that 7 + 70 = 70 have a positive mammogram, this means

P (BC|M+) = 7/77 ≈ 9%.

Comment : Although using this approach is easier and more intuitive
than using Bayes’ Rule, note that we have arrived at our answer by
a few assumptions. First, the assumption that 8 out of 1000 women
have breast cancer isn’t necessarily true. In reality, events don’t
have to follow their corresponding probabilities. For example, if we
flipped a coin 1000 times, we should not expect to get exactly 500
heads. We also rounded to whole numbers, so our final answer was
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1.2. INTRODUCTION TO BAYESIAN INFERENCE 6

an approximation. Keep these ideas in mind when solving problems
this way.

Alternative Solution: Bayes’ Rule
Recall Bayes’ Rule from STA 2023:

P (A|B) = P (A,B)/P (B).

We want to calculate

P (BC|M+) = P (BC,M+)/P (M+)

= P (M+|BC)P (BC)/P (M+)

= (0.9)(0.008)/P (M+)

Also,

P (M+) = P (M+|BC)P (BC) + P (M+|no BC)P (no BC) (1.1)

= (0.9)(0.008) + (.07)(1− .008)

= 0.07664

Plugging back in to P (BC|M+), we find

P (BC|M+) = 0.0072/.07664 = 0.0939.

In equation (1.1), we are using the law of total probability, which
recall says that

P (A) = P (A|B)P (B) + P (A|Bc)P (Bc).

We will review this more completely in Chapter 2.

1.2 Introduction to Bayesian Inference

1.2.1 Simple Bayesian Example

Suppose you are a biology student submitting your first paper to a journal and
you have assessed your chances of your paper being published. Suppose this
particular journal has a particularly low acceptance rate of 20 percent, but your
paper ended up being accepted! What is your updated assessment that your
next submission will be accepted (assume the topic is similar)?

Using intuition, we know that the direct estimate or frequentist estimate is
100 percent since we only have one sample, however, after thinking more, this
answer seems very naive given that we know this journal’s acceptance rate is
20 percent. Thus, it makes sense to pick a number smaller than 100 percent.
If you do this, you are behaving like a Bayesian because you are adjusting the
direct estimate due to knowing some prior information.

That is, it makes sense to incorporate the prior information, i.e., in this case
the acceptance rate of 20 percent into our calculation so that our answer will
be more accurate. We will explore this idea in more detail soon. The important
point is that you understand the basic idea behind the example.
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7 1.2. INTRODUCTION TO BAYESIAN INFERENCE

1.2.2 Frequentist versus Bayesian

In statistics, there are two approaches that are mainly used by researches—
frequentist and Bayesian. The frequentist approach evaluates procedures based
on sampling from a particular model (the likelihood) repeatedly. The likelihood
defines the distribution of the observed data conditional on the unknown pa-
rameter(s). For example, we denote the likelihood as L(X1, . . . , Xn|θ), where
the Xi’s are the data and θ is the parameter we are trying to estimate.

Example 1.4: LetX1, . . . , Xn
iid∼ N(µ, σ2) where σ2 is known. From STA 2023,

we know that X̄ (the sample average) estimates µ well. We can show (using
calculus) that X̄ is the frequentist estimate for µ in this situation.

Moving along to the Bayesian approach, this requires sampling a model
(likelihood) and also knowing a prior distribution on all unknown parameters
in the model. In the easiest case, where we only have one unknown parameter,
the likelihood and prior are combined in such a way that we compute the distri-
bution of the unknown parameter given the data (posterior distribution). We’ll
write out some notation for what this means later. For now, it’s important to
understand the basic idea.

We have briefly discussed the two approaches. We will outline how both
conceptually differ from each other so it is very clear.

Bayesian Methods

• The parameter is considered to be a random variable and has a distribu-
tion.

• The prior distribution placed on the unknown parameter quantifies our
beliefs regarding the unknown parameter.

• We use the laws of probability to make inferences about the unknown
parameter of interest.

• We update our beliefs about the unknown parameter after getting data
(likelihood). This yields the posterior distribution which reweights things
according to the prior distribution and the data (likelihood).

• The Bayesian approach makes sense even when we treat the experiment
as if it is only occurring one time.

Frequentist Methods

• For a frequentist, the parameter is fixed but an unknown constant.

• The probabilities are always interpreted as long-run relative frequencies.

• Statistical procedures are judged by how well they perform in the long-run
over some infinite number of repetitions of the experiment.
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1.2. INTRODUCTION TO BAYESIAN INFERENCE 8

1.2.3 Frequentist or Bayesian

Let’s consider why both models might have criticism.

Bayesian Criticisms

• Bayesian methods require choosing some prior with known parameters.
One question that is often asked is how to choose the prior as well as the
prior parameters.

• Bayesians are often criticized for choosing priors out of convenience. Such
priors are called conjugate priors and and allow us to compute the poste-
rior distribution very easily as we will soon see.

• Bayesian methods are sometimes not used because inference may depend
on the choice of a specific prior. This causes a lack of model robustness.

• Recent computational advances (WinBUGS and using MCMC) have ba-
sically eliminated any problems in the past regarding choice of priors,
however difficulties of prior selection and possible non-robustness remain.

Frequentist Criticisms

• Bayesians have criticized frequentist methods for failure to incorporate
prior information, which is often available in problems today.

• Frequentist methods are often also avoided due to inefficiency, inflexibility,
and incoherence. By incoherence, we mean that these methods fail to
process information systematically.

• Another criticism is that even though frequentists avoid dependence on
prior beliefs, they still require some set of simple model assumptions must
be made that are free of confounding, selection bias, measurement error,
etc.

Since frequentist methods are the ones stressed in undergraduate studies
whether you realize it or not, for the remainder of this course we will concentrate
on learning Bayesian methods. Bayesian methods are becoming more and more
popular in industrial work and in areas outside of statistics, so it’s important
that you have a firm understanding of Bayesian methods, how to apply them,
and how they differ from the frequentist approach.

However, before we can introduce any Bayesian notation or methods, we
will need to review many probability concepts to make sure we are familiar with
some statistical tools.
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Chapter 2

Probability and Random
Variables

We’ll review some concepts that are purely frequentist in nature as well as
cover some ideas that you may have not seen before that will be useful in future
chapters.

When we seek to calculate a probability, we are wanting to measure our belief
in the occurrence of a future event. For example, if we flip a coin, we do not
know for certain if it will land on heads, but we have learned from introductory
courses that on average it will land on heads half the time and on tails the
other half. When we speak of random occurrences that cannot be predicted
with certainty, we say that these events are random or stochastic.

Why do we need to learn probability theory? Consider a gambler who is
interested in whether or not a (six-sided) die is balanced. If the die is perfectly
balanced and we did millions of experiments, we would expect that each side
would come up with probability 1/6. However, the gambler sets out to prove
that the die is loaded. He takes a sample of ten tosses, all resulting in 1s. The
gambler decides from this that the die must be loaded. But can we be sure? The
gambler decided that the die was loaded not from using calculations, but from
intuition. He decided that it wasn’t impossible to get ten 1s but improbable.

Probability theory will provide us with a rigorous method for finding a num-
ber that will agree with the relative frequency of occurrence of some event in a
long series of trials. We can see how this is needed if, for example, the gambler
had instead rolled five 1s, two 2s, one 3, one 4, and one 6 instead of ten 1s.
Using intuition alone, how can we make a decision regarding whether or not the
die is balanced? Thus, in this chapter we will create a foundation necessary for
computing these quantities so we aren’t sitting around guessing like our friend
the gambler.

9



2.1. FIRST PRINCIPLES 10

2.1 First Principles

Definition 2.1: A sample is a group of subjects for which we have data and
about which we want to study information. A sample might be 18 UF psychol-
ogy majors, randomly chosen by UFID or 100 possible flips of the quarter in
my pocket.

Definition 2.2: The group of subjects that is the target of interest is known
as the population. Examples of populations include the following:

• All UF biology majors

• All adults that smoke in the United States

• All possible flips of the quarter in my pocket

Definition 2.3: A parameter is a measurement describing some characteristic
of a population.

Definition 2.4: A statistic is a numerical measurement describing some char-
acteristic of a sample. Let x1, x2, . . . , xn be a sample of measured values.

Definition 2.5: The sample mean is defined as

x̄ =
1

n

n∑
i=1

xi.

The population mean is denoted by µ.

Definition 2.6: The sample median is the middle value when the original data
values are arranged in order of increasing (or decreasing) magnitude. We’ll
denote the median by x̃.

Example 2.1: Suppose we have observations that are already ordered: 2, 5, 7, 10, 49.
Then 7 is the median. However, if we have an even number of observations, such
as 2, 4, 6, 10. Then the median is the average of the middle two observations.
The median here is 10/2 = 5.

Definition 2.7: The sample variance is

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2.

The population variance is denoted by σ2.

Example 2.2: (Aqua Running) Aqua running has been suggested as a method
of cardiovascular conditioning for injured athletes and others who desire a low-
impact aerobics program. In a study to investigate the relationship between
exercise cadence and heart rate, the heart rates of 20 healthy volunteers were
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11 2.2. PROPERTIES OF PROBABILITY

87 109 79 80 96 95 90 92 96 98
101 91 78 112 94 98 94 107 81 96

measured at a cadence of 48 cycles per minute (a cycle consists of two steps).
The data are as follows:

Calculate the sample mean and sample variance.
Solution: The sample mean is simply

X̄ =
87 + 109 + 79 + . . .+ 96

20
= 1874/20 = 93.7.

The sample variance is

1

20
[(87− 93.7)2 + . . .+ (96− 93.7)2] = 91.27.

At the end of the chapter, we will look at how to do computations such as
these in R.

2.2 Properties of Probability

In order to calculate probabilities of events, we will need to establish some
notation.

Definition 2.8: An experiment is a process where we record an observation.
Examples of experiments include flipping a coin, tossing a die, measuring the
IQ score of a student, or administering a drug to patient and asking whether
the pain is relieved.

Remark: You may notice this definition is somewhat broader than
the one you learned in STA 2023. For convenience, any data that is
collected in a random way will be referred to as an experiment.

We want to calculate the probability of something happening. We call this
something an event. If we’re speaking of one event, we’ll denote the event by A.

Definition 2.9: The sample space, S, associated with an experiment is the set
of all possible outcomes.

Definition 2.10: The outcome is the result achieved from running one trial of
an experiment.

Definition 2.11: Some particular set of outcomes that we are interested in is
called an event.

Recall from your introductory statistics course that if each outcome is equally
likely, then we can easily find the probability of event A, denoted by P (A). We
find it by

P (A) =
# of outcomes in A

total # of outcomes in sample space S
.
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2.2. PROPERTIES OF PROBABILITY 12

So far, our definitions above may seem a bit abstract. Let’s look at an
example to make things more clear.

Example 2.3 (Rolling a Die): Consider rolling a six-sided die on a flat surface.
The die’s sides are labeled 1,2,3,4,5,6. Suppose we are interested in betting on
the roll being a 6. Then there are 6 possible outcomes (rolling a 1,2,3,4,5, or
6). Each outcome listed above is also an event. For example, rolling a 3 is an
event. In fact, there are more than 6 events.

To see this, suppose we are instead interested in betting that the roll is odd.
We denote this event by {1, 3, 5}. As we can see, there are many events that can
be considered. Or we could be interested in not rolling a 6. We denote this by
6c. Then 6c = {1, 2, 3, 4, 5}. This notation is called the complement of 6.

Definition 2.12: More formally, the complement of event A, denoted by Ac,
consists of all the outcomes in the sample space S that are not in A.

Definition 2.13: Let S be the sample space associated with an experiment.
To every event A in S, we assign a number, P (A), called the probability of A.
The following results hold:

1. P (A) ≥ 0

2. P (S) = 1

3. If events A and B are mutually exclusive (i.e., have no outcomes in com-
mon), then P (A ∪B) = P (A) + P (B).

Remark: Since P (A) ≥ 0 and P (S) = 1, we know

0 ≤ P (A) ≤ 1.

Why? S is the entire sample space, so A must live somewhere in S.
This means that A ⊂ S =⇒ P (A) ≤ P (S) = 1.

Theorem 2.1: P (A) = 1− P (Ac).

Proof: Note that S = A ∪Ac. Also, A and Ac are mutually exclusive, so by
above,

1 = P (S) = P (A ∪Ac) = P (A) + P (Ac).

Definition 2.14: We use ∅ to denote an impossible event. Naturally, P(∅) = 0.

Example 2.4: (Coaching Jobs) Four equally qualified people apply for two
coaching jobs on the Florida football team. One and only one applicant is a
member of a minority group. The positions are filled by choosing two of the
applicants at random.

1. What are the possible outcomes for this experiment?
Denote the applicants by person A, B, C, and D. Then the possible
outcomes are all the combinations of choices of the candidates, i.e.,

{A,B}, {A,C}, {A,D}, {B,C}, {B,D}, {C,D}.
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13 2.3. CONDITIONAL PROBABILITY AND INDEPENDENCE

2. Assign reasonable probabilities to each of the sample points. Since two
applicants are chosen at random, each outcome has an equally likely prob-
ability of being chosen, which is 1/6.

3. Find the probability that the applicant from the minority group is selected
for a position. Suppose person A is from a minority group. Person A is
in 3 of the 6 possible outcomes. So, P (Person A selected) = 3/6 = 1/2.

Example 2.5: (Coin Tossing) A balanced coin is tossed three times. Calculate
the probability that exactly two of the three tosses results in heads. Denote this
event by A.

Solution: Denote heads by H and tails by T. Let’s list out the set of all
possible outcomes. The first letter we write will represent the outcome of the
first flip, the second letter will represent the outcome of the second flip, etc.
Assume that the coin is fair.

There are eight possible events which are

HHH,HHT,HTT,HTH, TTT, TTH, THH, THT.

Since we assume the coin is fair, let’s now list out the outcomes that have two
of the three tosses with heads. They are

HHT,HTH, THH.

Thus, P (A) = 3/8.

2.3 Conditional Probability and Independence

2.3.1 Probability Motivation

In the last section, we looked at an example of flipping a fair coin three times.
Suppose we are instead interested in the probability of the following:

• getting a H on toss three given that first two tosses were HT

• getting a T on toss three given that the first two tosses were HH

This illustrates the Bayesian idea that we have prior information to condition
on that we should use to calculate our probability. Let’s see the simplest form
of how this prior information is used.

Remember that Bayesian probability conditions on the probability of know-
ing information, while classical statistics views probability as the frequency after
a hypothetical set of trials.

Definition 2.15 (Conditional Probability):

P (A|B) = P (A,B)/P (B) provided P (B) > 0.
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2.3. CONDITIONAL PROBABILITY AND INDEPENDENCE 14

This easily extends to what is called the Multiplicative Law of Probability,
i.e.,

P (A,B) = P (A|B)P (B).

Then we can extend this to find the probability of the intersection
of any number of events.

Theorem 2.2 (Additive Law of Probability):

P (A ∪B) = P (A) + P (B)− P (A,B).

Definition 2.16 (Independence): Events A and B are independent if any of
the following holds:

P (A|B) = P (A).

P (B|A) = P (B).

P (A,B) = P (A)P (B).

To see why for example, P (A,B) = P (A)P (B) is equivalent to
P (B|A) = P (B) when A and B are independent, simply recall
the conditional probability formula:

P (B|A) =P (B,A)/P (A)

= P (A)P (B)/P (A)

= P (B).

Examples of independence include the following:

• Tosses of the same fair coin. Once we toss the coin once, on the next toss,
the coin forgets about the last toss.

• Drawing items out of a bag with replacement.

Theorem 2.3 (Law of Total Probability): Assume that we have setsA1, A2, . . . , Ak
such that

1. S = A1 ∪A2 ∪ · · · ∪Ak.

2. Ai and Aj are mutually exclusive for all i 6= j.

Then {A1, A2 . . . , Ak} are said to partition S. If P (Ai) > 0 for all i then for any
event B,

P (B) =

k∑
i=1

P (B|Ai)P (Ai).

As a special case, S = A ∪ Ac and suppose P (A) > 0, P (Ac) > 0.
We know A and Ac are mutually exclusive. Then

P (B) = P (B|A)P (A) + P (B|Ac)P (Ac).
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15 2.3. CONDITIONAL PROBABILITY AND INDEPENDENCE

Example 2.6: (Aces) Suppose we are playing cards and we’re interested in the
probability of getting certain cards. Let A represent the event that the first
card we draw is an ace. Let B represent the event that the second card we draw
is an ace. What is the probability that we select two aces?

Solution: That is, find P (A,B) = P (B|A)P (A) by the conditional proba-
bility. P (B|A) = 3/51 since we have only have 3 aces left and 51 cards total re-
maining. Also, P (A) = 4/52. Then P (A,B) = P (B|A)P (A) = (3/51)(4/52) =
1/221. Think about calculating the probability of getting three aces at home.

What is the probability that the second card is an ace? That is, we are
looking for P (B). Naturally, we will apply the law of total probability in order
to calculate P (B). P (B) = P (B|A)P (A) + P (B|Ac)P (Ac). We are apply the
law of total probability by conditioning on whether or not we had an ace on the
first draw.

We have already calculated the first part of the expression above which
is 1/221. The second part is very similar. We find that P (B|Ac)P (Ac) =
(4/51)(48/52) = 16/221.

Putting this all together, we know P (B) = 1/221 + 16/221 = 17/221 =
1/13.

The next theorem is the fundamental theorem that led to Bayesian statistics.
We’ll go through the result and then work through some examples.

Theorem 2.4 (Bayes’ Rule):

P (A|B) =
P (B|A)P (A)

P (B|A)P (A) + P (B|Ac)P (Ac)
.

Proof: P (A|B) = P (A,B)/P (B) = P (B|A)P (A)/P (B). Now apply the law of
total probability to P (B) to get the result.

Remark: Notice that Bayes’ Rule is just an application of the law of
conditional probability and the law of total probability. If you need
to use this for a problem, you could simply just use these two laws
instead of memorizing Bayes’ Rule. However, do what’s easiest for
you.
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2.3. CONDITIONAL PROBABILITY AND INDEPENDENCE 16

Example 2.7: A diagnostic test for a disease is advertised such that it correctly
detects a disease in 90 percent of the individuals who actually have the disease.
Also, if a person does not have the disease, the test will report that he or she
does not have it with probability 0.9. Only 1 percent of the population has
the disease in question. If Jack is chosen randomly from the population and
the diagnostic test indicates that he has the disease, what is the conditional
probability that he really has the disease? Are you surprised by the answer?
Would you call this test reliable?

We want to calculate P (D|PT ). We’ll let D denote disease and ND denote
no disease. Similarly, PT will stand for a positive test and NT will denote a
negative test. From the information, we know the following:

P (PT |D) = 0.9, P (NT |ND) = 0.9, and P (D) = 0.01.

Also, since P (NT |ND) = 0.9, this implies P (PT |ND) = 0.1.
Then

P (D|PT ) =
P (D,PT )

P (PT )

=
P (PT |D)P (D)

P (PT |D)P (D) + P (PT |ND)P (ND)

=
(0.9)(0.01)

(0.9)(0.01) + (0.1)(1− 0.01)

= 1/12 ≈ 0.083.

Alternative Solution: Natural Frequencies Approach
Again we want to find P (D|PT ).

1. Since P (D) = 0.01, we assume that 10 out of 1000 people have the disease.
(We could assume 1 out of 100, but we’d like to take a large sample than
one person).

2. 90% of 10 people have a positive test, which implies that 9 people have
PT .

3. There are 991 people remaining who don’t have the disease and P (PT |ND) = 0.1.
So, (991)(.1) ≈ 99 people who have PT .

4. To summarize, we have found 108 people who have a PT . Thus,
P (D|PT ) = 9/108 ≈ 0.083.

This test clearly isn’t really worth that much since it doesn’t give us that
much information. However, it could be used as a screening test for a disease if
the test is cheap and quick. For example, suppose that there is a $15, 000 test
for the disease and P (D|PT ) is very high. The downside here is that the test
is very expensive. The solution is to have patients do the cheap test, where a
patient has about an 8 percent chance of having the disease given the test is
positive. If the screening test comes back positive, then it makes more sense to
have the patient do the more expensive test. So, the test in the above example
isn’t completely worthless to us.
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2.4 Discrete Random Variables and Their
Probability Distributions

When we are performing experiments, we often find that we are interested in
functions of an outcome instead of the outcome itself. For example, suppose we
are tossing two dice. We might be interested in the sum of two dice being seven
instead of the outcome being (1,6), (2,5), etc. Random variables are real-valued
functions defined on the sample space. The value of a random variable is deter-
mined by the outcome of some trial, so naturally probabilities will correspond
to possible values of each random variable.

2.4.1 Discrete Random Variables

Definition 2.17: A random variable Y is said to be discrete if it can assume
only a finite or countably infinite number of distinct values.

Remark: Suppose Y is countably infinite. This means that the value
of Y can assume values that you could count if you had an infinite
amount of time.

We now have a random variable Y, so we can think about the probability
that Y takes some real value y. We denote this by P (Y = y). Keep in your mind
that Y is a random variable, but y is a fixed quantity.

Definition 2.18: The probability that Y takes on value y, P (Y = y), is defined
as the sum of the probabilities of all the sample points in S that are assigned
the value y. We will sometimes denote P (Y = y) by p(y).

Definition 2.19: The probability distribution for a discrete random variable Y
can be represented by a formula, table, or graph that provides p(y) = P (Y = y)
for all y.

Theorem 2.5: For any discrete probability distribution, the following must be
true:

1. 0 ≤ p(y) ≤ 1 for all y.

2.
∑
y p(y) = 1, where we sum over all values of y with positive probability.

To represent the probability distribution of Y, we will usually form a table
where we find p(y) for each value of y in the sample space. The usual way to
find p(y) is to identify the possible values of y. Then calculate p(y) for each
value of y. This is made more clear by the following example:

Example 2.8: (Urn Example) Suppose we have an urn containing five balls.
Each ball is labeled 1 to 5. Two balls are randomly selected from the urn. Find
the probability distribution for the sum of the two sampled numbers.

Solution: Let Y = the sum of the two sampled numbers. Let’s first list out
all the possible outcomes (20 of them).
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(1,2), (1,3), (1,4), (1,5)
(2,1), (2,3), (2,4), (2,5)
(3,1), (3,2), (3,4), (3,5)
(4,1), (4,2), (4,3), (4,5)
(5,1), (5,2), (5,3), (5,4)

We’re not interested in the outcomes above, but in the distribution of Y .
From the outcomes above, it’s easy to see what values Y can take. Y can be
3,4,5,6,7,8, or 9. Then using the information above, we find p(y) in the table
below. Notice in the table that all the probabilities add up to 1. This isn’t a
coincidence. This will always occur and is something you should check to make
sure that you have a valid probability distribution.

y p(y)
3 2/20
4 2/20
5 4/20
6 4/20
7 4/20
8 2/20
9 2/20

Table 2.1: Urn Example

Definition 2.20: Let Y be a discrete random variable with probability distri-
bution p(y). Then the expected value of Y is defined to be

E(Y ) =
∑
y

yp(y).

Definition 2.21: Suppose Y is a discrete random variable with E(Y ) = µ.
Then the variance of Y is defined as

V (Y ) = E[(Y − µ)2] =
∑
y

(y − µ)2p(y).

Theorem 2.6: Suppose Y is a discrete random variable with E(Y ) = µ. The
variance of Y can also be expressed as

V (Y ) = E(Y 2)− E(Y )2.

Remark: The above result is often very useful in calculating the
variance instead of using the definition.

Example 2.9: (Urn Example Revisited) Let’s look back at the urn example
where we found the following probability distribution earlier:
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y p(y)
3 2/20
4 2/20
5 4/20
6 4/20
7 4/20
8 2/20
9 2/20

Table 2.2: Urn Example

Let’s calculate E(Y ) and V (Y ).
Solution: Recall that Y represented the sum of the two sampled balls from the
five urns.

E(Y ) =
∑
y

yp(y)

= 3(2/20) + 4(2/20) + 5(4/20) + 6(4/20) + 7(4/20) + 8(2/20) + 9(2/20)

= 6.

In order to calculate, V (Y ) we must find E(Y 2).

E(Y 2) =
∑
y

y2p(y)

= 32(2/20) + 42(2/20) + 52(4/20) + 62(4/20) + 72(4/20) + 82(2/20) + 92(2/20)

= 39.

Therefore,

V (Y ) = E(Y 2)− E(Y )2 = 39− 62 = 39− 36 = 3.

We have given the definitions for calculating the mean and variance of dis-
crete random variable. We can also use R to calculate the mean and variance
for discrete random variables. We will eventually see that we can do this for
continuous random variables as well. In the meantime, we will next discuss
some discrete distributions that will be relevant in upcoming chapters.

2.4.2 Discrete Distributions

Now that we have covered what random variables are and what probability
distributions are in the discrete case, it will be helpful to look at some specific
ones that will come up in the upcoming chapters. They include the Binomial,
Poisson, and the Geometric distributions.
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Binomial Distribution

Here is the setup:

• X represents the result of a trial (say flipping a coin) that results in a
success or failure.

• Let p denote a success (and so 1− p represents a failure).

• We decide to run an experiment for 1 trial to start.

Then P (X = x) = px(1− p)1−x. This is called a Bernoulli trial.
For a Binomial experiment, we have n trials instead, and we assume that the

trials are independent. To calculate P (X = x), think about flipping a coin, and
suppose a head is a success. We are interested in finding the probability that
we get x heads, where the P (H) = p. Since the trials are independent, we know
that the probability we get x heads is just px. Similarly, if we have x heads, we
must have n − x tails, and the probability of this is (1 − p)n−x. So we might
think that

P (X = x) = px(1− p)n−x,

but this isn’t quite right. We need to take into account the different orderings
that could occur. Recall that to take into account ordering we simply use

(
n
x

)
,

which counts the numbers of ways to place x heads when we have n spots avail-
able. Once these are placed, the tails are fixed. Thus, the Binomial distribution
is defined as:

p(x) =

(
n

x

)
px(1− p)n−x, x = 0, 1, 2, . . . , n and 0 ≤ p ≤ 1.

Remark: E(X) = np and V (X) = np(1 − p). You don’t need to
know how to derive the expectation and variance.

Poisson Distribution

Suppose that X is the number of rare events that occur over time and λ is
the average value of X. For example, we might be interested in the number of
accidents in a given time interval or the number of radioactive particles that
decay over a particular time period.

A random variable Y has a Poisson distribution if and only if

p(y) =
λxe−λ

x!
, x = 0, 1, 2, . . . , λ > 0.

Remark: E(X) = λ and V (X) = λ. You don’t need to know how to
derive the expectation and variance.

The Poisson distribution can be derived as an approximation to the binomial
distribution when n is large, p is small, and np is not too large and not too small.
In this case, define λ = np. Consider each piece of the binomial distribution.
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n is much larger than x, so

(
n

x

)
=

n!

x!(n− x)!
=

x terms︷ ︸︸ ︷
n(n− 1)(n− 2) · · · (n− x+ 1)(n− x)!

x!(n− x)!
≈ nx

x!
.

Also, again because n is much larger than x,

(1− p)n−x ≈ (1− p)n =
(

1− np

n

)n
=

(
1− λ

n

)n
≈ e−λ.

Then the binomial distribution becomes(
n

x

)
px(1− p)n−x ≈ nx

x!
pxe−λ =

(np)xe−λ

x!
=
λxe−λ

x!
,

which is the Poisson distribution.

Geometric Distribution

Suppose the probability of a success is equal to p and this is true for each trial.
We run an experiment that involves independent and identical trials, each of
which can result in a success or a failure. Suppose we have n trials and the
geometric random variable Y is number of the trial on which the first success
occurs.

Suppose we want to calculate P (Y = 1)? Clearly, P(Y=1) = p since we
must get a success. What about calculating P (Y = 2)? Here, we are calculating
the probability our first success is on trial 2, which means the first trial was a
failure. This means we ended up with FS. Thus, P (Y = 2) = p(1 − p). What
about the other events that could occur with 3, 4, 5, etc. trials. Denote these
events by E3, E4, E5, etc. Then

E3 : FFS

E4 : FFFS

E5 : FFFFS

...

Ek : FFF . . . F︸ ︷︷ ︸
k−1

S

...

So, A random variable Y is said to have a geometric probability distribution if
and only if

p(y) = P (Y = y) = (1− p)y−1p, y = 1, 2, 3 . . . , 0 ≤ p ≤ 1.

Remark: E(X) = 1
p and V (X) = 1−p

p2 . You don’t need to know how
to derive the expectation and variance.

There are many other discrete probability distributions, but we have just
covered a few.
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2.5 Continuous Random Variables and Their Prob-
ability Distributions

We just finished discussing random variables that could take on a finite number
of values or a countable number of values. We now discuss what we mean by a
continuous random variable.

2.5.1 Continuous Random Variables

For example, if you think about random variables we encounter in the real
world, ones of interest are not just discrete. The number of days that it rains is
a discrete random variable because it must take a value 0, 1, 2, . . . , n. However,
if we think about daily rainfall in Alachua County, it can be anywhere from 0
inches to 5 inches perhaps in a given month. A random variable that can take
on any value in any interval is considered continuous. Now we will look at these
types of distributions.

Definition 2.22: A continuous random variable Y can take on a continuum of
possible values. An example of this would be Y representing the lifetime of a
car, where the lifetime is assumed to take any value in some interval [a, b].

In this section, we will gloss over some concepts known as limits and deriva-
tives since calculus is not assumed in this course. What we would like to talk
about is the probability density function f(x) that corresponds to some random
variable X.

Connection to Calculus: If you have had calculus before, in this
course a random variable X will always have a distribution func-
tion F (X) = P (X ≤ x) as well as a density function f(x). Recall
the relationship between these two from your calculus course that
f(x) = F ′(x). If you haven’t had any calculus before, just ignore
these comments.
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Theorem 2.7: If f(x) is a probability density function for a continuous random
variable X, then

1. f(x) ≥ 0 for all x,−∞ < x <∞.

2.
∫∞
−∞ f(x) dx = 1.

Remark: The first equation simply says that the density must be
nonnegative for all values of x. The second involves an integral. In
non-calculus language, this says that if we look at the area under-
neath the density, it must be equal to 1. For example, think about a
standard normal density from your STA 2023 course (a bell shaped
curve). The area underneath that density curve equals 1.

Definition 2.23: Let Y be a continuous random variable with probability den-
sity f(y). Then the expected value of Y is defined to be

E(Y ) =

∫
y

yf(y) dy.

Definition 2.24: Suppose Y is a continuous random variable with E(Y ) = µ.
Then the variance of Y is defined as

V (Y ) = E[(Y − µ)2] =

∫
y

(y − µ)2f(y) dy.

Theorem 2.8: Suppose Y is a continuous random variable with E(Y ) = µ.
The variance of Y can also be expressed as

V (Y ) = E(Y 2)− E(Y )2.

Notice that this theorem holds for continuous and discrete random variables.

Remark: The above result is often very useful in calculating the
variance instead of using the definition.

2.5.2 Continuous Distributions

We have covered many discrete distributions already. We will now look at some
continuous distributions that will be of use to us in future chapters. They
include the Uniform, Normal, and Beta distributions.

Uniform Distribution

Suppose a bus arrives between 9:00 and 9:10 every morning and the probability
that the bus will arrive in any subinterval of time is proportional to the length
of the subinterval. For example, the bus is as likely to arrive between 9:02 and
9:04 as 9:08 and 9:10. Let X denote the length of time a person must wait for
the bus if the person arrived at the bus stop at 9:00 a.m. sharp.
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If we carefully noted how long (in minutes) the person had to wait after
9:00 a.m. for several mornings, we could construct a relative frequency his-
togram for the data. We would expect to see from this histogram that the
relative frequency with which we observed a value of Y between 2 and 4 would
be approximately the same as the relative frequency for that of 8 and 10.

The random variable X is an example of a uniform distribution. If a < b,
X is said to have a uniform probability distribution on the interval [a, b] if and
only if the density function of X is

f(x) =

{
1
b−a , a ≤ x ≤ b
0, otherwise.

Remark: E(X) = b+a
2 and V (X) = (b−a)2

12 . You don’t need to know
how to derive the expectation and variance.

Normal Distribution

The normal distribution is the most widely used continuous probability distri-
bution. Recall from STA 2023 that it has a bell-shaped curve centered about
its mean µ.

A random variable X has a normal probability distribution if and only if for
σ > 0 and −∞ < µ <∞, the density function of X is

f(x) =
1√

2πσ2
exp

{
−1

2σ2 (x− µ)2

}
, −∞ < x <∞.

Remark: E(X) = µ and V (X) = σ2. You don’t need to know how
to derive the expectation and variance.

Beta Distribution

A random variable has a beta distribution if and only if the density function of
X is

f(x) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1 0 ≤ x ≤ 1, α > 0, β > 0.

There are many other discrete and continuous distributions that are useful
that we have not covered. As they are needed, we will introduce them as needed.

2.6 A Brief Introduction to R

These instructions will walk you through using R. At first glance, R may seem
intimidating, but everything should be easy if you follow the instructions.
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What is R?

R is a free and flexible collection of software for statistical computing and graph-
ics. It’s designed to work on any operating system, and one of its strengths is
that users around the world can write “packages” to implement new statistical
techniques as they are developed.

Downloading and Installing R

Obviously what you’ll need to download depends on what operating system
you’re using.

• If you use Windows, download this:
http://cran.opensourceresources.org/bin/windows/base/R-2.12.1-win.exe

• If you use Mac OS X, download this:
http://cran.opensourceresources.org/bin/macosx/R-2.12.1.pkg

• If you use Linux, talk to me, because you’re going to need a lot more help
to get things set up (but you can still do it).

Double-click the file you downloaded to start the Installer. Just follow along
with the default installation options until the Installer finishes. You should now
either see R.exe in your Program Files area (Windows) or see R.app in your
Applications area (Mac OS X). This is what you double-click to start R.

The R Console

Once you start R, the main thing you see is a window called the R Console. The
window contains a command prompt > with a blinking cursor. One way to use
R is to type commands here. Try typing 2+2 at the prompt and pressing Enter.
You should see

> 2+2

[1] 4

>

You can see that R has calculated your answer, 4 (ignore the [1] before it), and
is now ready for another command.

R Source Files

Entering long lists of commands into the Console is not the most efficient way
to use R. Instead, it’s easier to type up a list of commands that we can execute
all at once and that we can also save to run again later (or for someone else to
run). We do this by making something called an R source file.

You can create a new R source file by pressing Ctrl+N (Windows) or Command-
N (Mac). You will notice during the semester that I will post R source files on
the course website that we go through in class so you can look at them later on.
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You can simply save these source files to your machine and run them in R and
you will notice that the output is the same from class.

Executing R Source Files

To run all the commands in an R source file, open it up, select all the commands
in the file by pressing Ctrl+A (Windows) or Command+A (Mac), and then
press Ctrl+R (Windows) or Command+Enter (Mac) to run everything. The
results will be displayed in the R Console.

Example Calculations in R

The R source file rhelp.R from the course website will show you various calcu-
lations that you can do in R. I have outlined the commands from the source file
below so that you can follow along.

Functions

Many mathematical and statistical functions are available in R. We can add or
subtract numbers, multiply and divide, or use functions like square root or the
exponential function. Running the R source file, we find

> 2+2

[1] 4

> (2-4)*5

[1] -10

> sqrt(9)

[1] 3

> exp(1)

[1] 2.718282

Assignment

It is often very convenient to give a value a name that we intend to use very
frequently. For example, if we have 100 trees that we have sampled, we would
make this assignment. We can always adjust our assignment at anytime, which
is most convenient.

> trees = 100

> trees + 5

[1] 105

Setting the Working Directory

The working directory is where R looks for files and where it saves any files that
it creates. You can select any directory on your computer to be the working
directory. There are two ways to set the working directory:
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• Select Miscellaneous > Change Working Directory. . . from the menu at
the top of R. Then select your desired directory.

• Execute the command setwd("MyDirectory") in R or at the beginning
of your source file. Note that exactly what MyDirectory should look like
will depend on whether you have a PC or a Mac.

Reading in a File

Often we will want to read a table of data from our working directory into R. The
most common way to do this is with the read.table function. This function
can be used when the entries in the data table are separated by white space
(and do not contain any white space themselves). There may or may not be a
header at the top specifying variable names; this should be indicated by using
the header=T or header=F option.

When we read in a table, R stores it in an object called a data frame. To
use the variables stored in the data frame, we must attach the data frame.

olympics = read.table("olym-400.txt",header=T)

attach(olympics)

R has a variety of functions similar to read.table for other types of file
formats, such as read.csv for comma-separated files and read.fwf for fixed-
width table files (where the table is built using ”spaces” that make the columns
line up). We won’t be using these in this class.

Once, we have read the data in, we can look at variable names directly by
calling them now by their name since we have attached the data. We can also
apply functions to our data and manipulate it so as to examine our data. For
example, we can type olympics in R, which in return will output the data.
Alternatively, we can type year, which will list the data for years out in R. If
we want a generic summary output from R we can type summary(olympics),
which prints information for each variable such as the minimum, maximum,
mean, etc.. Finally, we calculate the mean, variance, or median of years using
the functions mean, var, median. After we’re done with the data frame, we
should detach it in case we want to re-use the same variable names for new
data later.

> setwd("~/Desktop/sta4930/rhelp/")

> olympics = read.table("olym-400.txt",header=T)

> attach(olympics)

> olympics

years times

1 1896 54.20

2 1900 49.40

3 1904 49.20

4 1908 50.00

5 1912 48.20
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6 1920 49.60

7 1924 47.60

8 1928 47.80

9 1932 46.20

10 1936 46.50

11 1948 46.20

12 1952 45.90

13 1956 46.70

14 1960 44.90

15 1964 45.10

16 1968 43.80

17 1972 44.66

18 1976 44.26

19 1980 44.60

20 1984 44.27

21 1988 43.87

22 1992 43.50

23 1996 43.49

24 2000 43.84

25 2004 44.00

26 2008 43.75

> years

[1] 1896 1900 1904 1908 1912 1920 1924 1928 1932 1936 1948 1952 1956 1960 1964 1968

[17] 1972 1976 1980 1984 1988 1992 1996 2000 2004 2008

> summary(olympics)

years times

Min. :1896 Min. :43.49

1st Qu.:1925 1st Qu.:44.06

Median :1958 Median :45.50

Mean :1954 Mean :46.21

3rd Qu.:1983 3rd Qu.:47.75

Max. :2008 Max. :54.20

> mean(years)

[1] 1954.154

> var(years)

[1] 1234.215

> median(years)

[1] 1958

> detach(olympics)

We have presented just a few basic tools that will help you get started
in R. For more information, be sure to read the first chapter of Using R for
Introductory Statistics by John Verzani.
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2.7 Exploring an Example in R

We will explore a dataset for 657 (Albert, 2009) students recorded in a spread-
sheet and saved as the file “studentdata.txt” with tabs between each field. The
first line of the data file contains a header with the variable names. Students at
Bowling Green University in Ohio were asked many questions including:

• What is your gender?

• What is your height in inches?

• Choose a whole number between 1 and 10.

• Give the time you went to bed last night.

• Give the time you woke up this morning.

• What was the cost in dollars of your last haircut including the tip?

• Do you prefer water, pop, or milk with dinner?

2.7.1 Setting Things Up

First, download and install R from the web. Then open up a new R file. You’ll
want to save your R file in some folder/directory on your computer. You’ll need
to tell R where you’ve saved your new file. To do so, go to the R menu and
select Misc. Under Misc, select option Change Working Directory. Then
find the folder that your new file is saved in and select it. You can change the
directory within the source file using the setwd("") command. Your directory
of choice should go within the quotations.

If you are unsure of what the paths are your computer look like, you can
use the getwd("") command to guide you. If you have additional questions on
this, see me after class or in office hours.

Now install the LearnBayes package. We usually read the file into R using
the read.table command. However, since the file is already in R, we can
access the data simply using the data command. If we then use the command
studentdata[1,], we find that this prints the first row of the data frame.
Finally, to make the variable names such as Height visible in R, we much attach

the data.
So far we have done the following:

>install.packages("LearnBayes")

>library(LearnBayes)

>data(studentdata)

> studentdata[1,]

Student Height Gender Shoes Number Dvds ToSleep WakeUp Haircut Job Drink

1 1 67 female 10 5 10 -2.5 5.5 60 30 water

> attach(studentdata)
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2.7.2 Analyzing the Data

One categorical variable in this dataset is Drink, which indicates whether stu-
dents prefer water, pop, or milk with dinner. We can visually see the more
popular choice using the table command. We can then visualize this using the
barplot command. To save the plot to a file we use the pdf command and
close it with dev.off()

Now we have the following commands and plot:

table(Drink)

t = table(Drink)

pdf(file = "ch2/drink.pdf", width = 5, height = 4.5)

barplot(t, xlab="Drink", ylab="Count")

dev.off()

In the pdf command, we give the file a name as well as set the width and height
of the file that will be saved. The file will appear in the same directory as your R
file. Once you have plotted your function, you must use the command dev.off

to close the file. Otherwise, you will have problems.

milk pop water

Drink

C
ou

nt

0
50

10
0

20
0

30
0

Figure 2.1: Bar plot of drinking preferences of statistics students

From the table, we can see that more than half the students preferred water.
Also, pop was more popular than milk.

Suppose next we’re interested in how long the students slept the previous
night. We didn’t ask the students how long they slept, but we can easily cal-
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culate this value by subtracting each student’s go-to-bed time from his wakeup
time. We’ll call this new variable hours.of.sleep. From the summary statis-
tics computed, we see that students slept 7.5 hours on average (not taking into
account the students that didn’t answer) and 50 percent of the students slept
between 6.5 and 8.5 hours (recall half our data is between the 1st and 3rd quan-
tiles). We can also calculate the sample mean and sample variance of number of
hours slept using commands mean and var. In order to calculate both of these
quantities, we need to let R know that some of the data values are NA. We list
the commands for our calculations below.

> hours.of.sleep = WakeUp - ToSleep

> summary(hours.of.sleep)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

2.500 6.500 7.500 7.385 8.500 12.500 4.000

> mean(hours.of.sleep, na.rm=T)

[1] 7.385191

> var(hours.of.sleep, na.rm=T)

[1] 2.28557

Finally, suppose we are interested if the length of sleep is related to the time
a student goes to sleep. We can easily plot the data to try and answer this
question. We can also put a line of best fit through the data to see if it is
linear. If you’ve seen linear regression, we’re fitting a simple linear model to
the data in R and plotting the regression line. We fit the linear model using
the lm function, where the dependent variable (y) is the first argument and the
independent variable (x) is the second argument. To put the line through the
points on the plot we use the abline command.

pdf(file = "sleep.pdf", width = 5, height = 4.5)

plot(ToSleep,hours.of.sleep,xlab="time to bed",ylab="length of sleep")

fit = lm(hours.of.sleep~ToSleep)

abline(fit)

dev.off()

detach(studentdata)

From the regression plot, the relationship between the two variables seems
to be linear, although we can see the data has high variance.

We could easily explore this dataset more in R, but this shows you an idea
of the types of calculations and plots that R can provide us.

2.8 Exercises

1. (4) Give two reasons we might not want to use frequentist methods as well
as two reasons we might not want to use Bayesian methods.

2. (8) An elevator with two passengers stops at the second, third, and fourth
floors. Suppose it is equally likely that a passengers gets off at any of the
three floors.
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Figure 2.2: Plot of length of sleep versus time to bed

Let a and b denote the two passengers and a2b4 denote that a gets off at the
second floor and b gets off at the fourth floor, with similar representations
for the other cases.

(a) (4) List the sample space.

(b) (4) Let A be the event that the passengers get off at different floors.
Find P (A).

3. (12) Suppose we are playing cards using a standard deck containing 52
cards.

(a) (4) What is the sample space?

(b) (4) Find the probability of drawing an ace from the deck.

(c) (4) Let A represent drawing a spade from the deck. Let B represent
drawing a face card (K, Q, or J). Find P(A,B).

4. (28) Complete the following example using R. This should be similar to
the example we went through in class on Thursday, January 13.

To receive full credit on this assignment, you must turn in two things:
your source code from R and the answers to each part of the questions
below (which you will obtain from the R console). Do NOT include your
output from the R console.
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33 2.8. EXERCISES

In writing your source code in R, make sure you do all parts in order. Note
that you will no credit if you do not attach your source code from R.

(a) Calculate 120× 6− 150 in R.

(b) Calvin is 182.88 cm tall. Convert his height to units of meters in
R. In doing this calculation, make a variable assignment, using x, so
that his height in meters is saved in R.
Hint : This should only be one line of code in R.

(c) Using your variable assignment from part (b), add 10 meters to x.
What is the new value of x?

(d) I have uploaded a data file to the Datasets part of the website. It
contains data that shows the improvement of 8 students in a speed
reading program and the number of weeks they have been in the
program. Read the file reading.txt into R and assign it the name
read. Remember to attach it.

(e) Find the mean and variance of speed gain.

(f) Find the minimum and maximum of speed gain.

(g) What’s the last thing you need to do in your R source code? Do this
in your code and write a short explanation of what command you
need and why it’s needed.

5. Suppose that one of the genes associated with the control of carbohydrate
metabolism exhibits two alleles—a dominant W and a recessive w. The
probabilities of the WW,Ww,and ww genotypes in the present generation
are p, q, and r, respectively, for both males and females. Assume that the
genotype of the father and the genotype of the mother are independent of
each other, e.g., the mother is WW with probability p regardless of the
genotype of the father. What are the chances that an individual in the
next generation will be a ww? Let A denote the event that an offspring
receives a w allele from its father. Let B denote the event that it receives
the recessive allele from its mother.

6. A box contains one two-headed coin and eight fair coins. One is drawn at
random and tossed seven times. Suppose all seven tosses come up heads.
What is the probability the coin is fair?

7. Suppose we roll two fair four sided dice. We define the following events:

A : the maximum roll is 4

B : the sum of the two rolls is 3

C : the minimum roll is 1.

(a) Are A and B independent?

(b) Are A and B mutually exclusive?

(c) Give a short proof to show that if two events A and B are mutually
exclusive, they must be dependent provided P (A) 6= 0 and P (B) 6= 0.
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2.8. EXERCISES 34

8. A lab blood test is 95 percent effective in detecting a certain disease when
it is, in fact, present. However, the test also yields a “false positive” result
for 1 percent of the healthy persons tested. This means that if a healthy
person is tested, then w.p. 0.01 the test result will imply he has the
disease. If 0.5 percent of the population actually has the disease, what
is the probability a person has the disease given that his test result is
positive?

Let D denote disease, ND denote no disease, PT denote a positive test,
and NT a negative test.

(a) Answer the question above using probability formulas to reach your
final answer.

(b) Answer the question using the natural frequencies approach.

9. A dice game called craps is played as follows. Two dice are rolled by the
shooter. The shooter can win by rolling a 7 or an 11 on his first roll (called
a natural). The shooter can also win by throwing a 4,5,6,8,9, or 10 on this
first roll and throwing the same number again before rolling a 7.

Let A1 denote the event that the shooter rolls a natural. Let A4, A5, A6,
A8, A9, A10 denote the respective events where the shooter wins when his
point is a 4,5,6,8,9, or 10 respectively. Denote the rolls by Ri in setting
up the problem. What is the probability that the shooter wins the game?
Comment on your answer and based on your knowledge of casinos and
gambling, does this seem like a good game to play if you went to Vegas?

Hints:

• Notice that the Ai are mutually exclusive.

• Fact:
∑∞
k=0 p

r = 1
1−p , |p| < 1.

• In calculating P (shooter wins), take advantage of some symmetry
properties of the Ai to save yourself some work.
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Chapter 3

Bayesian Statistics

3.0.1 Discrete Case

The foundation for Bayesian inference begins with Bayes’ Rule, which we already
presented in Chapter 2. Recall that as long as P (B) > 0,

P (A|B) =
P (B|A)P (A)

P (B)

∝ P (B|A)P (A),

where P (B) =
∑
i P (B|Ai)P (Ai), where the Ai are all mutually exclusive. We

refer to P (B) as a normalizing constant.

Writing P (A|B) using proportionality isn’t really useful in the dis-
crete setting because you have to put the normalizing constant back
in eventually. We’ll see how proportionality is useful later on.
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In the formula above, we can think of P (A) as our prior distribution, meaning
our prior information about the data. We can think of P (B|A) as the likelihood.
The likelihood function is a function of the states of nature A for the fixed
data B that we observe. P (B) is called the marginal distribution or marginal
probability of the data. Recall that we can calculate P (B) using the law of total
probability. That is,

P (B) =
∑
i

P (B|Ai)P (Ai) =
∑
i

P (B,Ai),

where the events Ai are all mutually exclusive.
Here, when we talk about the discrete case, we mean the state of nature A

is discrete. For all practical purposes, both the data and the state of nature A
will be discrete. You could certainly come up with an odd problem (not very
realistic) where the data was continuous and the parameter was discrete. For
example, we could have continuous data, but we would have to be very careful
to make sure we did not divide by zero in calculating our posterior distribution.

3.0.2 Continuous Case

If we want to view Bayes’ Rule in the continuous case where we have probability
densities, we find very similar results. Let θ represent the parameter of the
density and x denote the observed data. For the continuous case, we mean that
θ is always continuous. The data could be either discrete or continuous. We
can then write Bayes’ Rule as

p(θ|x) =
p(x|θ)p(θ)
p(x)

∝ p(x|θ)p(θ),

where p(x) =
∫
θ p(x|θ)p(θ) dθ. So, p(x) is a normalizing constant, and its dis-

tribution does not depend on the value of θ.

Remark: In the examples we’ll look at, we won’t have to worry about
the marginal distribution of x, p(x). However, in more complicated
problems, you would need to calculate p(x) and could not take ad-
vantage of proportionality. In these more complicated problems, you
would need knowledge of calculus.

Theorem 3.1: In order to perform valid inference, the posterior must be proper.
In the discrete case, this means that the posterior distribution must sum to 1.
In the continuous case, this means

∫
θ p(θ|x) dθ = 1.

Comment: Due to Theorem 3.1, in the discrete/continuous settings that
we will soon cover, if we can recognize the posterior distribution as a common
distribution, then we know it must be a proper distribution (since all continuous
distributions integrate to 1 and discrete distributions sum to 1).
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We will take advantage of proportionality by writing down p(θ|x) and simpli-
fying it to some common distribution we recognize. If we encounter a posterior
distribution that we do not recognize, then calculus would be needed to ensure
the posterior is proper.

3.1 Discrete Examples

Example 3.1 (Simple Posterior Distribution): Suppose we have three states of
nature, denoted by A1, A2, A3.We represent the likelihood and prior information
in the following table:

P (A) P (D|A)
Prior D1 D2

A1 0.3 0.0 1.0
A2 0.5 0.7 0.3
A3 0.2 0.2 0.8

Table 3.1: Simple Likelihood and Prior

Let’s clarify what’s going on in Table 3.1. Suppose we assume state of nature
A1. Then we observe D2 100% of the time and we never observe D1. On the
other hand, suppose we instead assume state of nature A2. Then we observe D2

30% of the time and we observe D1 70% of the time.
Suppose we observe D1. How might we calculate the posterior of A given

D1?

P (A) P (D|A) P (D1, A) P (A|D1)
Prior D1 D2 Joint Posterior

A1 0.3 0.0 1.0 0.00 0.00
A2 0.5 0.7 0.3 0.35 0.90
A3 0.2 0.2 0.8 0.04 0.10

0.39 1.00

Table 3.2: Posterior distribution of A given D1

Let’s look at one of the calculations in Table 3.1 to make sure we understand
what’s going on. Consider calculating

P (A2|D1) =
P (A2, D1)

P (D1)

= 0.35/0.39

= 0.90

Go home and calculate the posterior of A given D2 at home as an exercise.
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Remark: To compute each posterior calculation, we first write out
each prior probability for A as well as the likelihood, i.e., P (D1|A).
For ease of computation, we then write out the joint probabilities
for each value of A. When we sum the joint probabilities up (over all
values of A), we end up with the marginal distribution of D1. With
this information, we can now calculate the posterior probabilities as
shown in the table.
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Example 3.2 (Colon Cancer): Doctors at Shands Hospital are interested in a
hemoccult test for colon cancer. This screening procedure is not as accurate as
a colonoscopy, but it is a much less expensive procedure for annual screening
tests of colon cancer. Let A be the event that a patient has the cancer, let +
denote a patient tests positive for the condition, and − denote a patient tests
negative.

In the general population, only 0.3% have undiagnosed colon cancer. The
hemoccult test will be positive 50% of the time if a patient has the disease and
will be positive 3% of the time if the patient doesn’t have the disease. Doctors
are most interested in the proportion of false positives and false negatives that
would occur if we used the test to screen the general population.

Let’s find the posterior distribution of test result given whether or not the
patient has colon cancer.

Likelihood Joint Posterior
Prior + − + − + −

A 0.003 0.5 0.5 0.0015 0.0015 0.048 0.002
Ac 0.997 0.03 0.97 0.0299 0.9671 0.952 0.998

0.0314 0.9686 1.00 1.00

Table 3.3: Posterior distribution

We’ll calculate P (A|−) to illustrate how one calculation in the table above
is done. Consider calculating the probability that a patient does have colon
cancer given they have a positive test result.

P (A|+) =
P (A,+)

P (+)

= 0.0015/0.0314

= 0.048.
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Conclusions:

1. From this we can conclude that if a patient from the population tests
positive for colon cancer, there is less than a 5 percent chance that the
person has colon cancer.

2. There are many false positives, meaning that if a patient tests positive for
colon cancer, there is about a 95 percent chance that the person doesn’t
have cancer. (This is why this is simply a screening test and must be
followed up by a more accurate test for those who test positive).

3. In terms of false negatives, there aren’t very many. That is, if a patient
tests negative for the test, the probability the patient has the cancer is
only 0.002.

Example 3.3 (Colon Cancer Example Using Natural Frequencies): Recall the
last example where we looked at posterior probabilities involving patients and
colon cancer. Many doctors and patients have trouble understanding such ex-
amples as the one we just did. They have an easier time understanding the
concept through an idea called natural frequencies, which involves considering
a particular size for the population and then computing the expected number
in each category for the population. This is one way for doctors and patients to
better understand statistics and the real meaning of test results or a way for a
statistician to relay information to a client.

Calculate the posterior probabilities using relative frequencies for the colon
cancer example.

Consider the following information:

• We originally assumed a population of infinite size. When using the natu-
ral frequencies method, we need to assume the population has a finite size.
Without loss of generality, we will assume that we are screening 10, 000
patients.

• From our original assumptions, we know 0.3% of the population have colon
cancer. This means (0.003)(10,000) = 30 patients have colon cancer.

• If a patient has colon cancer, we know 50% test positive for colon cancer.
So, (0.5)(30) = 15 patients have colon cancer and test positive for it.

• This also means that 15 patients have colon cancer and test negative for
it.

• On the other hand, we know that 9970 patients don’t have colon cancer.
Of these patients, 3% have a positive test result, meaning (0.03)(9970) =
299 patients don’t have cancer but test positive for the disease.

• Also, 9671 patients don’t have cancer and test negative for it.

Now we have all the information we need to calculate the posterior probabilities
that were in the table from the colon cancer example. Recall A is the event that
a patient has colon cancer. Here are the four posterior probabilities:
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1. P (A|+) =
15

299 + 15
= 0.048.

2. P (Ac|+) =
299

299 + 15
= 0.952.

3. P (A|−) =
15

9671 + 15
= 0.002.

4. P (Ac|−) =
9671

9671 + 15
= 0.998.

Remark: The posterior probabilities match those in Table 3.3. The
same interpretations apply as well. While this method may be eas-
ier or more intuitive than the first approach, we have arrived at our
matching answers by making some assumptions that aren’t neces-
sarily true. Making an assumption that 30 patients out of 10, 000
have colon cancer isn’t an assumption that will always hold. We
have invented a population size for this example. Also, events don’t
have to follow their corresponding probabilities as we talked about
in Chapter 1. We have also rounded many of the answers above,
which is another glossed over assumption. So, use this method for
intuition, but also make sure you understand that it is not an exact
method or theorem like Bayes’ Rule.
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3.2 Continuous and Discrete Examples

Definition 3.1: A distribution or density is conjugate if the prior and
posterior distributions have the same type of distribution.

Example 3.4: Suppose that the likelihood for a particular problem is Binomial(n, θ)
and the prior,θ, has a density that is Beta(a, b). We will soon show the pos-
terior will also be Beta with different parameters. Thus, the prior distribution
is conjugate for the binomial likelihood. Remember that conjugacy means that
when we update using the prior information, we obtain a posterior that has the
same distribution as the prior with possibly different parameter values.

When dealing with continuous/discrete distributions in the rest of
our material, we will almost always have conjugacy. Note you still
need to check that you have conjugacy to proceed on in your calcu-
lations. Otherwise, remember that we have to compute an integral,
which we don’t know how to compute in this course.

Theorem 3.2:

Posterior ∝ Likelihood× Prior.

Remark: This theorem only provides valid inference results if the
posterior is proper, meaning the posterior integrates or sums to 1.
For the purposes of this course, we will always deal with proper pos-
teriors. However in real-world problems, posteriors can be improper
and can lead to invalid inference.

Example 3.5: Suppose

X | θ ∼ Binomial(n, θ)

θ ∼ Beta(a, b).

Then

p(θ|x) ∝ p(x|θ)p(θ)

∝
(
n

x

)
θx(1− θ)n−x Γ(a+ b)

Γ(a)Γ(b)
θa−1(1− θ)b−1

∝ θx(1− θ)n−xθa−1(1− θ)b−1

∝ θx+a−1(1− θ)n−x+b−1.

The above expression is just an updated Beta with parameters x+a and n−x+b,
so

θ | x ∼ Beta(x+ a, n− x+ b).
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How to Choose a and b

In Example 3.5, you may wonder how we choose the values of a and b. In practice,
we often have ideas regarding the value of the prior mean and variance. Past
studies or expert opinions often help us choose these values. Suppose we know
the prior mean of Beta(a, b) to be µ. We can then say

µ =
a

(a+ b)
,

however this doesn’t determine the values of a and b uniquely. We still need
more information.

If we know the prior variance to be σ2 then

σ2 =
ab

(a+ b)2(a+ b+ 1)
,

and we have a system of two equations involving two unknowns (a and b). Hence,
we can uniquely solve for both parameters.

Example 3.6: (Normal-Uniform Prior)

X1, . . . , Xn|θ
iid∼ Normal(θ, σ2), σ2 known

θ ∼ Uniform(−∞,∞),

where θ ∼ Uniform(−∞,∞) means that p(θ) ∝ 1.
Calculate the posterior distribution of θ given the data.

p(θ|x) =

n∏
i=1

1√
2πσ2

exp

{
−1

2σ2 (xi − θ)2

}

=
1

(2πσ2)n/2
exp

{
−1

2σ2

n∑
i=1

(xi − θ)2

}

∝ exp

{
−1

2σ2

∑
i

(xi − θ)2

}
.

Note that
∑
i(xi − θ)2 =

∑
i(xi − x̄)2 + n(x̄− θ)2. Then

p(θ|x) ∝ exp

{
−1

2σ2

∑
i

(xi − x̄)2

}
exp

{
−n
2σ2 (x̄− θ)2

}
∝ exp

{
−n
2σ2 (x̄− θ)2

}
= exp

{
−n
2σ2 (θ − x̄)2

}
.

Thus,
θ|x1, . . . , xn ∼ Normal(x̄, σ2/n).
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Example 3.7: (Beta-Binomial Example in R) We are interested in a population
of American college students and the proportion of the population that sleep at
least eight hours a night, which we denote by θ.

The student newspaper, The Gamecock, at the University of South Carolina
printed an internet article “College Students Don’t Get Enough Sleep” on April
20, 2004. The article reported that most students spend six hours sleeping
each night. A year earlier, a similar article appeared in the University of Notre
Dame’s paper, Fresh Writing. The article entitled Sleep on It: Implementing
a Relaxation Program into the College Curriculum reported that based on a
sample of 100 students “approximately 70% reported to receiving only five to
six hours of sleep on the weekdays, 28% receiving seven to eight, and only 2%
receiving the healthy nine hours for teenagers.”

As for our data, a random sample of 27 students is taken from the University
of Florida. 11 students record that they sleep at least eight hours each night.
Based on this information, we are interested in estimating θ.

Since we are Bayesians, we need to figure out our prior distribution for θ. We
read both the articles from USC and UND and believe it’s probably true that
most college students get less than eight hours of sleep. Therefore, we want our
prior to assign most of the probability to values of θ less than 0.5. From the
information given, we decide that our best guess for θ is 0.3, although we think
it is very possible that θ could be any value in [0, 0.5].

Given this information, we believe that the median of θ is 0.3 and the 90th
percentile is 0.5. Knowing this allows us to estimate the unknown values of a
and b. After some calculations we find that a = 3.3 and b = 7.2. How did we
actually calculate a and b?

We would need to solve the following equations:∫ 0.3

0

Γ(a+ b)

Γ(a)Γ(b)
θa−1(1− θ)b−1 dθ = 0.5∫ 0.5

0

Γ(a+ b)

Γ(a)Γ(b)
θa−1(1− θ)b−1 dθ = 0.9

In non-calculus language, this means the 0.5 quantile (50th percentile) = 0.3.
The 0.9 quantile (90th percentile) = 0.5. We can easily solve this numerically
in R using a numerical solver BBsolve.

Since you won’t have used this command before, you’ll need to install the
package BB and load the library.

Here is the code in R to find a and b.

## install the BBsolve package

install.packages("BB", repos="http://cran.r-project.org")

library(BB)

fn = function(x){qbeta(c(0.5,0.9),x[1],x[2])-c(0.3,0.5)}

BBsolve(c(1,1),fn)

BBsolve is a numerical solver. You give it two arguments. First, you give it
a set of initial values as your best guess of a and b. Then you define a function
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which must take arguments as vectors for the unknown values of a and b. The
solver sets the function to zero and then finds the best solutions for a and b (we
won’t go into the details of how it solves for the values in this class).

So, in place of a and b, we use x[1] and x[2] in our function (since it requires
vectors). We also use the qbeta command because we’re interested in the 0.5
and 0.9 quantiles. We must subtract 0.3 and 0.5 from each respective quantile
since BBsolve sets our function to zero and solves. To do all of this in one
step, we represent everything as a vector using c(). For example, c(0.3,0.5)
represents the vector with elements 0.3 and 0.5.

If you have more questions on function or BBsolve remember you can get
help by ?function or ?BBsolve.

Using our calculations from Example 3.5 our model is

X | θ ∼ Binomial(27, θ)

θ ∼ Beta(3.3, 7.2)

θ | x ∼ Beta(x+ 3.3, 27− x+ 7.2)

θ | 11 ∼ Beta(14.3, 23.2)

We can easily plot the likelihood, prior, and posterior in R. The command seq

below creates a sequence of 500 numbers between 0 and 1. Using the plot

command, we plot the posterior distribution using lty (line type) 2 and lwd

(line width) 3. For the xlab (x-label), we use expression(theta) so that a θ
will print on the x-axis. The command lines allows us to add more plots onto
the original plot. The legend creates a legend which is mostly straightforward.
From Figure 4.2, we can see that the posterior is a mixture of the likelihood and
the prior. By visual inspection, the posterior mean appears to be around 0.4.
We will come back to this example later to analyze other questions of interest.

th = seq(0,1,length=500)

a = 3.3

b = 7.2

n = 27

x = 11

prior = dbeta(th,a,b)

like = dbeta(th,x+1,n-x+1)

post = dbeta(th,x+a,n-x+b)

pdf("sleep.pdf",width=7,height=5)

plot(th,post,type="l",ylab="Density",lty=2,lwd=3,xlab = expression(theta))

lines(th,like,lty=1,lwd=3)

lines(th,prior,lty=3,lwd=3)

legend(0.7,4,c("Prior","Likelihood","Posterior"),lty=c(3,1,2),lwd=c(3,3,3))

dev.off()
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Figure 3.1: Likelihood p(X|θ) , Prior p(θ), and Posterior Distribution p(θ|X)

Example 3.8:

X1, . . . , Xn|θ
iid∼ N(θ, σ2)

θ ∼ N(µ, τ2),

where σ2 is known. Calculate the distribution of θ|x1, . . . , xn.

p(θ|x1, . . . , xn) ∝
n∏
i=1

1√
2πσ2

exp

{
−1

2σ2 (xi − θ)2

}
× 1√

2πτ2
exp

{
−1

2τ2
(θ − µ)2

}

∝ exp

{
−1

2σ2

∑
i

(xi − θ)2

}
exp

{
−1

2τ2
(θ − µ)2

}
.

Consider

∑
i

(xi − θ)2 =
∑
i

(xi − x̄+ x̄− θ)2 =
∑
i

(xi − x̄)2 + n(x̄− θ)2.
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Then

p(θ|x1, . . . , xn) = exp

{
−1

2σ2

∑
i

(xi − x̄)2

}
× exp

{
−1

2σ2n(x̄− θ)2

}
× exp

{
−1

2τ2
(θ − µ)2

}
∝ exp

{
−1

2σ2n(x̄− θ)2

}
exp

{
−1

2τ2
(θ − µ)2

}
= exp

{
−1

2

[
n

σ2

(
x̄2 − 2x̄θ + θ2

)
+

1

τ2

(
θ2 − 2θµ+ µ2

)]}
= exp

{
−1

2

[(
n

σ2 +
1

τ2

)
θ2 − 2θ

(nx̄
σ2 +

µ

τ2

)
+
nx̄2

σ2 +
µ2

τ2

]}
∝ exp

{
−1

2

[(
n

σ2 +
1

τ2

)(
θ2 − 2θ

nx̄

σ2 + µ
τ2

n

σ2 + 1
τ2

)]}

∝ exp

−1

2

( n

σ2 +
1

τ2

)(
θ −

nx̄

σ2 + µ
τ2

n

σ2 + 1
τ2

)2
 .

Recall what it means to complete the square as we did above.1 Thus,

θ|x1, . . . , xn ∼ N

( nx̄

σ2 + µ
τ2

n

σ2 + 1
τ2

,
1

n

σ2 + 1
τ2

)

= N

(
nx̄τ2 + µσ2

nτ2 + σ2 ,
σ2τ2

nτ2 + σ2

)
.

1Recall from algebra that (x− b)2 = x2 − 2bx+ b2. We want to complete something that
resembles x2 − 2bx = x2 + 2bx+ (2b/2)2 − (2b/2)2 = (x− b)2 − b2.
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Definition 3.2: The reciprocal of the variance is referred to as the precision.
That is,

Precision =
1

Variance
.

Example 3.9: (Normal-Normal Revisited) Recall Example 3.8. We write the
posterior mean as E(θ|x). Let’s write the posterior mean in this example as

E(θ|x) =

nx̄

σ2 + µ
τ2

n

σ2 + 1
τ2

.

=

nx̄

σ2

n

σ2 + 1
τ2

+
µ
τ2

n

σ2 + 1
τ2

.

We also write the posterior variance as

V (θ|x) =
1

n

σ2 + 1
τ2

.

We can see that the posterior mean is a weighted average of the sample mean
and the prior mean. The weights are proportional to the reciprocal of the
respective variances (precision). In statistics, we often say that the reciprocal
of the variance is called the precision. In this case,

Posterior Precision =
1

Posterior Variance

= (n/σ2) + (1/τ2)

= Sample Precision + Prior Precision.

The posterior precision is larger than either the sample precision or the prior
precision. Equivalently, the posterior variance, denoted by V (θ|x), is smaller
than either the sample variance or the prior variance.

What happens as n gets large?
Divide the posterior mean (numerator and denominator) by n. Then

E(θ|x) =

1

n

nx̄

σ2
+

1

n

µ

τ2

1

n

n

σ2
+

1

n

1

τ2

≈

x̄

σ2

1

σ2

≈ x̄ for large n.

In the case of the posterior variance, divide the denominator and numerator
by n. Then

V (θ|x) =

1

n
1

n

n

σ2 +
1

n

1

τ2

≈ σ2

n
,

which goes to zero as n gets large.
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Gamma and Inverse Gamma Distributions

Before we introduce the next example, we will first introduce two continuous
probability densities—the Gamma and the Inverse Gamma.

Some random variables (such as the Beta distribution) are always non-
negative and for various reasons yield distributions of data that are skewed
to the right. That is, most of the area under the density function is located
near the origin, and the density function drops gradually as x increases.

The lengths of time between malfunctions for aircraft engines possess a
skewed frequency distribution, as do the lengths of time between arrivals at
a supermarket checkout queue. Furthermore, the lengths of time to complete a
routine checkup for a car or aircraft carrier possess a skewed frequency distri-
bution. The populations associated with these random variables often possess
distributions that are adequately modeled by the gamma density function.

Suppose X ∼ Gamma(α, β). Then

f(x) =
1

Γ(α)βα
xα−1e−x/β , x > 0, α > 0, β > 0.

Suppose Y ∼ IG(a, b), where IG stands for Inverse Gamma. Then

f(y) =
ba

Γ(a)
y−a−1e−b/y, y > 0, a > 0, b > 0.

There is a special relationship between the Gamma and Inverse Gamma
random variables. As defined above, using calculus, it is easy to show that
Y = 1/X. Even though you don’t need to know how to prove this fact in this
course, it’s one worth knowing.
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Example 3.10:

X|α, β ∼ Gamma(α, β), α known, β unknown

β ∼ IG(a, b).

Calculate the posterior distribution of β|x.

p(β|x) ∝ 1

Γ(α)βα
xα−1e−x/β × ba

Γ(a)
β−a−1e−b/β

∝ 1

βα
e−x/ββ−a−1e−b/β

= β−α−a−1e−(x+b)/β .

Notice that this looks like an Inverse Gamma distribution with parameters α+a
and x+ b. Thus,

β|x ∼ IG(α+ a, x+ b).

Example 3.11: (Bayesian versus Frequentist)
Suppose a child is given an IQ test and his score is X. We assume that

X|θ ∼ Normal(θ, 100)

θ ∼ Normal(100, 225)

From previous calculations, we know that the posterior is

θ|x ∼ Normal

(
400 + 9x

13
,

900

13

)
.

In the next chapter we will learn about the posterior mean and variance.
Here the posterior mean is (400 + 9x)/13. Suppose x = 115. Then the posterior
mean becomes 110.4. Contrasting this, we know that the frequentist estimate
is the mle, which is x = 115 in this example.

The posterior variance is 900/13 = 69.23, whereas the variance of the data
is σ2 = 100.

Now suppose we take the Uniform(−∞,∞) prior on θ. From an earlier ex-
ample, we found that the posterior is

θ|x ∼ Normal (115, 100) .

Notice that the posterior mean and mle are both 115 and the posterior variance
and variance of the data are both 100.

When we put little/no prior information on θ, the data washes away most/all
of the prior information (and the results of frequentist and Bayesian estimation
are similar or equivalent in this case).

Example 3.12: (Normal Example with Unknown Variance)
Consider

X1, . . . , Xn|θ
iid∼ Normal(θ, σ2), θ known, σ2 unknown

p(σ2) ∝ (σ2)−1.
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Calculate p(σ2|x1, . . . , xn).

p(σ2|x1, . . . , xn) ∝ (2πσ2)−n/2 exp

{
−1

2σ2

∑
i

(xi − θ)2

}
(σ2)−1

∝ (σ2)−n/2−1 exp

{
−1

2σ2

∑
i

(xi − θ)2

}
.

Recall, if Y ∼ IG(a, b), then f(y) =
ba

Γ(a)
y−a−1e−b/y. Thus,

σ2|x1, . . . , xn ∼ IG

(
n/2,

∑n
i=1(xi − θ)2

2

)
.

Example 3.13: (Football Data) Gelman et. al (2003) consider the problem of
estimating an unknown variance using American football scores. The focus is
on the difference d between a game outcome (winning score minus losing score)
and a published point spread.

We observe d1, . . . , dn, the observed differences between game outcomes and
point spreads for n = 2240 football games. We assume these differences are a
random sample from a Normal distribution with mean 0 and unknown variance
σ2. Our goal is to find inference regarding the unknown parameter σ2, which
represents the variability in the game outcomes and point spreads.

We can refer to Example 3.12, since the setup here is the same. Hence the
posterior becomes

σ2|d1, . . . , dn ∼ IG(n/2,
∑
i

d2
i /2).

The next logical step would be plotting the posterior distribution in R. As far as
I can tell, there is not a built in function predefined in R for the Inverse Gamma
density. However, someone saw the need for it and built one in using the pscl

package.
Proceeding below, we try and calculate the posterior using the function

densigamma, which corresponds to the Inverse Gamma density. However, run-
ning this line in the code gives the following error:

Warning message:

In densigamma(sigmas, n/2, sum(d^2)/2) : value out of range in ’gammafn’

What’s the problem? Think about the what the posterior looks like. Recall
that

p(σ2|d) =
(
∑
i d

2
i /2)n/2

Γ(n/2)
(σ2)−n/2−1e−(

∑
i d

2
i )/2σ

2

.

In the calculation R is doing, it’s dividing by Γ(1120), which is a very large
factorial. This is too large for even R to compute, so we’re out of luck here. So,
what can we do to analyze the data?
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setwd("~/Desktop/sta4930/football")

data = read.table("football.txt",header=T)

names(data)

attach(data)

score = favorite-underdog

d = score-spread

n = length(d)

hist(d)

install.packages("pscl",repos="http://cran.opensourceresources.org")

library(pscl)

?densigamma

sigmas = seq(10,20,by=0.1)

post = densigamma(sigmas,n/2,sum(d^2)/2)

v = sum(d^2)
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We know we can’t use the Inverse Gamma density (because of the function
in R), but we do know a relationship regarding the Inverse Gamma and Gamma
distributions. So, let’s apply this fact.

You may be thinking, we’re going to run into the same problem because we’ll
still be dividing by Γ(1120). This is true, except the Gamma density function
dgamma was built into R by the original writers. The dgamma function is able
to do some internal tricks that let it calculate the gamma density even though
the individual piece Γ(n/2) by itself is too large for R to handle. So, moving
forward, we will apply the following fact that we already learned:

If X ∼ IG(a, b), then 1/X ∼ Gamma(a, 1/b).

Since

σ2|d1, . . . , dn ∼ IG(n/2,
∑
i

d2
i /2),

we know that

1

σ2 |d1, . . . , dn ∼ Gamma(n/2, 2/v), where v =
∑
i

d2
i .

Now we can plot this posterior distribution in R, however in terms of learning
inference about σ2, this isn’t going to be very useful. This is where we begin
to need calculus methods and reach the outer limits that will be taught in this
course.

In the code below, we plot the posterior of 1

σ2 |d. In order to do so, we

must create a new sequence of x-values since the mean of our gamma will be at
n/v ≈ 0.0053.

xnew = seq(0.004,0.007,.000001)

pdf("football_sigmainv.pdf", width = 5, height = 4.5)

post.d = dgamma(xnew,n/2,scale = 2/v)

plot(xnew,post.d, type= "l", xlab = expression(1/sigma^2), ylab= "density")

dev.off()

As we can see from the plot below, viewing the posterior of 1

σ2 |d isn’t very

useful. We would like to get the parameter in terms of σ2, so that we could plot
the posterior distribution of interest as well as calculate the posterior mean and
variance. From this point on we need to use a bit of calculus (for which you are
not responsible). The calculations are provided just for interest and so you can
see when calculus is needed and when situations arise in application that don’t
proceed as we might have expected.

Calculus details start here.
To recap, we know

1

σ2 |d1, . . . , dn ∼ Gamma(n/2, 2/v), where v =
∑
i

d2
i .
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Figure 3.2: Posterior Distribution p( 1

σ2 |d1, . . . , dn)

Let u = 1

σ2 . We are going to make a transformation of variables now to

write the density in terms of σ2. (Here comes the calculus).

Since u = 1

σ2 , this implies σ2 = 1
u . Then

∣∣∣∣ ∂u∂σ2

∣∣∣∣ =
1

σ4
.

Now applying the transformation of variables we find that

f(σ2|d1, . . . , dn) =
1

Γ(n/2)(2/v)n/2

(
1

σ2

)n/2−1

e−
v

2σ2

(
1

σ4

)
.

Thus,

σ2|d ∼ Gamma(n/2, 2/v)

(
1

σ4

)
.

Calculus details end here. You are not responsible for knowing
any of the results involving calculus. They are simply here in case
you are interested in them.

Now, we know the density of σ2|d in a form we can calculate in R.

x.s = seq(150,250,1)

pdf("football_sigma.pdf", height = 5, width = 4.5)

post.s = dgamma(1/x.s,n/2, scale = 2/v)*(1/x.s^2)

plot(x.s,post.s, type="l", xlab = expression(sigma^2), ylab="density")

dev.off()

detach(data)
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Figure 3.3: Posterior Distribution p(σ2|d1, . . . , dn)
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From the posterior plot in Figure 3.3 we can see that the posterior mean is
around 185. This means that the variability of the actual game result around
the point spread has a standard deviation around 14 points. If you wanted
to actually calculate the posterior mean and variance you would need to use
calculus or some sort of numerical method, which I will not go into since this is
beyond the scope of this course.

What’s interesting about this example is that there is a lot more variability
in football games than the average person would most likely think. Assume that
(1) the standard deviation actually is 14 points, and (2) game result is normally
distributed (which it’s not, exactly, but this is a reasonable approximation).
Things with a normal distribution fall two or more standard deviations from
their mean about 5% of the time, so this means that, roughly speaking, about
5% of football games end up 28 or more points away from their spread.
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Example 3.14:

Y1, . . . , Yn|µ, σ2 iid∼ Normal(µ, σ2),

µ|σ2 ∼ Normal(µ0,
σ2

κ0
),

σ2 ∼ IG(
ν0

2
,
σ2

0

2
),

where µ0, κ0, ν0, σ
2
0 are constant.

Find p(µ, σ2|y1 . . . , yn). Notice that

p(µ, σ2|y1 . . . , yn) =
p(µ, σ2, y1 . . . , yn)

p(y1 . . . , yn)

∝ p(y1 . . . , yn|µ, σ2)p(µ, σ2)

= p(y1 . . . , yn|µ, σ2)p(µ|σ2)p(σ2).

Then

p(µ, σ2|y1 . . . , yn) ∝ p(y1 . . . , yn|µ, σ2)p(µ|σ2)p(σ2)

∝ (σ2)−n/2 exp

{
−1

2σ2

n∑
i=1

(yi − µ)2

}
(σ2)−1/2 exp

{
−κ0

2σ2 (µ− µ0)2

}
× (σ2)−ν0/2−1 exp

{
−σ2

0

2σ2

}
.

Consider
∑
i(yi − µ)2 =

∑
i(yi − ȳ)2 + n(ȳ − µ)2.

Then

n(ȳ − µ)2 + κ0(µ− µ0)2 = nȳ2 − 2nȳµ+ nµ2 + κ0µ
2 − 2κ0µµ0 + κ0µ0

2

= (n+ κ0)µ2 − 2(nȳ + κ0µ0)µ+ nȳ2 + κ0µ0
2

= (n+ κ0)

(
µ− nȳ + κ0µ0

n+ κ0

)2

− (nȳ + κ0µ0)2

n+ κ0
+ nȳ2 + κ0µ0

2.

Now consider

nȳ2 + κ0µ0
2 − (nȳ + κ0µ0)2

n+ κ0
= nȳ2 + κ0µ0

2 +
−n2ȳ2 − 2nκ0µ0ȳ − κ0

2µ0
2

n+ κ0

=
n2ȳ2 + nκ0µ0

2 + nκ0ȳ
2 + κ0

2µ0
2 − n2ȳ2 − 2nκ0µ0ȳ − κ0

2µ0
2

n+ κ0

=
nκ0µ0

2 + nκ0ȳ
2 − 2nκ0µ0ȳ

n+ κ0

=
nκ0(µ0

2 − 2µ0ȳ + ȳ2)

n+ κ0

=
nκ0(µ0 − ȳ)2

n+ κ0
.
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Putting this all together, we find

p(µ, σ2|y1 . . . , yn) ∝ exp

{
−n
2σ2 (ȳ − µ)2

}
exp

{
−1

2σ2

∑
i

(yi − ȳ)2

}

× exp

{
−κ0

2σ2

∑
i

(µ− µ0)2

}
(σ2)−n/2−1/2(σ2)−ν0/2−1 exp

{
−σ2

0

2σ2

}

= exp

{
−nκ0

2σ2(n+ κ0)
(µ0 − ȳ)2

}
exp

{
−1

2σ2

∑
i

(yi − ȳ)2

}

× exp

{
− (n+ κ0)

2σ2

(
µ− nȳ + κ0µ0

n+ κ0

)2
}

(σ2)−ν0/2−1(σ2)−n/2−1 exp

{
−σ2

0

2σ2

}

= exp

{
−1

2σ2

∑
i

(yi − ȳ)2 − nκ0

2σ2(n+ κ0)
(µ0 − ȳ)2 − σ2

0

2σ2

}
(σ2)−(n+ν0)/2−1

× exp

{
− (n+ κ0)

2σ2

(
µ− nȳ + κ0µ0

n+ κ0

)2
}

(σ2)−1/2.

Since the posterior above factors, we find

µ|σ2,y ∼ Normal

(
nȳ + κ0µ0

n+ κ0
,

σ2

n+ κ0

)
,

σ2|y ∼ IG

(
n+ ν0

2
,

1

2

(∑
i

(yi − ȳ)2 +
nκ0

(n+ κ0)
(µ0 − ȳ)2 + σ2

0

))
.

3.3 Posterior Predictive Distributions

We have just gone through many examples illustrating how to calculate many
simple posterior distributions. This is the main goal of a Bayesian analysis.
Another goal might be prediction. That is given some data, y, and a new
observation, ỹ, we may wish to find the conditional distribution of ỹ given y.
This distribution is referred to as the posterior predictive distribution. That is,
our goal is to find p(ỹ|y).

We’ll derive the posterior predictive distribution for the discrete case (θ is
discrete). It’s the same for the continuous case, with the sums replaced with
integrals.
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Consider

p(ỹ|y) =
p(ỹ, y)

p(y)

=

∑
θ p(ỹ, y, θ)

p(y)

=

∑
θ p(ỹ|y, θ)p(y, θ)

p(y)

=
∑
θ

p(ỹ|y, θ)p(θ|y).

In most contexts, if θ is given, then ỹ|θ is independent of y, i.e., the value of θ
determines the distribution of ỹ, without needing to also know y. When this is
the case, we say that ỹ and y are conditionally independent given θ. Then the
above becomes

p(ỹ|y) =
∑
θ

p(ỹ|θ)p(θ|y).

Theorem 3.3: If θ is discrete and ỹ and y are conditionally independent given
θ, then the posterior predictive distribution is

p(ỹ|y) =
∑
θ

p(ỹ|θ)p(θ|y).

If θ is continuous and ỹ and y are conditionally independent given θ, then
the posterior predictive distribution is

p(ỹ|y) =

∫
θ
p(ỹ|θ)p(θ|y) dθ.
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Theorem 3.4: Suppose p(x) is a pdf that looks like p(x) = cf(x), where c is a
constant and f is a continuous function of x. Since∫

x

p(x) dx =

∫
x

cf(x) dx = 1,

then ∫
x

f(x)dx = 1/c.

Note: No calculus is needed to compute
∫
x
f(x) dx if f(x) looks like a known

pdf.

Example 3.15: Human males have one X-chromosome and one Y-chromosome,
whereas females have two X-chromosomes, each chromosome being inherited
from one parent. Hemophilia is a disease that exhibits X-chromosome-linked
recessive inheritance, meaning that a male who inherits the gene that causes
the disease on the X-chromosome is affected, whereas a female carrying the
gene on only one of her X-chromosomes is not affected. The disease is generally
fatal for women who inherit two such genes, and this is very rare, since the
frequency of occurrence of the gene is very low in human populations.

Consider a woman who has an affected brother (xY), which implies that her
mother must be a carrier of the hemophilia gene (xX). We are also told that
her father is not affected (XY), thus the woman herself has a fifty-fifty chance
of having the gene.

Let θ denote the state of the woman. It can take two values: the woman is
a carrier (θ = 1) or not (θ = 0). Based on this, the prior can be written as

P (θ = 1) = P (θ = 0) = 1/2.

Suppose the woman has a son who does not have hemophilia (S1 = 0). Now
suppose the woman has another son. Calculate the probability that this second
son also will not have hemophilia (S2 = 0), given that the first son does not
have hemophilia. Assume son one and son two are conditionally independent
given θ.

Solution:

p(S2 = 0|S1 = 0) =
∑
θ

p(S2 = 0|θ)p(θ|S1 = 0).

First compute

p(θ|S1 = 0) =
p(S1 = 0|θ)p(θ)

p(S1 = 0|θ = 0)p(θ = 0) + p(S1 = 0|θ = 1)p(θ = 1)

=

{
(1)(1/2)

(1)(1/2)+(1/2)(1/2) = 2
3 if θ = 0

1
3 if θ = 1.

Then

p(S2 = 0|S1 = 0) = p(S2 = 0|θ = 0)p(θ = 0|S1 = 0) + p(S2 = 0|θ = 1)p(θ = 1|S1 = 0)

= (1)(2/3) + (1/2)(1/3) = 5/6.
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Negative Binomial Distribution
Before doing the next example, we will introduce the Negative Binomial distri-
bution. The binomial distribution counts the numbers of successes in a fixed
number of Bernoulli trials. Recall, a Bernoulli trial has a fixed success proba-
bility p, where the trials are iid (independent and identically distributed).

Suppose instead, we count the number of Bernoulli trials required to get
a fixed number of successes. This formulation leads to the Negative Binomial
distribution.

In a sequence of independent Bernoulli(p) trials, let X denote the trial at
which the rth success occurs, where r is a fixed integer.

Then

f(x) =

(
x− 1

r − 1

)
pr(1− p)x−r, x = r, r + 1, . . .

and we say X ∼ Negative Binom(r, p).
There is another useful formulation of the Negative Binomial distribution.

In many cases, it is defined as Y = number of failures before the rth success.
This formulation is statistically equivalent to the one given above in term of
X = trial at which the rth success occurs, since Y = X − r. Then

f(y) =

(
r + y − 1

y

)
pr(1− p)y, y = 0, 1, 2, . . .

and we say Y ∼ Negative Binom(r, p).
When we refer to the Negative Binomial distribution in this class, we will

refer to the second one defined unless we indicate otherwise.

Example 3.16: (Poisson-Gamma)

X|λ ∼ Poisson(λ)

λ ∼ Gamma(a, b)

Assume that X̃|λ ∼ Poisson(λ) is independent of X. Assume we have a new
observation x̃. Find the posterior predictive distribution, p(x̃|x). Assume that
a is an integer.

Solution:
First, we must find p(λ|x).
Recall

p(λ|x) ∝ p(x|λ)(p(λ)

∝ e−λλxλa−1e−λ/b

= λx+a−1e−λ(1+1/b).

Thus, λ|x ∼ Gamma(x+ a, 1
1+1/b ), i.e., λ|x ∼ Gamma(x+ a, b

b+1 ).
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It then follows that

p(x̃|x) =

∫
λ

p(x̃|λ)p(λ|x) dλ

=

∫
λ

e−λλx̃

x̃!

1

Γ(x+ a)( b
b+1 )x+a

λx+a−1e−λ(b+1)/b dλ

=
1

x̃! Γ(x+ a)( b
b+1 )x+a

∫
λ

λx̃+x+a−1e−λ(2b+1/b) dλ

=
1

x̃! Γ(x+ a)( b
b+1 )x+a

Γ(x̃+ x+ a)(b/(2b+ 1)x̃+x+a

=
Γ(x̃+ x+ a)(b/(2b+ 1)x̃+x+a

x̃! Γ(x+ a)( b
b+1 )x+a

=
Γ(x̃+ x+ a)

x̃! Γ(x+ a)

b x̃+x+a

bx+a

(b+ 1)x+a

(2b+ 1) x̃+x+a

=
( x̃+ x+ a− 1)!

(x+ a− 1)! x̃!

bx̃ (b+ 1)x+a

(2b+ 1)x̃+x+a

=

(
x̃+ x+ a− 1

x̃

)(
b

2b+ 1

)x̃(
b+ 1

2b+ 1

)x+a

.

Let p = b/(2b+ 1), which implies 1− p = (b+ 1)/(2b+ 1).
Then

p(x̃|x) =

(
x̃+ x+ a− 1

x̃

)
px̃(1− p)x+a.

Thus,

x̃|x ∼ Negative Binom

(
x+ a,

b

2b+ 1

)
.
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Example 3.17: Suppose that X is the number of pregnant women arriving at
a particular hospital to deliver their babies during a given month. The discrete
count nature of the data plus its natural interpretation as an arrival rate suggest
modeling it with a Poisson likelihood.

To use a Bayesian analysis, we require a prior distribution for θ having
support on the positive real line. A convenient choice is given by the Gamma
distribution, since it’s conjugate for the Poisson likelihood.

The model is given by:

X|λ ∼ Poisson(λ)

λ ∼ Gamma(a, b).

We are also told 42 moms are observed arriving at the particular hospital
during December 2007. Using prior study information given, we are told a = 5
and b = 6. (We found a, b by working backwards from a prior mean of 30 and
prior variance of 180).

We would like to find several things in this example:

1. Plot the likelihood, prior, and posterior distributions as functions of λ in
R.

2. Plot the posterior predictive distribution where the number of pregnant
women arriving falls between [0,100], integer valued.

3. Find the posterior predictive probability that the number of pregnant
women arrive is between 40 and 45 (inclusive).

Solution: The first thing we need to know to do this problem are p(λ|x) and
p(x̃|x). We found these in Example 3.16. So,

λ|x ∼ Gamma

(
x+ a,

b

b+ 1

)
,

and

x̃|x ∼ Negative Binom

(
x+ a,

b

2b+ 1

)
.
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Next, we can move right into R for our analysis.

setwd("~/Desktop/sta4930/ch3")

lam = seq(0,100, length=500)

x = 42

a = 5

b = 6

like = dgamma(lam,x+1,scale=1)

prior = dgamma(lam,5,scale=6)

post = dgamma(lam,x+a,scale=b/(b+1))

pdf("preg.pdf", width = 5, height = 4.5)

plot(lam, post, xlab = expression(lambda), ylab= "Density", lty=2, lwd=3, type="l")

lines(lam,like, lty=1,lwd=3)

lines(lam,prior, lty=3,lwd=3)

legend(70,.06,c("Prior", "Likelihood","Posterior"), lty = c(2,1,3),

lwd=c(3,3,3))

dev.off()

##posterior predictive distribution

xnew = seq(0,100) ## will all be ints

post_pred_values = dnbinom(xnew,x+a,b/(2*b+1))

plot(xnew, post_pred_values, type="h", xlab = "x", ylab="Posterior Predictive Distribution")

## what is posterior predictive prob that number

of pregnant women arrive is between 40 and 45 (inclusive)

(ans = sum(post_pred_values[41:46])) ##recall we included 0

In the first part of the code, we plot the posterior, likelihood, and posterior.
This should be self explanatory since we have already done an example of this.

When we find our posterior predictive distribution, we must create a se-
quence of integers from 0 to 100 (inclusive) using the seq command. Then
we find the posterior predictive values using the function dnbinom. Then we
simply plot the sequence of xnew on the x-axis and the corresponding posterior
predictive values on the y-axis. We set type="h" so that our plot will appear
somewhat like a smooth histogram.

Finally, in order to calculate the posterior predictive probability that the
number of pregnant women arrive is between 40 and 45, we simply add up the
posterior predictive probabilities that correspond to these values. We find that
the posterior predictive probability that the number of pregnant women arrive
is between 40 and 45 is 0.1284.

3.4 Exercises

1. Consider the following

X|θ ∼ Normal(θ, σ2)

θ ∼ Normal(µ, τ2)

(a) Find the posterior distribution of θ given the data. Work out all the
details (don’t just simply give the result).
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(b) Write down the posterior mean, E(θ|x). Write the posterior mean as
a weighted average of x and the prior mean.

2. Let

p(y|θ) = θ−1e−y/θ, y > 0, θ > 0.

p(θ) = θ−ae−b/θ, θ > 0, a > 2, b > 0.

(a) Find the posterior distribution of θ|y.
(b) Calculate the posterior mean and posterior variance.

(c) Notice the prior is still proper when 1 < a ≤ 2. How would such a
change affect the posterior mean and posterior variance?

3. Let

X|θ ∼ Pareto(θ, β), θ unknown, β known

θ ∼ Gamma(a, b).

Find the posterior distribution of θ|x.

4. Consider

X1, . . . , Xn|θ
iid∼ Geometric(θ).

(a) Find the posterior for θ that is conjugate to the Geometric likelihood
and give any relevant parameters.

(b) Using your answer in (a), derive the posterior distribution of θ|x1, . . . , xn.

5. Consider

X|θ ∼ NegBin(r, θ), r known, θ unknown,

where f(x|θ) =
(
x−1
r−1

)
θr(1− θ)x−r, x = r, r + 1, . . . ; r > 0, 0 < θ ≤ 1.

(a) Find the prior on θ that is conjugate to the likelihood above.

(b) Using your answer in (a), derive the posterior distribution of θ|x.
(c) Consider X̃|θ ∼ NegBin(r, θ), r known, θ unknown. Assume that X̃

and X are conditionally independent given θ. Show that

p(x̃|x) =

(
x̃− 1

r − 1

)
Γ(2r + a)

Γ(a+ r)Γ(x+ b− r)
Γ(x+ a+ b)Γ(x̃+ x+ b− 2r)

Γ(x̃+ x+ a+ b)
.

6. Let X be a random variable with Geometric probability density function
(pdf). That is,

P (X = x|θ) = θ(1− θ)x−1, x = 1, 2, . . .

Consider the prior under which P (θ = 1/4) = 2/3, P (θ = 1) = 1/3.
Find the posterior distribution of θ given the data. Hint : You’ll need to
consider two cases. Look at x = 1 and x > 1 separately.
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7. Suppose X1, . . . , Xn|θ
iid∼ Exp(θ). Then f(x) = θe−θx, x > 0, θ > 0.

(a) State the prior distribution on θ that is conjugate to the exponential
likelihood above (give its distribution and parameters). Your prior
should be a continuous distribution function and take two parameter
values. (Other priors you give will not be accepted for credit.)

(b) Then derive the posterior distribution of θ|x1, . . . , xn.

(c) Also give the posterior mean and variance, E(θ|x1, . . . , xn) and V (θ|x1, . . . , xn).

8. Let

X1, . . . , Xn|α, β
iid∼ IG(α, β), α known, β unknown

β ∼ Gamma(a, b),

Calculate the posterior distribution of β|x1, . . . , xn.

9. Suppose a < x < b. Consider the notation I(a,b)(x), where I denotes the
indicator function. We define I(a,b)(x) to be the following:

I(a,b)(x) =

{
1 if a < x < b,

0 otherwise.

Let

X|θ ∼ Uniform(0, θ)

θ ∼ Pareto(α, β),

where p(θ) =
αβα

θα+1
I(β,∞)(θ). Calculate the posterior distribution of θ|x.
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Chapter 4

Bayesian Inference

4.1 Posterior Mean and Variance

Now that we have learned how to compute the posterior distribution, we will
want to compute simpler statistics that summarize the idea of the posterior.
For example, in the sleep example, it would be of interest to know the average
number of hours that students sleep as well as an estimate of the variance. The
posterior mean and variance have different interpretations than the mean and
variance did when we did frequentist calculations.

Definition 4.1: The posterior mean is E[θ|x]. Recall that for discrete random
variables this is

E[θ|x] =
∑
all θ

θp(θ|x).

For continuous random variables, we get the following:

E[θ|x] =

∫
θ

θp(θ|x) dθ.

Definition 4.2: The posterior variance is defined as V (θ|x).

Theorem 4.1: The posterior variance, V (θ|x), can be calculated via

V (θ|x) = E(θ2|x)− E(θ|x)2.

Example 4.1: (Beta-Binomial Posterior Mean and Variance)
Recall in Chapter 3, we looked at the following model

X | θ ∼ Binomial(n, θ)

θ ∼ Beta(a, b).

We found that
θ|x ∼ Beta(x+ a, n− x+ b).

67
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Recall if Y ∼ Beta(a,b), then E(Y ) =
a

a+ b
and V (Y ) =

ab

(a+ b)2(a+ b+ 1)
.

Thus,

E(θ|x) =
x+ a

x+ a+ n− x+ b
=

x+ a

a+ b+ n
.

Also,

V (θ|x) =
x+ a

(a+ b+ n)2(a+ b+ n+ 1)
.

4.1.1 Interpretation of the Posterior Mean and Posterior
Variance

In order to understand how we interpret the posterior mean, E(θ|x), and the
posterior variance, V (θ|x), we must first explain a bit about a subject called
decision theory.

Suppose the following:

• θ is the true parameter value (unknown) that we want to estimate, i.e.,
this is our target.

• It would be optimal if θ̂ was equal to θ every time.

• In reality, our estimate will be sometimes too low or too high compared
to the target.
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Consider the following:

• We suffer a penalty depending on how far off the estimate, θ̂, is from the
target, θ.

• If the estimate is close to the target, we suffer little penalty.

• If the estimate if far away from the target, we suffer a larger penalty.

We can think of the penalty term as taking the difference between the esti-
mate and the target and then squaring it. We call this the squared error loss
function between θ̂ and θ. There are other loss functions that could be taken, for
example, we could take the absolute difference of the estimate and true value.
This loss function is referred to as absolute error loss.

Definition 4.3: The squared error loss function is defined to be

L(θ, θ̂) = (θ̂ − θ)2

and θ̂ is our estimate of θ.

If you think about the loss function defined, we would like the loss function to
be as small as possible as we average over the probability distribution described
by the posterior. Since we want the loss function to be as small as possible as we
average over the posterior distribution, this translates to finding the value of θ̂
that minimizes E[L(θ, θ̂)|X = x]. The value that minimizes the above expression

is called the Bayes estimate, θ̂B .

Definition 4.4: The Bayes estimate, θ̂B , is the value of θ that minimizes
E[L(θ, θ̂)|X = x].

Theorem 4.2: If the loss function is squared error, i.e.,

L(θ, θ̂) = (θ̂ − θ)2

then the Bayes estimate is θ̂B = E(θ|x). In other words, the Bayes estimate is
simply the posterior mean.

Theorem 4.3: If the loss function is absolute error, i.e.,

L(θ, θ̂) = |θ̂ − θ|

then the Bayes estimate is the posterior median. If your posterior is symmetric,
then the posterior mean and median are the same. For example, the Normal is
symmetric. Also, if a = b, then the Beta(a, b) distribution is symmetric about
1/2.

Example 4.2: Suppose the University of Florida is building a new basketball
arena. Define the following:

• Let θ be the number of people who want to attend games in the new arena.
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• Let θ̂ be the number of seats in the new arena.

If the new arena contains too few seats, then the school will lose out on ticket
sales. However, if the arena has too many seats, some number of seats will
remain empty and the school will lose money. The school could quantify this
using some loss function and then find the number of seats, θ̂, that minimizes
the loss function, based on some data they collect.

For example, we could define

L(θ̂, θ) = |θ̂ − θ|.

Then the school collects some data that depends on θ. Suppose the school be-
lieves the following information:

X1, . . . , Xn|θ
iid∼ Normal(θ, σ2)

θ ∼ Normal(µ, τ2).

Finally, the school would seek to find the value of θ̂ that minimizes

E[ |θ̂ − θ|
∣∣X = x].

By Theorem 4.3, we know that the Bayes estimate, i.e., the posterior median,
minimizes E[ |θ̂ − θ|

∣∣X = x].
Recall the posterior distribution is

θ|x1, . . . , xn ∼ N
(
nx̄τ2 + µσ2

nτ2 + σ2 ,
σ2τ2

nτ2 + σ2

)
.

Since the Normal is symmetric about its mean, the posterior mean and median
are the same. Thus, the Bayes estimate is

θ̂B =
nx̄τ2 + µσ2

nτ2 + σ2 .

Posterior Variance

Another idea we might want to consider is the precision about our posterior
beliefs about θ. We may be very sure that θ is close to some value, or we may
be unsure about the value of θ. One way to quantify this idea is by talking
about the spread of the posterior distribution. The most common form here is
calculating the posterior variance.

Example 4.3: Recall Example 3.7 where we had the following model:

X1, . . . , Xn|θ ∼ N(θ, σ2)

θ ∼ N(µ, τ2),
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where σ2 is known. Recall that

θ|x1, . . . , xn ∼ N
(
nx̄τ2 + µσ2

nτ2 + σ2 ,
σ2τ2

nτ2 + σ2

)
.

Calculate the posterior mean and posterior variance under squared error loss.
Also, find the Bayes estimate.

E[θ|X1, . . . , Xn] =
nx̄τ2 + µσ2

nτ2 + σ2 .

V [θ|X1, . . . , Xn] =
σ2τ2

nτ2 + σ2 .

The Bayes estimate is simply the posterior mean since we are using squared
error loss.

Example 4.4: Sleep Example: Posterior Mean and Variance
Recall the Beta-Binomial example from Section 3.2 where we were interested
in the proportion of the population of American college students that sleep at
least eight hours each night (θ).

Recall that we had a random sample of 27 students from UF, where 11
students recorded they slept at least eight hours each night. So, we assume the
data is distributed as Binomial(27, θ).

If you look back to the example, we assumed that the prior on θ was
Beta(3.3,7.2). Thus, the posterior distribution is

θ|11 ∼ Beta(11 + 3.3, 27− 11 + 7.2), i.e.,

θ|11 ∼ Beta(14.3, 23.2).

We could easily calculate the posterior mean and variance out by hand or
in R. Using the code below, we find that E(θ|x) = 0.381 and V (θ|x) = 0.0061.
You could just as easily do this using your calculator.

Interpreting the above results, this means that on average that approxi-
mately 38 percent of college students sleep at least eight hours each night. We
are averaging over the posterior beliefs about θ. We are not averaging over
repeated samples as is done in frequentist analysis.

Interpreting the posterior standard deviation is a bit more natural since it’s
on the same scale as the posterior mean. Here, the posterior standard deviation
is
√

0.0061 = 0.078. This gives us an idea of the amount of spread in the posterior
distribution around its mean.

Suppose our loss function was squared error, what would the Bayes estimate
be?

a = 3.3

b = 7.2

n = 27

s = seq(0,1,0.01)
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x = 11

post = dbeta(s,x+a,n-x+b)

a.new = x+a

b.new = n-x+b

post.mean = a.new/(a.new + b.new)

post.var = a.new*b.new/((a.new + b.new)^2*(a.new + b.new+1))}

Squared Error versus Absolute Error

We have discussed two loss function so far: squared error and absolute error.
Why would we choose one over the other?

• Squared error is usually chosen out of convenience. It’s differentiable and
very easy to work with, even for very complicated expresssions.

• Absolute error is not differentiable but is robust to outliers.

4.2 Confidence Intervals versus Credible
Intervals

One major difference between Bayesians and frequentists is how they interpret
intervals. Let’s quickly review what a frequentist confidence interval is and how
to interpret one.

Frequentist Confidence Intervals
A confidence interval for an unknown (fixed) parameter, θ, is an interval of

numbers that we believe is likely to contain the true value of θ. Intervals are
important because they provide us with an idea of how well we can estimate θ.

Definition 4.5: A confidence interval is constructed to contain θ a percentage
of the time, say 95%. Suppose our confidence level is 95% and our interval is
(L,U). Then we are 95% confident that the true value of θ is contained in (L,U)
in the long run. In the long run means that this would occur nearly 95% of the
time if we repeated our study millions and millions of times.
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Misconceptions

• A confidence interval is a statement about θ (a population parameter). It
is not a statement about the sample.

• Remember that a confidence interval is not a statement about individual
subjects in the population. As an example, suppose that I tell you that
a 95% confidence interval for the average amount of television watched
by Americans is (2.69, 6.04) hours. This doesn’t mean we can say that
95% of all Americans watch between 2.69 and 6.04 hours of television.
We also cannot say that 95% of Americans in the sample watch between
2.69 and 6.04 hours of television. Beware that statements such as these
are false. However, we can say that we are 95 percent confident that the
average amount of televison watched by Americans is between 2.69 and
6.04 hours.

Bayesian Credible Intervals

Recall that frequentists treat θ as fixed, but Bayesians treat θ as a random vari-
able. The main difference between frequentist confidence intervals and Bayesian
credible intervals is the following:

• Frequentists invoke the concept of probability before observing the data.
For any fixed value of θ, a frequentist confidence interval will contain the
true parameter θ with some probability, e.g., 0.95.

• Bayesians invoke the concept of probability after observing the data. For
some particular set of data X = x, the random variable θ lies in a Bayesian
credible interval with some probability, e.g., 0.95.

Assumptions

In lower level classes, you wrote down assumptions whenever you did confidence
intervals. This is redundant for any problem we construct in this course since
we always know the data is randomly distributed and we assume it comes from
some underlying distribution, say Normal, Gamma, etc. We also always assume
our observations are i.i.d. (independent and identically distributed), meaning
that the observations are all independent and they all have the same variance.
Thus, when working a particular problem, we will assume these assumptions
are satisfied given the proposed model holds.

Definition 4.6: A Bayesian credible interval of size 1− α is an interval (a, b)
such that

P (a ≤ θ ≤ b|x) = 1− α.∫ b

a

p(θ|x) dθ = 1− α.
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Remark: When you’re calculating credible intervals, you’ll find the
values of a and b by several means. You could be asked do the
following:

• Use a Z-table when appropriate.

• Use R to approximate the values of a and b.

• You could be given R code/output and asked to find the values
of a and b.

Important Point

Our definition for the credible interval could lead to many choices of (a, b) for
particular problems. For this course, we will require that our credible interval
have equal probability α/2 in each tail so that our interval will be unique. That
is, we will assume

P (θ < a|x) = α/2

and
P (θ > b|x) = α/2.

To see this more clearly, see Figure 5.1.

Value of θ|x

a b

0.95

0.025 0.025

Figure 4.1: Illustration of 95% credible interval
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Interpretation

We interpret Bayesian credible intervals as follows: There is a 95% probability
that the true value of θ is in the interval (a, b), given the data.

Comparisons

• Conceptually, probability comes into play in a frequentist confidence inter-
val before collecting the data, i.e., there is a 95% probability that we will
collect data that produces an interval that contains the true parameter
value. However, this is awkward, because we would like to make state-
ments about the probability that the interval contains the true parameter
value given the data that we actually observed.

• Meanwhile, probability comes into play in a Bayesian credible interval
after collecting the data, i.e., based on the data, we now think there is a
95% probability that the true parameter value is in the interval. This is
more natural because we want to make a probability statement regarding
that data after we have observed it.

Example 4.5: Suppose

X1 . . . , Xn|θ ∼ N(θ, σ2)

θ ∼ N(µ, τ2),

where µ, σ2, and τ2 are known. Calculate a 95% credible interval for θ.
Recall

θ|x1, . . . xn ∼ N
(
nx̄τ2 + µσ2

nτ2 + σ2 ,
σ2τ2

nτ2 + σ2

)
.

Let

µ∗ =
nx̄τ2 + µσ2

nτ2 + σ2 ,

σ∗2 =
σ2τ2

nτ2 + σ2 .

We want to calculate a and b such that P (θ < a|x1, . . . , xn) = 0.05/2 = 0.025
and P (θ > b|x1, . . . , xn) = 0.05/2 = 0.025. So,

0.025 = P (θ < a|x1, . . . , xn)

= P

(
θ − µ∗

σ∗
<
a− µ∗

σ∗

∣∣∣∣x1, . . . , xn

)
= P

(
Z <

a− µ∗

σ∗

∣∣∣∣x1, . . . , xn

)
, where Z ∼ N(0, 1).

Thus, we now must find an a such that P
(
Z < a−µ∗

σ∗

∣∣∣x1, . . . , xn

)
= 0.025.

From a Z-table, we know that

a− µ∗

σ∗
= −1.96.
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This tells us that a = µ∗ − 1.96σ∗. Similarly, b = µ∗ + 1.96σ∗. (Work this part
out on your own at home). Therefore, a 95% credible interval is

µ∗ ± 1.96σ∗.
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Example 4.6: We’re interested in knowing the true average number of orna-
ments on a Christmas tree. Call this θ. We take a random sample of n Christmas
trees, count the ornaments on each one, and call the results X1, . . . , Xn. Let the
prior on θ be Normal(75, 225).

Using data (trees.txt) we have, we will calculate the 95% credible interval
and confidence interval for θ. In R we first read in the data file trees.txt. We
then set the initial values for our known parameters, n, σ, µ, and τ.

Next, we refer to Example 4.5, and calculate the values of µ∗ and σ∗ using
this example. Finally, again referring to Example 4.5, we recall that the formula
for a 95% credible interval here is

µ∗ ± 1.96σ∗.

On the other hand, recalling back to STA 2023, a 95% confidence interval in
this situation is

x̄± 1.96σ/
√
n.

From the R code, we find that there is a 95% probability that the average
number of ornaments per tree is in (45.00, 57.13) given the data. We also
find that we are 95% confident that the average number of ornaments per tree
is contained in (43.80, 56.20). If we compare the width of each interval, we
see that the credible interval is slightly narrower. It is also shifted towards
slightly higher values than the confidence interval for this data, which makes
sense because the prior mean was higher than the sample mean. What would
happen to the width of the intervals if we increased n? Does this make sense?

x = read.table("trees.txt",header=T)

attach(x)

n = 10

sigma = 10

mu = 75

tau = 15

mu.star = (n*mean(orn)*tau^2+mu*sigma^2)/(n*tau^2+sigma^2)

sigma.star = sqrt((sigma^2*tau^2)/(n*tau^2+sigma^2))

(cred.i = mu.star+c(-1,1)*qnorm(0.975)*sigma.star)

(conf.i = mean(orn)+c(-1,1)*qnorm(0.975)*sigma/sqrt(n))

diff(cred.i)

diff(conf.i)

detach(x)

Example 4.7: (Sleep Example Revisited)
Recall the Beta-Binomial example from Section 3.2 where we were interested
in the proportion of the population of American college students that sleep at
least eight hours each night (θ).

03:18 Tuesday 12th January, 2016



4.2. CONFIDENCE INTERVALS VERSUS CREDIBLE INTERVALS 78

Recall that we had a random sample of 27 students from UF, where 11
students recorded they slept at least eight hours each night. So, we assume the
data is distributed as Binomial(27, θ).

If you look back to the example, we assumed that the prior on θ was
Beta(3.3,7.2). Thus, the posterior distribution is

θ|11 ∼ Beta(11 + 3.3, 27− 11 + 7.2), i.e.,

θ|11 ∼ Beta(14.3, 23.2).

Suppose now we would like to find a 90 percent credible interval for θ. We
cannot compute this in closed form since computing probabilities for Beta distri-
butions involves messy integrals that we do not know how to compute. However,
we can use R to find the interval.

We need to solve
P (θ < c|x) = 0.05

and
P (θ > d|x) = 0.05 for c and d.

The reason we cannot compute this in closed form is because we need to
compute ∫ c

0

Beta(14.3, 23.2) dθ = 0.05

and ∫ 1

d

Beta(14.3, 23.2) dθ = 0.05.

Note that Beta(14.3,23.2) represents

f(θ) =
Γ(37.5)

Γ(14.3)Γ(23.2)
θ14.3−1(1− θ)23.2−1.

The R code for this is very straightforward:

a = 3.3

b = 7.2

n = 27

x = 11

a.star = x+a

b.star = n-x+b

c = qbeta(0.05,a.star,b.star)

d = qbeta(1-0.05,a.star,b.star)

Running the code in R, we find that a 90 percent credible interval for θ is
(0.256,0.514), meaning that there is a 90 percent probability that the proportion
of UF students who sleep eight or more hours per night is between 0.256 and
0.514 given the data.
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4.3 Bayesian Robustness

4.3.1 Motivation: Heart Transplant Example

We consider the problem of learning about the rate of success of heart transplant
surgery of a particular hospital in the United States. For this hospital, we record
the number of transplant surgeries, n, and the number of deaths, y, within 30
days of surgery. We assume the following model:

Y |λ ∼ Poisson(eλ),

where e is the exposure and λ is the mortality rate.
A frequentist would estimate λ using λ̂ = y/e, however this estimate is poor

when the number of deaths, y, is close to zero. In the situation when small death
counts are possible, it is desirable to use Bayesian inference and take advantage
of prior knowledge of the size of the mortality rate. A convenient choice for the
prior distribution is a Gamma(α, β) due to conjugacy.

There are two formulations for the Gamma distribution. There is the one we
have dealt with all semester in class (where β is the scale parameter), however
there is another formulation that is very convenient at times (here β is taken to
be the rate parameter). The second formulation is as follows:

Definition 4.7: Suppose X ∼ Gamma(α, β), where β is the rate parameter.
Then

f(x) =
βα

Γ(α)
xα−1e−βx, x > 0, α > 0, β > 0.

Suppose the prior density here is expressed as

p(λ) ∝ λα−1 exp {−βλ}.
We first consider a small hospital in Florida which experienced only one

death and has exposure, e = 66. We will look at two different Gamma posteriors,
i.e., they will have different values of α and β. We will want to see how the two
priors, denoted by Prior A and Prior B, influence their corresponding posterior
distributions.

• Prior A: λ ∼ Gamma(16, 15174).

• Prior B: λ ∼ Gamma(20, 10000).

We easily find that the posterior distribution

λ|y ∼ Gamma(α+ y, β + e).

You can check that this is the correct posterior on your own.
Let’s now compare the two posterior distributions of λ|y in R.
To see the impact the prior has on its corresponding posterior distribution,

it is helpful to display the densities on the same plot. From Figure 4.2, we see
that Prior A results in a posterior with a smaller mortality rate. The estimated
mortality rate using Prior B will be about twice that using Prior A.
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• Clearly the choice of prior matters in this example.

• With a bigger sample size, we would see less of an effect of the prior.

• A noninformative prior might be a good choice here. We will talk more
about noninformative priors in the next section.
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Figure 4.2: Prior p(λ) and Posterior Distribution p(λ|y) using Priors A and B
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Below we find the R code for analyzing this example.

setwd("/Users/resteorts/Desktop/sta4930/ch4")

a=16; b=15174; y=1; e=66

lam = seq(0,0.004,length=500)

postA = dgamma(lam,shape = a+y, rate = b + e)

priorA = dgamma(lam,shape=a,rate=b)

a = 20; b=10000;

postB = dgamma(lam,shape = a+y, rate = b + e)

priorB = dgamma(lam,shape=a,rate=b)

pdf("heart.pdf",width=5,height=4)

plot(lam,postA, type = "l", col = "red", lty = 1,

xlab=expression(lambda),ylab="Density",ylim=c(0,1600))

lines(lam, priorA, lty = 2, col ="red")

lines(lam, postB, lty = 1, col ="blue")

lines(lam, priorB, lty = 4, col ="blue")

legend(0.0025,1500,c("Prior A","Post A","Prior B","Post B"),

lty=c(1,2,1,4),col=c("red","red","blue","blue"),bty="n")

dev.off()

Definition 4.8: A Bayesian analysis is said to be robust to the choice of prior
if the inference is insensitive to the different priors that match the user’s beliefs.

Recall that in Example 3.9, we showed that for the Normal-Normal setup,
for large n, the posterior mean was approximately x̄ and the posterior variance
was approximately σ2/n. Notice that these results do not depend on the values
of µ and τ2 in the prior. This illustrates a general property of many Bayesian
models: for large n, a Bayesian analysis is usually robust. This holds not only
for the Normal-Normal setup, but for most other simple setups as well.

4.4 Informative and Noninformative Priors

Thus far in this course, we have mostly considered informative or subjective pri-
ors. Ideally, we want to choose a prior reflecting our beliefs about the unknown
parameter of interest. This is a subjective choice. All Bayesians agree that
wherever prior information is available, one should try to incorporate a prior
reflecting this information as much as possible. We have mentioned how incor-
poration of a prior expert opinion would strengthen purely data-based analysis
in real-life decision problems. Using prior information can also be useful in
problems of statistical inference when your sample size is small or you have a
high or infinite dimensional parameter space.

However, in dealing with real-life problems you may run into problems such
as

• not having past historical data

03:18 Tuesday 12th January, 2016



4.4. INFORMATIVE AND NONINFORMATIVE PRIORS 82

• not having an expert opinion to base your prior knowledge on (perhaps
your research is cutting edge and new)

• as your model becomes more complicated, it becomes hard to know what
priors to put on each unknown parameter

The problems we have dealt with all semester have been very simple in
nature. We have only had one parameter to estimate (except for one example).
Think about a more complex problem such as the following (we looked at this
problem in Ch 3):

X|θ ∼ N(θ, σ2)

θ|σ2 ∼ N(µ, τ)

σ2 ∼ IG(a, b)

where now θ and σ2 are both unknown and we must find the posterior distribu-
tions of θ|X,σ2 and σ2|X. For this slightly more complex problem, it is much
harder to think about what values µ, τ, a, b should take for a particular problem.
What should we do in these type of situations?

Often no reliable prior information concerning θ exists or inference based
completely on the data is desired. It might appear that inference in such settings
would be inappropriate, but reaching this conclusion is too hasty.

Suppose we could find a distribution p(θ) that contained no or little infor-
mation about θ in the sense that it didn’t favor one value of θ over another
(provided this is possible). Then it would be natural to refer to such a distri-
bution as a noninformative prior. We could also argue that all or most of the
information contained in the posterior distribution, p(θ|x), came from the data.
Thus, all resulting inferences were objective and not subjective.

Definition 4.9: Informative/subjective priors represent our prior beliefs about
parameter values before collecting any data. For example, in reality, if statisti-
cians are unsure about specifying the prior, they will turn to the experts in the
field or experimenters to look at past data to help fix the prior.

Example 4.8: (Pregnant Mothers) Suppose that X is the number of pregnant
mothers arriving at a hospital to deliver their babies during a given month. The
discrete count nature of the data as well as its natural interpretation leads to
adopting a Poisson likelihood,

p(x|θ) =
e−θθx

x!
, x ∈ {0, 1, 2, . . .}, θ > 0.

A convenient choice for the prior distribution here is a Gamma(a, b) since it is
conjugate for the Poisson likelihood. To illustrate the example further, suppose
that 42 moms deliver babies during the month of December. Suppose from past
data at this hospital, we assume a prior of Gamma(5, 6). From this, we can
easily calculate the posterior distribution, posterior mean and variance, and do
various calculations of interest in R.
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Definition 4.10: Noninformative/objective priors contain little or no informa-
tion about θ in the sense that they do not favor one value of θ over another.
Therefore, when we calculate the posterior distribution, most if not all of the
inference will arise from the likelihood. Inferences in this case are objective
and not subjective. Note that objective priors are typically improper, yet have
proper posteriors. Let’s look at the following example to see why we might
consider such priors.
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Example 4.9: (Pregnant Mothers Continued) Recall Example 4.8. As we
noted earlier, it would be natural to take the prior on θ as Gamma(a, b) since it
is the conjugate prior for the Poisson likelihood, however suppose that for this
data set we do not have any information on the number of pregnant mothers
arriving at the hospital so there is no basis for using a Gamma prior or any
other informative prior. In this situation, we could take some noninformative
prior.

Comment: It is worth noting that many of the objective priors are im-
proper, so we must check that the posterior is proper.

Theorem 4.4: Propriety of the Posterior

• If the prior is proper, then the posterior will always be proper.

• If the prior is improper, you must check that the posterior is proper.

4.4.1 Meaning Of Flat

What does a “flat prior” really mean? People really abuse the word flat and
interchange it for noninformative. Let’s talk about what people really mean
when they use the term “flat,” since it can have different meanings.

Example 4.10: Often statisticians will refer to a prior as being flat, when it
actually looks flats. An example of this would be taking such a prior to be

θ ∼ Unif(0, 1).

We can plot the density of this prior to see that the density is flat.

Example 4.11: Now suppose we consider Jeffreys’ prior, pJ(θ), where
X ∼ Bin(n, θ).

We calculate Jeffreys’ prior by finding the Fisher information. The Fisher in-
formation tells us how much information the data gives us for certain parameter
values.

In this example, it can be shown that pJ(θ) ∝ Beta(1/2, 1/2). Let’s consider
the plot of this prior. Flat here is a purely abstract idea. In order to achieve
objective inference, we need to compensate more for values on the boundary
than values in the middle.

Example 4.12: Finally, we consider the following prior on θ :

θ ∼ N(0, 1000).

What happens in this situation? We look at two plots to consider the behavior
of this prior.
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Figure 4.3: Unif(0,1) prior
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Figure 4.4: Jeffreys’ prior for Binom likelihood
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Figure 4.5: Normal priors
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4.4.2 Objective Priors in More Detail

Uniform Prior of Bayes and Laplace

Example 4.13: (Thomas Bayes) In 1763, Thomas Bayes considered the ques-
tion of what prior to use when estimating a binomial success probability p. He
described the problem quite differently back then by considering throwing balls
onto a billiard table. He separated the billiard table into many different inter-
vals and considered different events. By doing so (and not going into the details
of this), he argued that a Uniform(0,1) prior was appropriate for p.

Example 4.14: (Laplace) In 1814, Pierre-Simon Laplace wanted to know the
probability that the sun will rise tomorrow. He answered this question using
the following Bayesian analysis:

• Let X represent the number of days the sun rises. Let p be the probability
the sun will rise tomorrow.

• Let X|p ∼ Bin(n, p).

• Suppose p ∼ Uniform(0, 1).

• Based on reading the Bible, we compute the total number of days, n, and
the total number of days, x, recorded in history in which the sun rose.
Clearly, x = n.

Then

π(p|x) ∝
(
n

x

)
px(1− p)n−x · 1

∝ px+1−1(1− p)n−x+1−1

This implies

p|x ∼ Beta(x+ 1, n− x+ 1)

Then

p̂ = E[p|x] =
x+ 1

x+ 1 + n− x+ 1
=
x+ 1

n+ 2
=
n+ 1

n+ 2
.

Thus, Laplace’s estimate for the probability that the sun rises tomorrow is
(n + 1)/(n + 2), where n is the total number of days recorded in history. For
instance, if so far we have encountered 100 days in the history of our universe,
this would say that the probability the sun will rise tomorrow is 101/102 ≈
0.9902. However, we know that this calculation is ridiculous because the sun
always rises. Thus, objective Bayesian methods shouldn’t be recklessly applied
to every problem we study.
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Criticism of the Uniform Prior

The Uniform prior of Bayes and Laplace and has been criticized for many dif-
ferent reasons. We will discuss one important reason for criticism and not go
into the other reasons since they go beyond the scope of this course.

In statistics, it is often a good property when a rule for choosing a prior
is invariant under what are called one-to-one transformations. Invariant basi-
cally means unchanging in some sense. The invariance principle means that a
rule for choosing a prior should provide equivalent beliefs even if we consider a
transformed version of our parameter, like p2 or log p instead of p.

Jeffreys’ Prior

One prior that is invariant under one-to-one transformations is Jeffreys’ prior
(Bayesian Data Analysis, Gelman, et al., p. 63). You are not responsible for
this invariance proof (calculus is involved).

What does the invariance principle mean? Suppose our prior parameter is
θ, however we would like to transform to φ.

Define φ = f(θ).
Jeffreys’ prior says that if θ has the distribution specified by Jeffreys’ prior

for θ, then f(θ) will have the distribution specified by Jeffreys’ prior for φ. If
this isn’t clear, we will make this more clear by going over two examples to
illustrate this idea.

However, suppose θ has a Uniform prior. Then one can show φ = f(θ) will
not have a Uniform prior.

Aside from the invariance property of Jeffreys’ prior, in the univariate case,
Jeffreys’ prior satisfies many optimality criteria that statisticians are interested
in. One such that you might have heard of is called the Kullback-Leibler diver-
gence.

Definition 4.11: Define

I(θ) = −E
[
∂2 log p(y|θ)

∂θ2

]
,

where I(θ) is called the Fisher information. Then Jeffreys’ prior is defined to
be

pJ(θ) =
√
I(θ).

Since calculating Jeffreys’ prior involves calculus, for a problem you
will be either given the Fisher information or Jeffreys’ prior. You
will not be expected to compute the Fisher information. You should
understand why it would be desirable to use Jeffreys’ prior though
and that its form changes whenever the likelihood changes.
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Example 4.15: (Uniform Prior is Not Invariant to Transformation)
Any calculus that is given, you are not responsible for knowing. This
example is given to simply illustrate the ideas just presented.

Let θ ∼ Uniform(0, 1). Suppose now we would like to transform from θ to
θ2.

Let φ = θ2. Then θ =
√
φ. It follows (by calculus) that

∂θ

∂φ
=

1

2
√
φ
.

Thus, p(φ) =
1

2
√
φ
, 0 < φ < 1 which shows that φ is not Uniform on (0, 1).

Hence, the transformation is not invariant. Criticism such as this led to consid-
eration of Jeffreys’ prior.

Example 4.16: (Jeffreys’ Prior Invariance Example)
Any calculus that is given, you are not responsible for knowing. This
example is given to simply illustrate the ideas just presented.

Suppose

X|θ ∼ Exp(θ)

One can show using calculus that I(θ) = 1/θ2. Then pJ(θ) = 1/θ. Suppose that
φ = θ2. It follows (by calculus) that

∂θ

∂φ
=

1

2
√
φ
.

By calculus, we know

pJ(φ) = pJ(
√
φ)

∣∣∣∣ ∂θ∂φ
∣∣∣∣

=
1√
φ

1√
2φ
∝ 1

φ
.

Hence, we have shown for this example, that Jeffreys’ prior is invariant under
the transformation φ = θ2.
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Example 4.17: (Jeffreys’ prior) Suppose

X|θ ∼ Binomial(n, θ)

Let’s calculate the posterior using Jeffrey’s prior. We are given that

pJ(θ) =

√
n

θ(1− θ)
∝ Beta(1/2, 1/2).

We then find that

p(x|θ) ∝ θx(1− θ)n−xθ1/2−1(1− θ)1/2−1

= θx−1/2(1− θ)n−x−1/2

= θx−1/2+1−1(1− θ)n−x−1/2+1−1.

Thus, θ|x ∼ Beta(x + 1/2, n − x + 1/2), which is a proper posterior since the
prior is proper.

Note: It is very important to check that your posterior is proper.

Haldane’s Prior

In 1963, Haldane introduced the following improper prior:

p(θ) ∝ θ−1(1− θ)−1.

It can be shown to be improper using simple calculus, which we will not go into.
However, the posterior is proper under certain conditions.
Let

Y |θ ∼ Bin(n, θ).

Calculate p(θ|y) and show that it is improper when y = 0 or y = n.

Remark: Recall that for a Binomial distribution, Y can take values
y = 0, 1, 2, . . . , n.

We will first calculate p(θ|y).

p(θ|y) ∝
(
n
y

)
θy(1− θ)n−y

θ(1− θ)
∝ θy−1(1− θ)n−y−1

= θy−1(1− θ)(n−y)−1.

The density of a Beta(a, b) is the following:

f(θ) =
Γ(a+ b)

Γ(a)Γ(b)
θa−1(1− θ)b−1, θ > 0
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This implies that θ|Y ∼ Beta(y, n− y).
We need to check that our posterior is proper finally. Recall that the param-

eters of the Beta need to be positive. Thus, y > 0 and n − y > 0. This means
that y 6= 0 and n 6= y in order for the posterior to be proper.

Remark: Recall that the Beta density must integrate to 1 whenever
the parameter values are positive. Hence, when they are not positive,
the density does not integrate to 1 and integrates to ∞. Thus, for
the problem above, when y = 0 and n = y the density is improper.

There are many other objective priors that are used in Bayesian inference,
however, this is the level of exposure that we will cover in this course. If you’re
interested in learning more about objective priors (g-prior, probability matching
priors), see me and I can give you some references.

4.5 Exercises

1. Suppose that

X1, . . . , Xn|θ
iid∼ Poisson(θ).

(a) What prior is conjugate for the Poisson likelihood? Give the distri-
bution for θ along with any associated parameters.

(b) Calculate the posterior distribution of θ|x1, . . . , xn using your prior
in (a).

(c) Find the posterior mean.

(d) Write the posterior mean as a weighted average of the prior mean
and the sample average. What are the weights of the prior mean and
the sample average?

(e) What happens to the posterior mean if n >> b? What happens to the
posterior mean if n << b? The symbol >> stands for much greater
than, and << represents much less than.

2. Let

Y |θ ∼ Exp(θ)

θ ∼ Gamma(a, b).

Suppose we have a new observation Ỹ |θ ∼ Exp(θ), where conditional on
θ, Y and Ỹ are independent. Show that

p(ỹ|y) =
b(a+ 1)(by + 1)a+1

(bỹ + by + 1)a+2
,

where a is an integer. (Note that this is a valid density function that
integrates to 1).
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3. Let

X|θ ∼ Geometric(θ).

Consider the prior under which P (θ = 1/4) = 2/3, P (θ = 1) = 1/3.

p(θ|x > 1) =

{
0 if θ = 1

1 if θ = 1/4.

Suppose X̃|θ ∼ Geometric(θ). Assume that given θ, X̃ and X are inde-
pendent.

Derive p(x̃|x) for the cases x = 1 and x > 1. That is, show the following:

• If x = 1,

p(x̃|x = 1) =


3/4 if x̃ = 1

1

12

(
3

4

)x̃−1

if x̃ > 1.

• If x > 1, X̃|x ∼ Geometric(1/4).

4. Refer to Example 3.10. Recall

X1, . . . , Xn|α, β
iid∼ Gamma(α, β), α known, β unknown

β ∼ IG(a, b).

(a) Find the posterior of β|x1, . . . , xn.

(b) Suppose we take our loss function to be squared error loss. What is
the Bayes estimate in terms of the problem (be specific)? Explain
what the Bayes estimate means in words.

(c) If we used absolute error loss instead, what would the Bayes estimate
be?

5. Find a 90 percent credible interval for λ using the methods of Chapter 4
for the following model:

X|λ∼Poisson(λ)

λ ∼ Gamma(a, b),

where X is the number of babies delivered at a hospital during a particular
month and λ is the average number of babies that are delivered per month.
Be sure to interpret your interval in terms of the problem. Hint: You’ll
want to use R to solve this problem, so include any code with your write
up. For full credit make it very clear what you’re doing in your write up
and in R. Assume the following: x = 42, a = 5, b = 6.
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6. Suppose

X1, . . . , Xn|θ
iid∼ Poisson(θ).

Assume I(θ) =
n

θ
.

(a) Find Jeffreys’ prior. Is it proper or improper? Show that it’s proper
or improper without using any calculus.

(b) Find p(θ|x1, . . . , xn) under Jeffreys’ prior.

7. Suppose

X1, . . . , Xn|σ2 iid∼ Normal(0, σ2)

pJ(σ2) ∝ σ−2.

Find p(σ2|x1, . . . , xn).
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Chapter 5

Bayesian Risk and
Minimaxity

5.1 Motivations

What is risk and why do we study it? Risk is the average amount we expect to
lose in the long run. For example, if we own 10 shares of Coca-Cola stock, then
the risk is the average amount we expect to lose over the long run (or we could
interpret this to the be average amount we gain).

We think about risk inadvertently whether we realize it or not when we
make important decisions. As statisticians, risk is something we would like to
minimize.

Example 5.1: (Nancy Reagan) Faced with early-stage breast cancer, former
First Lady Nancy Reagan weighed the pros and cons that went along with
having a mastectomy, instead of a lumpectomy. At the time, Nancy Reagan
said,

“At the time of my operation, there were some people, including doctors, who
thought I have taken too drastic a step in choosing the mastectomy instead of
lumpectomy, which involved removing only the tumor itself and a small amount
of tissue—but also weeks of radiation. I resented these statements, and I still
do. This is a very personal decision, one that each woman must make for herself.
This was my choice, and I don’t believe I should have been criticized for it. For
some women, it would have been wrong, but for me it was right. Perhaps, if I had
been 20 years old and unmarried, I would have made a different decision. But
I’ve already had my children and I have a wonderful understanding husband.”

This example shows the risk analysis that Nancy Reagan went through in
deciding between two surgery operations. People make these same types of de-
cisions every day. We will show how to make them from a statistical point of
view so that we can make the best choice possible.
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95 5.2. INTRODUCTION TO LOSS AND RISK

5.2 Introduction to Loss and Risk

After we observe the data X = x, we can make a decision regarding θ. We de-
fine the set of allowable decisions to be the action space, A. Often A is the same
as the parameter space, in which case the decision d is equivalent to estimating
the value of θ.

Definition 5.1: (Loss Function) The loss function, L(θ, d), is the amount of
loss incurred from estimating the parameter θ by some statistic d (a function of
the data).

The loss function in an estimation problem reflects the fact that if some
decision d is close to an unknown parameter θ, then the decision d is reasonable
and little loss is incurred. However, if d is far away from θ, a large loss is
incurred. Our decision is based on the data X, so we will usually write the
decision as d(X).

Example 5.2: (Examples of Loss Functions)

• Squared Error: L(θ, d) = (d− θ)2.

• Absolute Value: L(θ, d) = |d− θ|.

The squared error loss function penalizes more heavily than the absolute value
loss function when d is farther away from θ.

Definition 5.2: (Risk) The (frequentist) risk is defined as

R(θ, d) = Eθ[L(θ, d(X))],

which is the average loss over time that results from using the estimator d.

Remark 1: We write the subscript θ on the expectation because the
risk is calculated as if the value of θ is fixed, i.e., each value of θ
gives a corresponding value of the risk.

Remark 2: We can write the risk as

R(θ, d) =

∫
x

L(θ, d(x))p(x|θ) dx

or
R(θ, d) =

∑
x

L(θ, d(x))p(x|θ).

Definition 5.3: (Bayes Risk) The Bayes risk is defined as

r(d) = E[R(θ, d)],

where the expectation is taken over some prior p(θ) that specifies the probabil-
ities of different values of θ.
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5.2. INTRODUCTION TO LOSS AND RISK 96

Remark 1: We can write the Bayes risk as

r(d) =

∫
θ

R(θ, d)p(θ) dθ

or
r(d) =

∑
θ

R(θ, d)p(θ).
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Definition 5.4: Basic Decision Problem
The general non-sequential decision theory consists of three basic principles.

1. The possible states of nature, denoted by Θ, sometimes referred to as the
parameter space.

2. A set of actions, A, available to the statistician.

3. A loss function, L(θ, a), where θ is any state of nature in Θ and a is any
action in A.

The triplet expression (Θ,A, L) defines what is called a game. The game is
played as follows. Nature selects a point in Θ, and the statistician without
being informed of the choice of nature, chooses an action (or decision) in A. As
a consequence of these two choices, the statistician loses an amount L(θ, a).

Example 5.3: Two Contestants
Two contestants simultaneously put up either one or two fingers. One of the

players, say player I, wins if the sum of the digits showing is odd. The other
player, say player II, wins if the sum of the digits showing is even. The winner
in all cases receives in dollars the sum of the digits showing, which is paid to
him by the loser.

We label player I as nature and player II as the statistician. If we denote 1
and 2 by the respective decisions to put up one or two fingers, then Θ = A =
{1, 2}.

We can easily write down the loss functions for this example:

L(1, 1) = −2, L(1, 2) = L(2, 1) = 3, L(2, 2) = −4.

We can also view the loss function in the form of a table.

A,Θ 1 2
1 -2 3
2 3 -4

Table 5.1: Loss function of two players from view of statistician

Example 5.4: Recall the set up of Example 5.3. Suppose before the game
is played, player II (statistician) is allowed to ask player I (nature) how many
fingers he intends to put up. Suppose nature must answer truthfully with prob-
ability 3/4 (and thus untruthfully with probability 1/4).

Therefore, the statistician therefore observes a random variable X (the an-
swer nature gives) taking either the values 1 or 2. Note that

f1(1) = 3/4, f1(2) = 1/4, f2(1) = 1/4, f2(2) = 3/4.

There are exactly four possible decision rules d1, d2, d3, d4 with

d1(1) = d1(2) = 1
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d2(1) = 1, d2(2) = 2

d3(1) = 2, d3(2) = 1

d4(1) = d4(2) = 2

Let’s calculate R(θ, d1). Suppose

R(θ, d1) =
∑
x

L(θ, d1)p(x|θ)

= L(θ, d1(1))fθ(1) + L(θ, d1(2))fθ(2).

Recall θ = 1, 2.

R(1, d1) = L(1, d1(1))f1(1) + L(1, d1(2))f1(2)

= L(1, 1)

= −2.

R(2, d1) = L(2, d1(2))f2(1) + L(2, d1(2))f2(2)

= L(2, 1)

= 3.

It is easy to calculate the (frequentist) risk for d2, d3, d4.
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5.2.1 How Often Should the Statistician Carry His
Umbrella?

Suppose a statistician at the University of Florida doesn’t particularly like get-
ting wet, so he’s interested in knowing how often he should carry his umbrella
given the probability that it will rain on a given day.

Statistician
Takes Umbrella (T) Doesn’t Take (D)

Nature
Rain (R) 0 10

No Rain (N) 1 0

Table 5.2: Loss Function

First, let’s consider what our loss function is in terms of the table above.
Note that

L(θ, d) =


0, for L(R, T ),

10, for L(R,D),

1, for L(N,T ),

0, for L(N,D).

Notice that in this example, there is no data X. That means that for any
particular state of nature (R or N) and any particular decision (T or D), there
is nothing random going on. Thus, R(θ, d) = Eθ[L(θ, d(X))] is really just
Eθ[L(θ, d)] = L(θ, d), so the risk and the loss are the same. This is always
the case in no data problems.

Suppose we can predict “Rain” with 100% accuracy. Let’s now find the value
of d that minimizes R(θ, d).

Solution:

R(R, d) =

{
0, if d = T ,

10, if d = D.

The d that minimizes the risk above is d = T, meaning the statistician would
take his umbrella. Similarly, if we know θ = N with 100% accuracy, then we
decide D, and the statistician decides to leave his umbrella at home.

The cases above are unreasonable, so let’s consider the situation where we
know

θ =

{
R, with probability p,

N, with probability 1− p.

This is a prior p(θ) on the values of θ.
Now we would like to minimize the Bayes risk, r(d) = E[R(θ, d)].
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Solution: If the statistician takes the umbrella, then

r(d) = E[R(θ, T )] = p · 0 + (1− p) · 1 = 1− p.

If the statistician decides to leave his umbrella at home then

r(d) = E[R(θ,D)] = p · 10 + (1− p) · 0 = 10p.

If 1− p < 10p, then the statistician should take his umbrella. On the other
hand, if 1 − p > 10p, the statistician should leave his umbrella at home. Note
that we have minimized the Bayes risk.

As an example, if p = 0.2, then the risk from taking is 1− p = 0.8 and from
not taking is 10p = 2. So, the statistician assumes less Bayes risk of getting wet
by carrying his umbrella around.

The statistician might now wonder what the changepoint value is for this
problem. That is, what is the value of p when the statistician takes and doesn’t
take his umbrella that results in the two situations having equal Bayes risk. To
find this value of p, we simply solve

1− p = 10p

and find that p = 1/11.
As a homework exercise, redo with a general L(R,D) = q and see how

sensitive the risk and Bayes risk are for different values of q. You may use R for
this.

5.3 Minimaxity

We now introduce a concept that appears as an “insurance against the worst
case” in the sense that it aims to minimize the expected loss in the least favorable
case. This idea appears in economics and not only in statistics (a subject called
game theory), where two adversaries compete. In our case, they will usually be
the Statistician and Nature. Once the statistician has determined the procedure
at hand, nature selects the state of nature, i.e., the parameter, which maximizes
the loss of the statistician.

Definition 5.5: An estimator is minimax if it minimizes the maximum risk.
For solving problems, we will first maximize the risk over all possible parameter
values. Then we find the estimator that minimizes this maximum risk.

Theorem 5.1: If the Bayes estimate, θ̂B , has constant (frequentist) risk under

the given prior, then θ̂B is considered to be minimax.

Example 5.5: The first oil drilling platforms in the North Sea were designed
according to a minimax principle. They were supposed to resist the conjugate
action of the worst gale (wind) and worst storm ever observed, at the minimal
record temperature. This strategy obviously gives a very comfortable margin
of safety, but at a great margin of cost. For more recent platforms, engineers
have taken into account the distribution of these weather phenomena in order
to reduce the production cost.
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Example 5.6: (Umbrella Example Continued) Recall our example where we
considered a statistician carrying an umbrella and we found the following loss
function:

L(θ, d) =


0, for L(R, T ),

10, for L(R,D),

1, for L(N,T ),

0, for L(N,D).

Since this is a no data problem, R(θ, d) = L(θ, d). Then to find the minimax
estimator d, we first maximize over all possible values of θ for each estimator d,
i.e., we maximize over rain and not rain. The maximum risks for D and T are
R(R,D) = 10 and R(N,T ) = 1. Then minimizing the risk functions over the
estimators, we find R(N,T ) = 1. So, the minimax estimator is d = T , or rather
for the statistician to always carry his umbrella.

Example 5.7: Two people, A and B, are suspected of committing a robbery
and have been apprehended. They are placed in separate cells. Both suspects
are questioned and enticed to confess to the burglary. If neither person talks,
then they will both serve very little jail time. However, the incentive offered
by the police is that the person who cooperates first will get immunity from
prosecution. Table 5.3 gives the loss as perceived by person A (in years of prison
time), where a1 denotes that person A talks and a2 denotes that A doesn’t talk.
Similarly, θ1 denotes the state of nature that B talks, while θ2 represents the
state of nature that B doesn’t talk.

a1 a2

θ1 10 20
θ2 0 1

Table 5.3: Loss Function for Robbery Example

Note that this is a no data problem, so the frequentist risk equals the loss.
We want to find the minimax estimator a1 or a2 in terms of person A.
Solution: Step 1: We want to calculate the maximum risk over θ1 and θ2 for

each choice of a1 and a2. Doing so, we get R(θ1, a1) = 10 and R(θ1, a2) = 20.
Step 2: Now we minimize over all values of a. This leads to R(θ1, a1) = 10.

This implies the minimax estimator is a1 or rather that person A should confess.
Similarly, if we look at the risk for person B, we find the minimax estimator

should be that person B should also confess. Thus, minimaxity leads to both
people going to jail for the full 20 years.

Intuitively above, we’re picking the worst case scenario for each situation.
The we pick the one with the “best” worst case scenario.
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Example 5.8: Minimax Example
Suppose X ∼ Geo(θ). Then

P (X = x|θ) = θ(1− θ)x−1, x = 1, 2, . . .

Consider the prior under which P (θ = 1/4) = 2/3, P (θ = 1) = 1/3. Find the
Bayes estimate of θ under the above prior using squared error loss. Recall from
a previous homework assignment

P (θ = 1/4|x = 1) = 1/3

and
P (θ = 1|x = 1) = 2/3.

Also for
k > 1, P (θ = 1|X = k) = 0,

which implies
P (θ = 1/4|X = k) = 1 for all k > 1.

Hence, the Bayes estimate under squared error loss under the given prior is
simply the posterior mean. If k = 1,

d(1) = θ̂B = (1/4)(1/3) + (1)(2/3) = 3/4.

If k > 1,
d(k) = θ̂B = 1/4.

Now consider

R(θ, d) =
∑
x

L(θ, θ̂)p(x|θ)

= (3/4− θ)2P (X = 1|θ) + (1/4− θ)2P (X 6= 1|θ)
= (3/4− θ)2θ + (1/4− θ)2(1− θ)
= 1/16.

Since the Bayes estimate has constant risk under the prior given, we know that
the Bayes estimate is minimax.

5.4 Choosing the Best Estimator

We’ve looked at different estimators throughout the course such as the mle and
the Bayes estimate. But which one is best? The is often a very hard question to
answer and is in a sense beyond the scope of this course. The main conclusion
we can reach, however, is that usually one estimator is not uniformly better
than another one. The next example illustrates why.
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Example 5.9: Let X1, . . . , X16|θ constitute a random sample of size 16 from
N(θ, 1). We will assume the squared error loss function out of convenience. That
is,

L(θ, d) = (θ − d)2.

The following two estimators are suggested:

d1(x) =
1

16

∑
i

xi

and
d2(x) = 0.

We can easily compute the frequentist risk.

R(θ, d1(x)) = Eθ[(X̄ − θ)2].

Recall
X̄ ∼ N(θ, 1/16).

This implies
X̄ − θ ∼ N(0, 1/16).

Thus,
R(θ, d1(x)) = Eθ[(X̄ − θ)2] = 1/16.

Clearly,
R(θ, d2(x)) = θ2.

Plotting both of these, we find that neither d1 nor d2 is uniformly better than
the other.
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Figure 5.1: Frequentist risk plot for d1 and d2
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