Baby Bayes using \texttt{R}

Rebecca C. Steorts

Last \LaTeX’d Tuesday 12th January, 2016
Contents

1. Motivations and Introduction to Bayesian Inference 4
 1.1 Motivational Examples
 1.2 Introduction to Bayesian Inference
 1.2.1 Simple Bayesian Example 6
 1.2.2 Frequentist versus Bayesian 7
 1.2.3 Frequentist or Bayesian 8

2. Probability and Random Variables 9
 2.1 First Principles 10
 2.2 Properties of Probability 11
 2.3 Conditional Probability and Independence 13
 2.3.1 Probability Motivation 13
 2.4 Discrete Random Variables and Their Probability Distributions 17
 2.4.1 Discrete Random Variables 17
 2.4.2 Discrete Distributions 19
 2.5 Continuous Random Variables and Their Probability Distributions 22
 2.5.1 Continuous Random Variables 22
 2.5.2 Continuous Distributions 23
 2.6 A Brief Introduction to R 24
 2.7 Exploring an Example in R 29
 2.7.1 Setting Things Up 29
 2.7.2 Analyzing the Data 30
 2.8 Exercises 31

3. Bayesian Statistics 35
 3.0.1 Discrete Case 35
 3.0.2 Continuous Case 36
 3.1 Discrete Examples 37
 3.2 Continuous and Discrete Examples 42
 3.3 Posterior Predictive Distributions 58
 3.4 Exercises 64

Chapter 1

Motivations and Introduction to Bayesian Inference

1.1 Motivational Examples

Example 1.1: The New York Times article listed below talks about the financial crisis of 2008. Specifically it points to risk analysis and model failure. We will discuss risk in our last chapter of this class. What can we learn from this article?

Example 1.2: We want to generate a random integer between 1 and 10. Let’s try doing this ourselves and see what happens. Everyone in the class choose a random number quickly and write it down. What has happened?

The goal of generating a random integer between 1 and 10 is that each integer should have an equally likely chance of being chosen.

From our experiment, did this occur? What went wrong?

Since we cannot generate a random number ourselves because we are likely to choose some numbers more frequently than others, we can generate this number using software. We will come back to this example and go through how to generate such an integer in R. When you go home today, download R and begin reading Chapter 1 of Using R for Introductory Statistics if you bought the book. Also, read the R Help document I have posted on the course webpage when you go home.

Example 1.3: The article listed below in the New York Times from April 25, 2010, talks about the confusion that students as well as professionals such as physicians have regarding Bayes’ Theorem and conditional probabilities.

The article deals with calculating the probability that a woman has breast cancer given she has a positive mammogram, which is a calculation that needs to be done correctly in a real-world situation.

Let’s take a few minutes to read through the article. Focus specifically on the section where a doctor estimates a woman’s probability of having breast cancer, given that she has a positive mammogram, to be 90 percent. What is wrong with his answer intuitively? Notice that as Gigerenzer talks to many other doctors their estimates are very different, some giving estimates at 10 percent and others giving estimates between 50 and 80 percent. So, what’s the correct answer and how do we reason this out? First, let’s look at all the information we have.

Let’s look at an example from the article where we’re interested in the probability that a woman has breast cancer given she has a positive mammogram even though she is in a low-risk group (i.e., 40–50 years old with no family history of breast cancer). The probability that one of these women has breast cancer is 0.008. If a woman has breast cancer, then 90 percent of the time she will have a positive mammogram. If a woman does not have breast cancer, the probability is 0.07 that she will still have a positive mammogram. Suppose a woman has a positive mammogram. What is the probability that she actually has breast cancer?

Solution: Natural Frequencies Approach (Gigerenzer’s Approach). We start with a simple, intuitive approach, bypassing Bayes’ method since often times people confuse the conditional probability that \(A\) occurs given \(B\), \(P(A|B)\), with the conditional probability that \(B\) occurs given \(A\), \(P(B|A)\). Another common mistake is that people mistake \(P(A|B)\) with \(P(A,B)\). We will discuss these more in the next chapter.

Let \(BC\) denote the event that a woman has breast cancer and let \(M^+\) denote the event that a woman receives a positive mammogram. We are interested in finding \(P(BC|M^+)\).

From our assumptions, we know \(P(BC) = 0.008\). That is, 8 out of 1000 women have breast cancer. Also, 90 percent of 8 women have a positive mammogram which implies that approximately 7 women will have a positive mammogram. Of the remaining 992 women who don’t have breast cancer, \((992)(0.07) \approx 70\) have a positive mammogram. Thus, given a sample of women who have a positive mammogram screening, what percentage of them have breast cancer? Since we found that \(7 + 70 = 70\) have a positive mammogram, this means

\[
P(BC|M^+) = \frac{7}{77} \approx 9\%.
\]

Comment: Although using this approach is easier and more intuitive than using Bayes’ Rule, note that we have arrived at our answer by a few assumptions. First, the assumption that 8 out of 1000 women have breast cancer isn’t necessarily true. In reality, events don’t have to follow their corresponding probabilities. For example, if we flipped a coin 1000 times, we should not expect to get exactly 500 heads. We also rounded to whole numbers, so our final answer was
1.2. INTRODUCTION TO BAYESIAN INFEERENCE

an approximation. Keep these ideas in mind when solving problems this way.

Alternative Solution: Bayes’ Rule
Recall Bayes’ Rule from STA 2023:

\[P(A|B) = \frac{P(A, B)}{P(B)}. \]

We want to calculate

\[P(BC|M^+) = \frac{P(BC, M^+)}{P(M^+)} \]

\[= \frac{P(M^+|BC)P(BC)}{P(M^+)} \]

\[= (0.9)(0.008) / P(M^+) \]

Also,

\[P(M^+) = P(M^+|BC)P(BC) + P(M^+|no BC)P(no BC) \quad (1.1) \]

\[= (0.9)(0.008) + (0.07)(1 - 0.008) \]

\[= 0.07664 \]

Plugging back in to \(P(BC|M^+) \), we find

\[P(BC|M^+) = 0.0072 / 0.07664 = 0.0939. \]

In equation (1.1), we are using the law of total probability, which recall says that

\[P(A) = P(A|B)P(B) + P(A|B^c)P(B^c). \]

We will review this more completely in Chapter 2.

1.2 Introduction to Bayesian Inference

1.2.1 Simple Bayesian Example

Suppose you are a biology student submitting your first paper to a journal and you have assessed your chances of your paper being published. Suppose this particular journal has a particularly low acceptance rate of 20 percent, but your paper ended up being accepted! What is your updated assessment that your next submission will be accepted (assume the topic is similar)?

Using intuition, we know that the direct estimate or frequentist estimate is 100 percent since we only have one sample, however, after thinking more, this answer seems very naive given that we know this journal’s acceptance rate is 20 percent. Thus, it makes sense to pick a number smaller than 100 percent. Thus, it makes sense to pick a number smaller than 100 percent. If you do this, you are behaving like a Bayesian because you are adjusting the direct estimate due to knowing some prior information.

That is, it makes sense to incorporate the prior information, i.e., in this case the acceptance rate of 20 percent into our calculation so that our answer will be more accurate. We will explore this idea in more detail soon. The important point is that you understand the basic idea behind the example.
1.2.2 Frequentist versus Bayesian

In statistics, there are two approaches that are mainly used by researches—frequentist and Bayesian. The frequentist approach evaluates procedures based on sampling from a particular model (the likelihood) repeatedly. The likelihood defines the distribution of the observed data conditional on the unknown parameter(s). For example, we denote the likelihood as \(L(X_1, \ldots, X_n | \theta) \), where the \(X_i \)'s are the data and \(\theta \) is the parameter we are trying to estimate.

Example 1.4: Let \(X_1, \ldots, X_n \) iid \(\sim N(\mu, \sigma^2) \) where \(\sigma^2 \) is known. From STA 2023, we know that \(\bar{X} \) (the sample average) estimates \(\mu \) well. We can show (using calculus) that \(\bar{X} \) is the frequentist estimate for \(\mu \) in this situation.

Moving along to the Bayesian approach, this requires sampling a model (likelihood) and also knowing a prior distribution on all unknown parameters in the model. In the easiest case, where we only have one unknown parameter, the likelihood and prior are combined in such a way that we compute the distribution of the unknown parameter given the data (posterior distribution). We’ll write out some notation for what this means later. For now, it’s important to understand the basic idea.

We have briefly discussed the two approaches. We will outline how both conceptually differ from each other so it is very clear.

Bayesian Methods

- The parameter is considered to be a random variable and has a distribution.
- The prior distribution placed on the unknown parameter quantifies our beliefs regarding the unknown parameter.
- We use the laws of probability to make inferences about the unknown parameter of interest.
- We update our beliefs about the unknown parameter after getting data (likelihood). This yields the posterior distribution which reweights things according to the prior distribution and the data (likelihood).
- The Bayesian approach makes sense even when we treat the experiment as if it is only occurring one time.

Frequentist Methods

- For a frequentist, the parameter is fixed but an unknown constant.
- The probabilities are always interpreted as long-run relative frequencies.
- Statistical procedures are judged by how well they perform in the long-run over some infinite number of repetitions of the experiment.
1.2.3 Frequentist or Bayesian

Let’s consider why both models might have criticism.

Bayesian Criticisms

- Bayesian methods require choosing some prior with known parameters. One question that is often asked is how to choose the prior as well as the prior parameters.

- Bayesians are often criticized for choosing priors out of convenience. Such priors are called conjugate priors and allow us to compute the posterior distribution very easily as we will soon see.

- Bayesian methods are sometimes not used because inference may depend on the choice of a specific prior. This causes a lack of model robustness.

- Recent computational advances (WinBUGS and using MCMC) have basically eliminated any problems in the past regarding choice of priors, however difficulties of prior selection and possible non-robustness remain.

Frequentist Criticisms

- Bayesians have criticized frequentist methods for failure to incorporate prior information, which is often available in problems today.

- Frequentist methods are often also avoided due to inefficiency, inflexibility, and incoherence. By incoherence, we mean that these methods fail to process information systematically.

- Another criticism is that even though frequentists avoid dependence on prior beliefs, they still require some set of simple model assumptions must be made that are free of confounding, selection bias, measurement error, etc.

Since frequentist methods are the ones stressed in undergraduate studies whether you realize it or not, for the remainder of this course we will concentrate on learning Bayesian methods. Bayesian methods are becoming more and more popular in industrial work and in areas outside of statistics, so it’s important that you have a firm understanding of Bayesian methods, how to apply them, and how they differ from the frequentist approach.

However, before we can introduce any Bayesian notation or methods, we will need to review many probability concepts to make sure we are familiar with some statistical tools.
Chapter 2

Probability and Random Variables

We’ll review some concepts that are purely frequentist in nature as well as cover some ideas that you may have not seen before that will be useful in future chapters.

When we seek to calculate a probability, we are wanting to measure our belief in the occurrence of a future event. For example, if we flip a coin, we do not know for certain if it will land on heads, but we have learned from introductory courses that on average it will land on heads half the time and on tails the other half. When we speak of random occurrences that cannot be predicted with certainty, we say that these events are random or stochastic.

Why do we need to learn probability theory? Consider a gambler who is interested in whether or not a (six-sided) die is balanced. If the die is perfectly balanced and we did millions of experiments, we would expect that each side would come up with probability $1/6$. However, the gambler sets out to prove that the die is loaded. He takes a sample of ten tosses, all resulting in 1s. The gambler decides from this that the die must be loaded. But can we be sure? The gambler decided that the die was loaded not from using calculations, but from intuition. He decided that it wasn’t impossible to get ten 1s but improbable.

Probability theory will provide us with a rigorous method for finding a number that will agree with the relative frequency of occurrence of some event in a long series of trials. We can see how this is needed if, for example, the gambler had instead rolled five 1s, two 2s, one 3, one 4, and one 6 instead of ten 1s. Using intuition alone, how can we make a decision regarding whether or not the die is balanced? Thus, in this chapter we will create a foundation necessary for computing these quantities so we aren’t sitting around guessing like our friend the gambler.
2.1 First Principles

Definition 2.1: A *sample* is a group of subjects for which we have data and about which we want to study information. A sample might be 18 UF psychology majors, randomly chosen by UFID or 100 possible flips of the quarter in my pocket.

Definition 2.2: The group of subjects that is the target of interest is known as the *population*. Examples of populations include the following:

- All UF biology majors
- All adults that smoke in the United States
- All possible flips of the quarter in my pocket

Definition 2.3: A *parameter* is a measurement describing some characteristic of a population.

Definition 2.4: A *statistic* is a numerical measurement describing some characteristic of a sample. Let \(x_1, x_2, \ldots, x_n \) be a sample of measured values.

Definition 2.5: The *sample mean* is defined as

\[
\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i.
\]

The *population mean* is denoted by \(\mu \).

Definition 2.6: The *sample median* is the middle value when the original data values are arranged in order of increasing (or decreasing) magnitude. We'll denote the median by \(\tilde{x} \).

Example 2.1: Suppose we have observations that are already ordered: 2, 5, 7, 10, 49. Then 7 is the median. However, if we have an even number of observations, such as 2, 4, 6, 10. Then the median is the average of the middle two observations. The median here is 10/2 = 5.

Definition 2.7: The *sample variance* is

\[
s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2.
\]

The *population variance* is denoted by \(\sigma^2 \).

Example 2.2: (Aqua Running) Aqua running has been suggested as a method of cardiovascular conditioning for injured athletes and others who desire a low-impact aerobics program. In a study to investigate the relationship between exercise cadence and heart rate, the heart rates of 20 healthy volunteers were
measured at a cadence of 48 cycles per minute (a cycle consists of two steps).
The data are as follows:

Calculate the sample mean and sample variance.

Solution: The sample mean is simply

$$\bar{X} = \frac{87 + 109 + 79 + \ldots + 96}{20} = \frac{1874}{20} = 93.7.$$

The sample variance is

$$\frac{1}{20}[(87 - 93.7)^2 + \ldots + (96 - 93.7)^2] = 91.27.$$

At the end of the chapter, we will look at how to do computations such as these in R.

2.2 Properties of Probability

In order to calculate probabilities of events, we will need to establish some notation.

Definition 2.8: An experiment is a process where we record an observation. Examples of experiments include flipping a coin, tossing a die, measuring the IQ score of a student, or administering a drug to patient and asking whether the pain is relieved.

Remark: You may notice this definition is somewhat broader than the one you learned in STA 2023. For convenience, any data that is collected in a random way will be referred to as an experiment.

We want to calculate the probability of something happening. We call this something an event. If we're speaking of one event, we'll denote the event by A.

Definition 2.9: The sample space, S, associated with an experiment is the set of all possible outcomes.

Definition 2.10: The outcome is the result achieved from running one trial of an experiment.

Definition 2.11: Some particular set of outcomes that we are interested in is called an event.

Recall from your introductory statistics course that if each outcome is equally likely, then we can easily find the probability of event A, denoted by $P(A)$. We find it by

$$P(A) = \frac{\text{# of outcomes in } A}{\text{total # of outcomes in sample space } S}.$$

03:18 Tuesday 12th January, 2016
So far, our definitions above may seem a bit abstract. Let’s look at an example to make things more clear.

Example 2.3 (Rolling a Die): Consider rolling a six-sided die on a flat surface. The die’s sides are labeled 1, 2, 3, 4, 5, 6. Suppose we are interested in betting on the roll being a 6. Then there are 6 possible outcomes (rolling a 1, 2, 3, 4, 5, or 6). Each outcome listed above is also an event. For example, rolling a 3 is an event. In fact, there are more than 6 events.

To see this, suppose we are instead interested in betting that the roll is odd. We denote this event by \(\{1, 3, 5\} \). As we can see, there are many events that can be considered. Or we could be interested in not rolling a 6. We denote this by \(6^c \). Then \(6^c = \{1, 2, 3, 4, 5\} \). This notation is called the *complement* of 6.

Definition 2.12: More formally, the *complement* of event \(A \), denoted by \(A^c \), consists of all the outcomes in the sample space \(S \) that are not in \(A \).

Definition 2.13: Let \(S \) be the sample space associated with an experiment. To every event \(A \) in \(S \), we assign a number, \(P(A) \), called the *probability of \(A \).* The following results hold:

1. \(P(A) \geq 0 \)
2. \(P(S) = 1 \)
3. If events \(A \) and \(B \) are mutually exclusive (i.e., have no outcomes in common), then \(P(A \cup B) = P(A) + P(B) \).

Remark: Since \(P(A) \geq 0 \) and \(P(S) = 1 \), we know

\[0 \leq P(A) \leq 1. \]

Why? \(S \) is the entire sample space, so \(A \) must live somewhere in \(S \). This means that \(A \subset S \implies P(A) \leq P(S) = 1. \)

Theorem 2.1: \(P(A) = 1 - P(A^c) \).

Proof: Note that \(S = A \cup A^c \). Also, \(A \) and \(A^c \) are mutually exclusive, so by above,

\[1 = P(S) = P(A \cup A^c) = P(A) + P(A^c). \]

Definition 2.14: We use \(\emptyset \) to denote an impossible event. Naturally, \(P(\emptyset) = 0 \).

Example 2.4: (Coaching Jobs) Four equally qualified people apply for two coaching jobs on the Florida football team. One and only one applicant is a member of a minority group. The positions are filled by choosing two of the applicants at random.

1. What are the possible outcomes for this experiment?

Denote the applicants by person \(A \), \(B \), \(C \), and \(D \). Then the possible outcomes are all the combinations of choices of the candidates, i.e.,

\[\{A, B\}, \{A, C\}, \{A, D\}, \{B, C\}, \{B, D\}, \{C, D\}. \]
2. Assign reasonable probabilities to each of the sample points. Since two applicants are chosen at random, each outcome has an equally likely probability of being chosen, which is $1/6$.

3. Find the probability that the applicant from the minority group is selected for a position. Suppose person A is from a minority group. Person A is in 3 of the 6 possible outcomes. So, $P(\text{Person } A \text{ selected}) = 3/6 = 1/2$.

Example 2.5: (Coin Tossing) A balanced coin is tossed three times. Calculate the probability that exactly two of the three tosses results in heads. Denote this event by A.

Solution: Denote heads by H and tails by T. Let’s list out the set of all possible outcomes. The first letter we write will represent the outcome of the first flip, the second letter will represent the outcome of the second flip, etc. Assume that the coin is fair.

There are eight possible events which are

$$HHH, HHT, HTH, TTT, TTH, THH, THT.$$ (i)

Since we assume the coin is fair, let’s now list out the outcomes that have two of the three tosses with heads. They are

$$HHT, HTH, THH.$$ (ii)

Thus, $P(A) = 3/8$.

2.3 Conditional Probability and Independence

2.3.1 Probability Motivation

In the last section, we looked at an example of flipping a fair coin three times. Suppose we are instead interested in the probability of the following:

- getting a H on toss three given that first two tosses were HT
- getting a T on toss three given that the first two tosses were HH

This illustrates the Bayesian idea that we have prior information to condition on that we should use to calculate our probability. Let’s see the simplest form of how this prior information is used.

Remember that Bayesian probability conditions on the probability of knowing information, while classical statistics views probability as the frequency after a hypothetical set of trials.

Definition 2.15 (Conditional Probability):

$$P(A|B) = P(A,B)/P(B) \quad \text{provided} \quad P(B) > 0.$$
This easily extends to what is called the Multiplicative Law of Probability, i.e.,
\[P(A, B) = P(A|B)P(B). \]
Then we can extend this to find the probability of the intersection of any number of events.

Theorem 2.2 (Additive Law of Probability):
\[P(A \cup B) = P(A) + P(B) - P(A, B). \]

Definition 2.16 (Independence): Events \(A \) and \(B \) are independent if any of the following holds:
\[P(A|B) = P(A). \]
\[P(B|A) = P(B). \]
\[P(A, B) = P(A)P(B). \]

To see why for example, \(P(A, B) = P(A)P(B) \) is equivalent to \(P(B|A) = P(B) \) when \(A \) and \(B \) are independent, simply recall the conditional probability formula:
\[P(B|A) = \frac{P(B, A)}{P(A)} = \frac{P(A)P(B)}{P(A)} = P(B). \]

Examples of independence include the following:
- Tosses of the same fair coin. Once we toss the coin once, on the next toss, the coin forgets about the last toss.
- Drawing items out of a bag with replacement.

Theorem 2.3 (Law of Total Probability): Assume that we have sets \(A_1, A_2, \ldots, A_k \) such that
1. \(S = A_1 \cup A_2 \cup \cdots \cup A_k \).
2. \(A_i \) and \(A_j \) are mutually exclusive for all \(i \neq j \).

Then \(\{A_1, A_2, \ldots, A_k\} \) are said to partition \(S \). If \(P(A_i) > 0 \) for all \(i \) then for any event \(B \),
\[P(B) = \sum_{i=1}^{k} P(B|A_i)P(A_i). \]
As a special case, \(S = A \cup A^c \) and suppose \(P(A) > 0, P(A^c) > 0 \). We know \(A \) and \(A^c \) are mutually exclusive. Then
\[P(B) = P(B|A)P(A) + P(B|A^c)P(A^c). \]
Example 2.6: (Aces) Suppose we are playing cards and we’re interested in the probability of getting certain cards. Let A represent the event that the first card we draw is an ace. Let B represent the event that the second card we draw is an ace. What is the probability that we select two aces?

Solution: That is, find $P(A, B) = P(B|A)P(A)$ by the conditional probability. $P(B|A) = 3/51$ since we have only have 3 aces left and 51 cards total remaining. Also, $P(A) = 4/52$. Then $P(A, B) = P(B|A)P(A) = (3/51)(4/52) = 1/221$. Think about calculating the probability of getting three aces at home.

What is the probability that the second card is an ace? That is, we are looking for $P(B)$. Naturally, we will apply the law of total probability in order to calculate $P(B)$. $P(B) = P(B|A)P(A) + P(B|A^c)P(A^c)$. We are apply the law of total probability by conditioning on whether or not we had an ace on the first draw.

We have already calculated the first part of the expression above which is 1/221. The second part is very similar. We find that $P(B|A^c)P(A^c) = (4/51)(48/52) = 16/221$.

Putting this all together, we know $P(B) = 1/221 + 16/221 = 17/221 = 1/13$.

The next theorem is the fundamental theorem that led to Bayesian statistics. We’ll go through the result and then work through some examples.

Theorem 2.4 (Bayes’ Rule):

$$P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|A^c)P(A^c)}.$$

Proof: $P(A|B) = P(A, B)/P(B) = P(B|A)P(A)/P(B)$. Now apply the law of total probability to $P(B)$ to get the result.

Remark: Notice that Bayes’ Rule is just an application of the law of conditional probability and the law of total probability. If you need to use this for a problem, you could simply just use these two laws instead of memorizing Bayes’ Rule. However, do what’s easiest for you.
Example 2.7: A diagnostic test for a disease is advertised such that it correctly detects a disease in 90 percent of the individuals who actually have the disease. Also, if a person does not have the disease, the test will report that he or she does not have it with probability 0.9. Only 1 percent of the population has the disease in question. If Jack is chosen randomly from the population and the diagnostic test indicates that he has the disease, what is the conditional probability that he really has the disease? Are you surprised by the answer? Would you call this test reliable?

We want to calculate $P(D|PT)$. We’ll let D denote disease and ND denote no disease. Similarly, PT will stand for a positive test and NT will denote a negative test. From the information, we know the following:

$$P(PT|D) = 0.9, \ P(NT|ND) = 0.9, \text{ and } P(D) = 0.01.$$

Also, since $P(NT|ND) = 0.9$, this implies $P(PT|ND) = 0.1$.

Then

$$P(D|PT) = \frac{P(D, PT)}{P(PT)} = \frac{P(PT|D)P(D)}{P(PT|D)P(D) + P(PT|ND)P(ND)} = \frac{(0.9)(0.01)}{(0.9)(0.01) + (0.1)(1 - 0.01)} = \frac{1}{12} \approx 0.083.$$

Alternative Solution: Natural Frequencies Approach

1. Since $P(D) = 0.01$, we assume that 10 out of 1000 people have the disease. (We could assume 1 out of 100, but we’d like to take a large sample than one person).

2. 90% of 10 people have a positive test, which implies that 9 people have PT.

3. There are 991 people remaining who don’t have the disease and $P(PT|ND) = 0.1$. So, $(991)(.1) \approx 99$ people who have PT.

4. To summarize, we have found 108 people who have a PT. Thus,$P(D|PT) = 9/108 \approx 0.083$.

This test clearly isn’t really worth that much since it doesn’t give us that much information. However, it could be used as a screening test for a disease if the test is cheap and quick. For example, suppose that there is a $15,000 test for the disease and $P(D|PT)$ is very high. The downside here is that the test is very expensive. The solution is to have patients do the cheap test, where a patient has about an 8 percent chance of having the disease given the test is positive. If the screening test comes back positive, then it makes more sense to have the patient do the more expensive test. So, the test in the above example isn’t completely worthless to us.
2.4 Discrete Random Variables and Their Probability Distributions

When we are performing experiments, we often find that we are interested in functions of an outcome instead of the outcome itself. For example, suppose we are tossing two dice. We might be interested in the sum of two dice being seven instead of the outcome being (1,6), (2,5), etc. Random variables are real-valued functions defined on the sample space. The value of a random variable is determined by the outcome of some trial, so naturally probabilities will correspond to possible values of each random variable.

2.4.1 Discrete Random Variables

Definition 2.17: A random variable \(Y \) is said to be discrete if it can assume only a finite or countably infinite number of distinct values.

Remark: Suppose \(Y \) is countably infinite. This means that the value of \(Y \) can assume values that you could count if you had an infinite amount of time.

We now have a random variable \(Y \), so we can think about the probability that \(Y \) takes some real value \(y \). We denote this by \(P(Y = y) \). Keep in your mind that \(Y \) is a random variable, but \(y \) is a fixed quantity.

Definition 2.18: The probability that \(Y \) takes on value \(y \), \(P(Y = y) \), is defined as the sum of the probabilities of all the sample points in \(S \) that are assigned the value \(y \). We will sometimes denote \(P(Y = y) \) by \(p(y) \).

Definition 2.19: The probability distribution for a discrete random variable \(Y \) can be represented by a formula, table, or graph that provides \(p(y) = P(Y = y) \) for all \(y \).

Theorem 2.5: For any discrete probability distribution, the following must be true:

1. \(0 \leq p(y) \leq 1 \) for all \(y \).
2. \(\sum_y p(y) = 1 \), where we sum over all values of \(y \) with positive probability.

To represent the probability distribution of \(Y \), we will usually form a table where we find \(p(y) \) for each value of \(y \) in the sample space. The usual way to find \(p(y) \) is to identify the possible values of \(y \). Then calculate \(p(y) \) for each value of \(y \). This is made more clear by the following example:

Example 2.8: (Urn Example) Suppose we have an urn containing five balls. Each ball is labeled 1 to 5. Two balls are randomly selected from the urn. Find the probability distribution for the sum of the two sampled numbers.

Solution: Let \(Y \) = the sum of the two sampled numbers. Let’s first list out all the possible outcomes (20 of them).
We’re not interested in the outcomes above, but in the distribution of Y. From the outcomes above, it’s easy to see what values Y can take. Y can be 3, 4, 5, 6, 7, 8, or 9. Then using the information above, we find $p(y)$ in the table below. Notice in the table that all the probabilities add up to 1. This isn’t a coincidence. This will always occur and is something you should check to make sure that you have a valid probability distribution.

<table>
<thead>
<tr>
<th>y</th>
<th>$p(y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2/20</td>
</tr>
<tr>
<td>4</td>
<td>2/20</td>
</tr>
<tr>
<td>5</td>
<td>4/20</td>
</tr>
<tr>
<td>6</td>
<td>4/20</td>
</tr>
<tr>
<td>7</td>
<td>4/20</td>
</tr>
<tr>
<td>8</td>
<td>2/20</td>
</tr>
<tr>
<td>9</td>
<td>2/20</td>
</tr>
</tbody>
</table>

Table 2.1: Urn Example

Definition 2.20: Let Y be a discrete random variable with probability distribution $p(y)$. Then the expected value of Y is defined to be

$$E(Y) = \sum_y yp(y).$$

Definition 2.21: Suppose Y is a discrete random variable with $E(Y) = \mu$. Then the variance of Y is defined as

$$V(Y) = E[(Y - \mu)^2] = \sum_y (y - \mu)^2 p(y).$$

Theorem 2.6: Suppose Y is a discrete random variable with $E(Y) = \mu$. The variance of Y can also be expressed as

$$V(Y) = E(Y^2) - (E(Y))^2.$$

Remark: The above result is often very useful in calculating the variance instead of using the definition.

Example 2.9: (Urn Example Revisited) Let’s look back at the urn example where we found the following probability distribution earlier:
Let’s calculate $E(Y)$ and $V(Y)$.

Solution: Recall that Y represented the sum of the two sampled balls from the five urns.

\[
E(Y) = \sum_y y p(y) = 3(2/20) + 4(2/20) + 5(4/20) + 6(4/20) + 7(4/20) + 8(2/20) + 9(2/20) = 6.
\]

In order to calculate, $V(Y)$ we must find $E(Y^2)$.

\[
E(Y^2) = \sum_y y^2 p(y) = 3^2(2/20) + 4^2(2/20) + 5^2(4/20) + 6^2(4/20) + 7^2(4/20) + 8^2(2/20) + 9^2(2/20) = 39.
\]

Therefore,

\[
V(Y) = E(Y^2) - E(Y)^2 = 39 - 6^2 = 39 - 36 = 3.
\]

We have given the definitions for calculating the mean and variance of discrete random variable. We can also use R to calculate the mean and variance for discrete random variables. We will eventually see that we can do this for continuous random variables as well. In the meantime, we will next discuss some discrete distributions that will be relevant in upcoming chapters.

2.4.2 Discrete Distributions

Now that we have covered what random variables are and what probability distributions are in the discrete case, it will be helpful to look at some specific ones that will come up in the upcoming chapters. They include the Binomial, Poisson, and the Geometric distributions.

03:18 Tuesday 12th January, 2016
Binomial Distribution

Here is the setup:

- \(X \) represents the result of a trial (say flipping a coin) that results in a success or failure.
- Let \(p \) denote a success (and so \(1 - p \) represents a failure).
- We decide to run an experiment for 1 trial to start.

Then \(P(X = x) = p^x(1 - p)^{1-x} \). This is called a Bernoulli trial.

For a Binomial experiment, we have \(n \) trials instead, and we assume that the trials are independent. To calculate \(P(X = x) \), think about flipping a coin, and suppose a head is a success. We are interested in finding the probability that we get \(x \) heads, where the \(P(H) = p \). Since the trials are independent, we know that the probability we get \(x \) heads is just \(p^x \). Similarly, if we have \(x \) heads, we must have \(n - x \) tails, and the probability of this is \((1 - p)^{n-x} \). So we might think that

\[
P(X = x) = p^x(1 - p)^{n-x},
\]

but this isn’t quite right. We need to take into account the different orderings that could occur. Recall that to take into account ordering we simply use \(\binom{n}{x} \), which counts the numbers of ways to place \(x \) heads when we have \(n \) spots available. Once these are placed, the tails are fixed. Thus, the Binomial distribution is defined as:

\[
p(x) = \binom{n}{x} p^x(1 - p)^{n-x}, \quad x = 0, 1, 2, \ldots, n \quad \text{and} \quad 0 \leq p \leq 1.
\]

Remark: \(E(X) = np \) and \(V(X) = np(1 - p) \). You don’t need to know how to derive the expectation and variance.

Poisson Distribution

Suppose that \(X \) is the number of rare events that occur over time and \(\lambda \) is the average value of \(X \). For example, we might be interested in the number of accidents in a given time interval or the number of radioactive particles that decay over a particular time period.

A random variable \(Y \) has a Poisson distribution if and only if

\[
p(y) = \frac{\lambda^y e^{-\lambda}}{y!}, \quad x = 0, 1, 2, \ldots, \quad \lambda > 0.
\]

Remark: \(E(X) = \lambda \) and \(V(X) = \lambda \). You don’t need to know how to derive the expectation and variance.

The Poisson distribution can be derived as an approximation to the binomial distribution when \(n \) is large, \(p \) is small, and \(np \) is not too large and not too small. In this case, define \(\lambda = np \). Consider each piece of the binomial distribution.
2.4. DISCRETE RANDOM VARIABLES AND THEIR PROBABILITY DISTRIBUTIONS

\[\binom{n}{x} = \frac{n!}{x!(n-x)!} = \frac{n(n-1)(n-2) \cdots (n-x+1)(n-x)!}{x!(n-x)!} \approx \frac{n^x}{x!}. \]

Also, again because \(n \) is much larger than \(x \),

\[(1 - p)^{n-x} \approx (1 - p)^n = \left(1 - \frac{np}{n}\right)^n = \left(1 - \frac{\lambda}{n}\right)^n \approx e^{-\lambda}. \]

Then the binomial distribution becomes

\[\binom{n}{x} p^x (1-p)^{n-x} \approx \frac{n^x}{x!} p^x e^{-\lambda} = \frac{(np)^x e^{-\lambda}}{x!} = \frac{\lambda^x e^{-\lambda}}{x!}, \]

which is the Poisson distribution.

Geometric Distribution

Suppose the probability of a success is equal to \(p \) and this is true for each trial. We run an experiment that involves independent and identical trials, each of which can result in a success or a failure. Suppose we have \(n \) trials and the geometric random variable \(Y \) is number of the trial on which the first success occurs.

Suppose we want to calculate \(P(Y = 1) \)? Clearly, \(P(Y = 1) = p \) since we must get a success. What about calculating \(P(Y = 2) \)? Here, we are calculating the probability our first success is on trial 2, which means the first trial was a failure. This means we ended up with FS. Thus, \(P(Y = 2) = p(1-p) \). What about the other events that could occur with 3, 4, 5, etc. trials. Denote these events by \(E_3, E_4, E_5, \) etc. Then

\[
E_3 : FFS \\
E_4 : FFFS \\
E_5 : FFFFS \\
\vdots \\
E_k : \underbrace{FFFF \ldots F}_{k-1} S
\]

So, A random variable \(Y \) is said to have a geometric probability distribution if and only if

\[p(y) = P(Y = y) = (1 - p)^{y-1}p, \quad y = 1, 2, 3, \ldots, \quad 0 \leq p \leq 1. \]

Remark: \(E(X) = \frac{1}{p} \) and \(V(X) = \frac{1-p}{p^2} \). You don’t need to know how to derive the expectation and variance.

There are many other discrete probability distributions, but we have just covered a few.

03:18 Tuesday 12th January, 2016
2.5 Continuous Random Variables and Their Probability Distributions

We just finished discussing random variables that could take on a finite number of values or a countable number of values. We now discuss what we mean by a continuous random variable.

2.5.1 Continuous Random Variables

For example, if you think about random variables we encounter in the real world, ones of interest are not just discrete. The number of days that it rains is a discrete random variable because it must take a value $0, 1, 2, \ldots, n$. However, if we think about daily rainfall in Alachua County, it can be anywhere from 0 inches to 5 inches perhaps in a given month. A random variable that can take on any value in any interval is considered continuous. Now we will look at these types of distributions.

Definition 2.22: A *continuous random variable* Y can take on a continuum of possible values. An example of this would be Y representing the lifetime of a car, where the lifetime is assumed to take any value in some interval $[a, b]$.

In this section, we will gloss over some concepts known as limits and derivatives since calculus is not assumed in this course. What we would like to talk about is the *probability density function* $f(x)$ that corresponds to some random variable X.

Connection to Calculus: If you have had calculus before, in this course a random variable X will always have a distribution function $F(X) = P(X \leq x)$ as well as a density function $f(x)$. Recall the relationship between these two from your calculus course that $f(x) = F'(x)$. If you haven’t had any calculus before, just ignore these comments.
Theorem 2.7: If \(f(x) \) is a probability density function for a continuous random variable \(X \), then

1. \(f(x) \geq 0 \) for all \(x, -\infty < x < \infty \).
2. \(\int_{-\infty}^{\infty} f(x) \, dx = 1 \).

Remark: The first equation simply says that the density must be nonnegative for all values of \(x \). The second involves an integral. In non-calculus language, this says that if we look at the area underneath the density, it must be equal to 1. For example, think about a standard normal density from your STA 2023 course (a bell shaped curve). The area underneath that density curve equals 1.

Definition 2.23: Let \(Y \) be a continuous random variable with probability density \(f(y) \). Then the expected value of \(Y \) is defined to be

\[
E(Y) = \int_y yf(y) \, dy.
\]

Definition 2.24: Suppose \(Y \) is a continuous random variable with \(E(Y) = \mu \). Then the variance of \(Y \) is defined as

\[
V(Y) = E[(Y - \mu)^2] = \int_y (y - \mu)^2 f(y) \, dy.
\]

Theorem 2.8: Suppose \(Y \) is a continuous random variable with \(E(Y) = \mu \). The variance of \(Y \) can also be expressed as

\[
V(Y) = E(Y^2) - E(Y)^2.
\]

Remark: The above result is often very useful in calculating the variance instead of using the definition.

2.5.2 Continuous Distributions

We have covered many discrete distributions already. We will now look at some continuous distributions that will be of use to us in future chapters. They include the Uniform, Normal, and Beta distributions.

Uniform Distribution

Suppose a bus arrives between 9:00 and 9:10 every morning and the probability that the bus will arrive in any subinterval of time is proportional to the length of the subinterval. For example, the bus is as likely to arrive between 9:02 and 9:04 as 9:08 and 9:10. Let \(X \) denote the length of time a person must wait for the bus if the person arrived at the bus stop at 9:00 a.m. sharp.

03:18 Tuesday 12th January, 2016
If we carefully noted how long (in minutes) the person had to wait after 9:00 a.m. for several mornings, we could construct a relative frequency histogram for the data. We would expect to see from this histogram that the relative frequency with which we observed a value of Y between 2 and 4 would be approximately the same as the relative frequency for that of 8 and 10.

The random variable X is an example of a uniform distribution. If $a < b$, X is said to have a uniform probability distribution on the interval $[a, b]$ if and only if the density function of X is

$$f(x) = \begin{cases} \frac{1}{b-a}, & a \leq x \leq b \\ 0, & \text{otherwise}. \end{cases}$$

Remark: $E(X) = \frac{b+a}{2}$ and $V(X) = \frac{(b-a)^2}{12}$. You don’t need to know how to derive the expectation and variance.

Normal Distribution

The normal distribution is the most widely used continuous probability distribution. Recall from STA 2023 that it has a bell-shaped curve centered about its mean μ.

A random variable X has a normal probability distribution if and only if for $\sigma > 0$ and $-\infty < \mu < \infty$, the density function of X is

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left\{ -\frac{1}{2\sigma^2}(x-\mu)^2 \right\}, \quad -\infty < x < \infty.$$

Remark: $E(X) = \mu$ and $V(X) = \sigma^2$. You don’t need to know how to derive the expectation and variance.

Beta Distribution

A random variable has a beta distribution if and only if the density function of X is

$$f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1} \quad 0 \leq x \leq 1, \ \alpha > 0, \ \beta > 0.$$

There are many other discrete and continuous distributions that are useful that we have not covered. As they are needed, we will introduce them as needed.

2.6 A Brief Introduction to R

These instructions will walk you through using R. At first glance, R may seem intimidating, but everything should be easy if you follow the instructions.

03:18 Tuesday 12th January, 2016
What is R?

R is a free and flexible collection of software for statistical computing and graphics. It’s designed to work on any operating system, and one of its strengths is that users around the world can write “packages” to implement new statistical techniques as they are developed.

Downloading and Installing R

Obviously what you’ll need to download depends on what operating system you’re using.

- If you use Windows, download this: http://cran.opensourceresources.org/bin/windows/base/R-2.12.1-win.exe
- If you use Mac OS X, download this: http://cran.opensourceresources.org/bin/macosx/R-2.12.1.pkg
- If you use Linux, talk to me, because you’re going to need a lot more help to get things set up (but you can still do it).

Double-click the file you downloaded to start the Installer. Just follow along with the default installation options until the Installer finishes. You should now either see R.exe in your Program Files area (Windows) or see R.app in your Applications area (Mac OS X). This is what you double-click to start R.

The R Console

Once you start R, the main thing you see is a window called the R Console. The window contains a command prompt > with a blinking cursor. One way to use R is to type commands here. Try typing 2+2 at the prompt and pressing Enter. You should see

> 2+2
[1] 4
>

You can see that R has calculated your answer, 4 (ignore the [1] before it), and is now ready for another command.

R Source Files

Entering long lists of commands into the Console is not the most efficient way to use R. Instead, it’s easier to type up a list of commands that we can execute all at once and that we can also save to run again later (or for someone else to run). We do this by making something called an R source file.

You can create a new R source file by pressing Ctrl+N (Windows) or Command-N (Mac). You will notice during the semester that I will post R source files on the course website that we go through in class so you can look at them later on.
You can simply save these source files to your machine and run them in R and you will notice that the output is the same from class.

Executing \texttt{R} Source Files

To run all the commands in an R source file, open it up, select all the commands in the file by pressing Ctrl+A (Windows) or Command+A (Mac), and then press Ctrl+R (Windows) or Command+Enter (Mac) to run everything. The results will be displayed in the R Console.

Example Calculations in \texttt{R}

The \texttt{R} source file \texttt{rhelp.R} from the course website will show you various calculations that you can do in R. I have outlined the commands from the source file below so that you can follow along.

Functions

Many mathematical and statistical functions are available in R. We can add or subtract numbers, multiply and divide, or use functions like square root or the exponential function. Running the \texttt{R} source file, we find

\begin{verbatim}
> 2+2
[1] 4
> (2-4)*5
[1] -10
> sqrt(9)
[1] 3
> exp(1)
[1] 2.718282
\end{verbatim}

Assignment

It is often very convenient to give a value a name that we intend to use very frequently. For example, if we have 100 trees that we have sampled, we would make this assignment. We can always adjust our assignment at anytime, which is most convenient.

\begin{verbatim}
> trees = 100
> trees + 5
[1] 105
\end{verbatim}

Setting the Working Directory

The working directory is where R looks for files and where it saves any files that it creates. You can select any directory on your computer to be the working directory. There are two ways to set the working directory:
• Select Miscellaneous > Change Working Directory...from the menu at the top of R. Then select your desired directory.

• Execute the command `setwd("MyDirectory")` in R or at the beginning of your source file. Note that exactly what `MyDirectory` should look like will depend on whether you have a PC or a Mac.

Reading in a File

Often we will want to read a table of data from our working directory into R. The most common way to do this is with the `read.table` function. This function can be used when the entries in the data table are separated by white space (and do not contain any white space themselves). There may or may not be a header at the top specifying variable names; this should be indicated by using the `header=T` or `header=F` option.

When we read in a table, R stores it in an object called a data frame. To use the variables stored in the data frame, we must attach the data frame.

```r
olympics = read.table("olym-400.txt",header=T)
attach(olympics)
```

R has a variety of functions similar to `read.table` for other types of file formats, such as `read.csv` for comma-separated files and `read.fwf` for fixed-width table files (where the table is built using "spaces" that make the columns line up). We won’t be using these in this class.

Once we have read the data in, we can look at variable names directly by calling them now by their name since we have attached the data. We can also apply functions to our data and manipulate it so as to examine our data. For example, we can type `olympics` in R, which in return will output the data. Alternatively, we can type `year`, which will list the data for years out in R. If we want a generic summary output from R we can type `summary(olympics)`, which prints information for each variable such as the minimum, maximum, mean, etc. Finally, we calculate the mean, variance, or median of years using the functions `mean`, `var`, `median`. After we’re done with the data frame, we should detach it in case we want to re-use the same variable names for new data later.

```r
> setwd("~/Desktop/sta4930/rhelp/")
> olympics = read.table("olym-400.txt",header=T)
> attach(olympics)
> olympics
  years times
   1 1896  54.20
   2 1900  49.40
   3 1904  49.20
   4 1908  50.00
   5 1912  48.20
```

03:18 Tuesday 12th January, 2016
2.6. A BRIEF INTRODUCTION TO R

6 1920 49.60
7 1924 47.60
8 1928 47.80
9 1932 46.20
10 1936 46.50
11 1948 46.20
12 1952 45.90
13 1956 46.70
14 1960 44.90
15 1964 45.10
16 1968 43.80
17 1972 44.66
18 1976 44.26
19 1980 44.60
20 1984 44.27
21 1988 43.87
22 1992 43.50
23 1996 43.49
24 2000 43.84
25 2004 44.00
26 2008 43.75

> years

> summary(olympics)

 years times
 Min. :1896 Min. :43.49
 1st Qu.:1925 1st Qu.:44.06
 Median :1958 Median :45.50
 Mean :1954 Mean :46.21
 3rd Qu.:1983 3rd Qu.:47.75
 Max. :2008 Max. :54.20

> mean(years)
[1] 1954.154

> var(years)
[1] 1234.215

> median(years)
[1] 1958

> detach(olympics)

We have presented just a few basic tools that will help you get started in R. For more information, be sure to read the first chapter of Using R for Introductory Statistics by John Verzani.

03:18 Tuesday 12th January, 2016
2.7 Exploring an Example in R

We will explore a dataset for 657 (Albert, 2009) students recorded in a spreadsheet and saved as the file “studentdata.txt” with tabs between each field. The first line of the data file contains a header with the variable names. Students at Bowling Green University in Ohio were asked many questions including:

- What is your gender?
- What is your height in inches?
- Choose a whole number between 1 and 10.
- Give the time you went to bed last night.
- Give the time you woke up this morning.
- What was the cost in dollars of your last haircut including the tip?
- Do you prefer water, pop, or milk with dinner?

2.7.1 Setting Things Up

First, download and install R from the web. Then open up a new R file. You’ll want to save your R file in some folder/directory on your computer. You’ll need to tell R where you’ve saved your new file. To do so, go to the R menu and select Misc. Under Misc, select option Change Working Directory. Then find the folder that your new file is saved in and select it. You can change the directory within the source file using the setwd("") command. Your directory of choice should go within the quotations.

If you are unsure of what the paths are your computer look like, you can use the getwd("") command to guide you. If you have additional questions on this, see me after class or in office hours.

Now install the LearnBayes package. We usually read the file into R using the read.table command. However, since the file is already in R, we can access the data simply using the data command. If we then use the command studentdata[1,"], we find that this prints the first row of the data frame. Finally, to make the variable names such as Height visible in R, we much attach the data.

So far we have done the following:

```r
> install.packages("LearnBayes")
> library(LearnBayes)
> data(studentdata)
> studentdata[1,"]
Student Height Gender Shoes Number Dvds ToSleep WakeUp Haircut Job Drink
1 1 67 female 10 5 10 -2.5 5.5 60 30 water
```

03:18 Tuesday 12th January, 2016
2.7.2 Analyzing the Data

One categorical variable in this dataset is Drink, which indicates whether students prefer water, pop, or milk with dinner. We can visually see the more popular choice using the \texttt{table} command. We can then visualize this using the \texttt{barplot} command. To save the plot to a file we use the \texttt{pdf} command and close it with \texttt{dev.off()}

Now we have the following commands and plot:

\begin{verbatim}
table(Drink)
t = table(Drink)
pdf(file = "ch2/drink.pdf", width = 5, height = 4.5)
barplot(t, xlab="Drink", ylab="Count")
dev.off()
\end{verbatim}

In the \texttt{pdf} command, we give the file a name as well as set the width and height of the file that will be saved. The file will appear in the same directory as your R file. Once you have plotted your function, you must use the command \texttt{dev.off} to close the file. Otherwise, you will have problems.

![Bar plot of drinking preferences of statistics students](image.png)

\textbf{Figure 2.1:} Bar plot of drinking preferences of statistics students

From the table, we can see that more than half the students preferred water. Also, pop was more popular than milk.

Suppose next we’re interested in how long the students slept the previous night. We didn’t ask the students how long they slept, but we can easily cal-
calculate this value by subtracting each student’s go-to-bed time from his wakeup time. We’ll call this new variable `hours.of.sleep`. From the summary statistics computed, we see that students slept 7.5 hours on average (not taking into account the students that didn’t answer) and 50 percent of the students slept between 6.5 and 8.5 hours (recall half our data is between the 1st and 3rd quartiles). We can also calculate the sample mean and sample variance of number of hours slept using commands `mean` and `var`. In order to calculate both of these quantities, we need to let R know that some of the data values are NA. We list the commands for our calculations below.

```r
> hours.of.sleep = WakeUp - ToSleep
> summary(hours.of.sleep)
   Min. 1st Qu.  Median   Mean 3rd Qu.    Max.    NA's
   2.500  6.500   7.500   7.385 8.500   12.500     4.000
> mean(hours.of.sleep, na.rm=T)
[1] 7.385191
> var(hours.of.sleep, na.rm=T)
[1] 2.28557
```

Finally, suppose we are interested if the length of sleep is related to the time a student goes to sleep. We can easily plot the data to try and answer this question. We can also put a line of best fit through the data to see if it is linear. If you’ve seen linear regression, we’re fitting a simple linear model to the data in R and plotting the regression line. We fit the linear model using the `lm` function, where the dependent variable \((y)\) is the first argument and the independent variable \((x)\) is the second argument. To put the line through the points on the plot we use the `abline` command.

```r
pdf(file = "sleep.pdf", width = 5, height = 4.5)
plot(ToSleep,hours.of.sleep,xlab="time to bed",ylab="length of sleep")
fit = lm(hours.of.sleep~ToSleep)
abline(fit)
dev.off()
detach(studentdata)
```

From the regression plot, the relationship between the two variables seems to be linear, although we can see the data has high variance.

We could easily explore this dataset more in R, but this shows you an idea of the types of calculations and plots that R can provide us.

2.8 Exercises

1. (4) Give two reasons we might not want to use frequentist methods as well as two reasons we might not want to use Bayesian methods.

2. (8) An elevator with two passengers stops at the second, third, and fourth floors. Suppose it is equally likely that a passengers gets off at any of the three floors.
Let \(a \) and \(b \) denote the two passengers and \(a_2 b_4 \) denote that \(a \) gets off at the second floor and \(b \) gets off at the fourth floor, with similar representations for the other cases.

(a) (4) List the sample space.

(b) (4) Let \(A \) be the event that the passengers get off at different floors. Find \(P(A) \).

3. (12) Suppose we are playing cards using a standard deck containing 52 cards.

(a) (4) What is the sample space?

(b) (4) Find the probability of drawing an ace from the deck.

(c) (4) Let \(A \) represent drawing a spade from the deck. Let \(B \) represent drawing a face card (K, Q, or J). Find \(P(A,B) \).

4. (28) Complete the following example using \texttt{R}. This should be similar to the example we went through in class on Thursday, January 13.

To receive full credit on this assignment, you must turn in two things: your source code from \texttt{R} and the answers to each part of the questions below (which you will obtain from the \texttt{R} console). Do NOT include your output from the \texttt{R} console.

03:18 Tuesday 12th January, 2016
In writing your source code in R, make sure you do all parts in order. Note that you will no credit if you do not attach your source code from R.

(a) Calculate $120 \times 6 - 150$ in R.
(b) Calvin is 182.88 cm tall. Convert his height to units of meters in R. In doing this calculation, make a variable assignment, using x, so that his height in meters is saved in R.
 Hint: This should only be one line of code in R.
(c) Using your variable assignment from part (b), add 10 meters to x. What is the new value of x?
(d) I have uploaded a data file to the Datasets part of the website. It contains data that shows the improvement of 8 students in a speed reading program and the number of weeks they have been in the program. Read the file `reading.txt` into R and assign it the name `read`. Remember to attach it.
(e) Find the mean and variance of speed gain.
(f) Find the minimum and maximum of speed gain.
(g) What’s the last thing you need to do in your R source code? Do this in your code and write a short explanation of what command you need and why it’s needed.

5. Suppose that one of the genes associated with the control of carbohydrate metabolism exhibits two alleles—a dominant W and a recessive w. The probabilities of the WW, Ww, and ww genotypes in the present generation are p, q, and r, respectively, for both males and females. Assume that the genotype of the father and the genotype of the mother are independent of each other, e.g., the mother is WW with probability p regardless of the genotype of the father. What are the chances that an individual in the next generation will be a ww? Let A denote the event that an offspring receives a w allele from its father. Let B denote the event that it receives the recessive allele from its mother.

6. A box contains one two-headed coin and eight fair coins. One is drawn at random and tossed seven times. Suppose all seven tosses come up heads. What is the probability the coin is fair?

7. Suppose we roll two fair four sided dice. We define the following events:

 A : the maximum roll is 4
 B : the sum of the two rolls is 3
 C : the minimum roll is 1.

(a) Are A and B independent?
(b) Are A and B mutually exclusive?
(c) Give a short proof to show that if two events A and B are mutually exclusive, they must be dependent provided $P(A) \neq 0$ and $P(B) \neq 0$.

03:18 Tuesday 12th January, 2016
8. A lab blood test is 95 percent effective in detecting a certain disease when it is, in fact, present. However, the test also yields a “false positive” result for 1 percent of the healthy persons tested. This means that if a healthy person is tested, then w.p. 0.01 the test result will imply he has the disease. If 0.5 percent of the population actually has the disease, what is the probability a person has the disease given that his test result is positive?

Let D denote disease, ND denote no disease, PT denote a positive test, and NT a negative test.

(a) Answer the question above using probability formulas to reach your final answer.

(b) Answer the question using the natural frequencies approach.

9. A dice game called craps is played as follows. Two dice are rolled by the shooter. The shooter can win by rolling a 7 or an 11 on his first roll (called a natural). The shooter can also win by throwing a 4, 5, 6, 8, 9, or 10 on this first roll and throwing the same number again before rolling a 7.

Let A_1 denote the event that the shooter rolls a natural. Let $A_4, A_5, A_6, A_8, A_9, A_{10}$ denote the respective events where the shooter wins when his point is a 4, 5, 6, 8, 9, or 10 respectively. Denote the rolls by R_i in setting up the problem. What is the probability that the shooter wins the game? Comment on your answer and based on your knowledge of casinos and gambling, does this seem like a good game to play if you went to Vegas?

Hints:

- Notice that the A_i are mutually exclusive.
- Fact: $\sum_{k=0}^{\infty} p^k = \frac{1}{1-p}, \ |p| < 1$.
- In calculating $P(\text{shooter wins})$, take advantage of some symmetry properties of the A_i to save yourself some work.
Chapter 3

Bayesian Statistics

3.0.1 Discrete Case

The foundation for Bayesian inference begins with Bayes’ Rule, which we already presented in Chapter 2. Recall that as long as $P(B) > 0$,

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} \propto P(B|A)P(A),$$

where $P(B) = \sum_i P(B|A_i)P(A_i)$, where the A_i are all mutually exclusive. We refer to $P(B)$ as a normalizing constant.

Writing $P(A|B)$ using proportionality isn’t really useful in the discrete setting because you have to put the normalizing constant back in eventually. We’ll see how proportionality is useful later on.
In the formula above, we can think of \(P(A) \) as our prior distribution, meaning our prior information about the data. We can think of \(P(B|A) \) as the likelihood. The likelihood function is a function of the states of nature \(A \) for the fixed data \(B \) that we observe. \(P(B) \) is called the marginal distribution or marginal probability of the data. Recall that we can calculate \(P(B) \) using the law of total probability. That is,

\[
P(B) = \sum_i P(B|A_i)P(A_i) = \sum_i P(B, A_i),
\]

where the events \(A_i \) are all mutually exclusive.

Here, when we talk about the discrete case, we mean the state of nature \(A \) is discrete. For all practical purposes, both the data and the state of nature \(A \) will be discrete. You could certainly come up with an odd problem (not very realistic) where the data was continuous and the parameter was discrete. For example, we could have continuous data, but we would have to be very careful to make sure we did not divide by zero in calculating our posterior distribution.

3.0.2 Continuous Case

If we want to view Bayes’ Rule in the continuous case where we have probability densities, we find very similar results. Let \(\theta \) represent the parameter of the density and \(x \) denote the observed data. For the continuous case, we mean that \(\theta \) is always continuous. The data could be either discrete or continuous. We can then write Bayes’ Rule as

\[
p(\theta|x) = \frac{p(x|\theta)p(\theta)}{p(x)} \propto p(x|\theta)p(\theta),
\]

where \(p(x) = \int p(x|\theta)p(\theta) \, d\theta \). So, \(p(x) \) is a normalizing constant, and its distribution does not depend on the value of \(\theta \).

Remark: In the examples we’ll look at, we won’t have to worry about the marginal distribution of \(x, p(x) \). However, in more complicated problems, you would need to calculate \(p(x) \) and could not take advantage of proportionality. In these more complicated problems, you would need knowledge of calculus.

Theorem 3.1: In order to perform valid inference, the posterior must be proper. In the discrete case, this means that the posterior distribution must sum to 1. In the continuous case, this means \(\int p(\theta|x) \, d\theta = 1 \).

Comment: Due to Theorem 3.1, in the discrete/continuous settings that we will soon cover, if we can recognize the posterior distribution as a common distribution, then we know it must be a proper distribution (since all continuous distributions integrate to 1 and discrete distributions sum to 1).
We will take advantage of proportionality by writing down \(p(\theta|x) \) and simplifying it to some common distribution we recognize. If we encounter a posterior distribution that we do not recognize, then calculus would be needed to ensure the posterior is proper.

3.1 Discrete Examples

Example 3.1 (Simple Posterior Distribution): Suppose we have three states of nature, denoted by \(A_1, A_2, A_3 \). We represent the likelihood and prior information in the following table:

\[
\begin{array}{c|ccc}
P(A) & P(D|A) & \multicolumn{2}{c}{P(D_1, A)} \\
\hline
Prior & D_1 & D_2 & \\
A_1 & 0.3 & 0.0 & 1.0 \\
A_2 & 0.5 & 0.7 & 0.3 \\
A_3 & 0.2 & 0.2 & 0.8 \\
\end{array}
\]

Table 3.1: Simple Likelihood and Prior

Let’s clarify what’s going on in Table 3.1. Suppose we assume state of nature \(A_1 \). Then we observe \(D_2 \) 100% of the time and we never observe \(D_1 \). On the other hand, suppose we instead assume state of nature \(A_2 \). Then we observe \(D_2 \) 30% of the time and we observe \(D_1 \) 70% of the time.

Suppose we observe \(D_1 \). How might we calculate the posterior of \(A \) given \(D_1 \)?

\[
\begin{array}{c|ccc|cc}
P(A) & P(D|A) & P(D_1, A) & P(A|D_1) & \\
\hline
Prior & D_1 & D_2 & Joint & Posterior \\
A_1 & 0.3 & 0.0 & 1.0 & 0.00 & 0.00 \\
A_2 & 0.5 & 0.7 & 0.3 & 0.35 & 0.90 \\
A_3 & 0.2 & 0.2 & 0.8 & 0.04 & 0.10 \\
\end{array}
\]

Table 3.2: Posterior distribution of \(A \) given \(D_1 \)

Let’s look at one of the calculations in Table 3.1 to make sure we understand what’s going on. Consider calculating

\[
P(A_2|D_1) = \frac{P(A_2, D_1)}{P(D_1)} = \frac{0.35}{0.39} = 0.90
\]

Go home and calculate the posterior of \(A \) given \(D_2 \) at home as an exercise.

03:18 Tuesday 12th January, 2016
Remark: To compute each posterior calculation, we first write out each prior probability for A as well as the likelihood, i.e., $P(D_1|A)$. For ease of computation, we then write out the joint probabilities for each value of A. When we sum the joint probabilities up (over all values of A), we end up with the marginal distribution of D_1. With this information, we can now calculate the posterior probabilities as shown in the table.
Example 3.2 (Colon Cancer): Doctors at Shands Hospital are interested in a hemoccult test for colon cancer. This screening procedure is not as accurate as a colonoscopy, but it is a much less expensive procedure for annual screening tests of colon cancer. Let \(A \) be the event that a patient has the cancer, let \(+\) denote a patient tests positive for the condition, and \(-\) denote a patient tests negative.

In the general population, only 0.3\% have undiagnosed colon cancer. The hemoccult test will be positive 50\% of the time if a patient has the disease and will be positive 3\% of the time if the patient doesn’t have the disease. Doctors are most interested in the proportion of false positives and false negatives that would occur if we used the test to screen the general population.

Let’s find the posterior distribution of test result given whether or not the patient has colon cancer.

\[
\begin{array}{c|cc|cc|cc}
 & \text{Prior} & + & - & + & - & + & - \\
\hline
A & 0.003 & 0.5 & 0.5 & 0.0015 & 0.0015 & 0.048 & 0.002 \\
A^c & 0.997 & 0.03 & 0.97 & 0.0299 & 0.9671 & 0.952 & 0.998 \\
\hline
 & 0.0314 & 0.9686 & 1.00 & 1.00
\end{array}
\]

Table 3.3: Posterior distribution

We’ll calculate \(P(A|-) \) to illustrate how one calculation in the table above is done. Consider calculating the probability that a patient does have colon cancer given they have a positive test result.

\[
P(A|+) = \frac{P(A, +)}{P(+)} = \frac{0.0015}{0.0314} = 0.048.
\]
Conclusions:

1. From this we can conclude that if a patient from the population tests positive for colon cancer, there is less than a 5 percent chance that the person has colon cancer.

2. There are many false positives, meaning that if a patient tests positive for colon cancer, there is about a 95 percent chance that the person doesn’t have cancer. (This is why this is simply a screening test and must be followed up by a more accurate test for those who test positive).

3. In terms of false negatives, there aren’t very many. That is, if a patient tests negative for the test, the probability the patient has the cancer is only 0.002.

Example 3.3 (Colon Cancer Example Using Natural Frequencies): Recall the last example where we looked at posterior probabilities involving patients and colon cancer. Many doctors and patients have trouble understanding such examples as the one we just did. They have an easier time understanding the concept through an idea called natural frequencies, which involves considering a particular size for the population and then computing the expected number in each category for the population. This is one way for doctors and patients to better understand statistics and the real meaning of test results or a way for a statistician to relay information to a client.

Calculate the posterior probabilities using relative frequencies for the colon cancer example.

Consider the following information:

- We originally assumed a population of infinite size. When using the natural frequencies method, we need to assume the population has a finite size. Without loss of generality, we will assume that we are screening 10,000 patients.

- From our original assumptions, we know 0.3\% of the population have colon cancer. This means \((0.003)(10,000) = 30\) patients have colon cancer.

- If a patient has colon cancer, we know 50\% test positive for colon cancer. So, \((0.5)(30) = 15\) patients have colon cancer and test positive for it.

- This also means that 15 patients have colon cancer and test negative for it.

- On the other hand, we know that 9970 patients don’t have colon cancer. Of these patients, 3\% have a positive test result, meaning \((0.03)(9970) = 299\) patients don’t have cancer but test positive for the disease.

- Also, 9671 patients don’t have cancer and test negative for it.

Now we have all the information we need to calculate the posterior probabilities that were in the table from the colon cancer example. Recall \(A\) is the event that a patient has colon cancer. Here are the four posterior probabilities:
1. \(P(A|+) = \frac{15}{299 + 15} = 0.048. \)

2. \(P(A^c|+) = \frac{299}{299 + 15} = 0.952. \)

3. \(P(A|-) = \frac{15}{9671 + 15} = 0.002. \)

4. \(P(A^c|-) = \frac{9671}{9671 + 15} = 0.998. \)

Remark: The posterior probabilities match those in Table 3.3. The same interpretations apply as well. While this method may be easier or more intuitive than the first approach, we have arrived at our matching answers by making some assumptions that aren’t necessarily true. Making an assumption that 30 patients out of 10,000 have colon cancer isn’t an assumption that will always hold. We have invented a population size for this example. Also, events don’t have to follow their corresponding probabilities as we talked about in Chapter 1. We have also rounded many of the answers above, which is another glossed over assumption. So, use this method for intuition, but also make sure you understand that it is not an exact method or theorem like Bayes’ Rule.
3.2 Continuous and Discrete Examples

Definition 3.1: A distribution or density is *conjugate* if the prior and posterior distributions have the same type of distribution.

Example 3.4: Suppose that the likelihood for a particular problem is \(\text{Binomial}(n, \theta) \) and the prior, \(\theta \), has a density that is \(\text{Beta}(a, b) \). We will soon show the posterior will also be Beta with different parameters. Thus, the prior distribution is conjugate for the binomial likelihood. Remember that conjugacy means that when we update using the prior information, we obtain a posterior that has the same distribution as the prior with possibly different parameter values.

When dealing with continuous/discrete distributions in the rest of our material, we will almost always have conjugacy. Note you still need to check that you have conjugacy to proceed on in your calculations. Otherwise, remember that we have to compute an integral, which we don’t know how to compute in this course.

Theorem 3.2:

\[\text{Posterior} \propto \text{Likelihood} \times \text{Prior}. \]

Remark: This theorem only provides valid inference results if the posterior is proper, meaning the posterior integrates or sums to 1. For the purposes of this course, we will always deal with proper posteriors. However in real-world problems, posteriors can be improper and can lead to invalid inference.

Example 3.5: Suppose

\[
X \mid \theta \sim \text{Binomial}(n, \theta) \\
\theta \sim \text{Beta}(a, b).
\]

Then

\[
p(\theta|x) \propto p(x|\theta)p(\theta) \\
\propto \binom{n}{x} \theta^x (1-\theta)^{n-x} \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \theta^{a-1} (1-%20\theta)^{b-1} \\
\propto \theta^x (1-\theta)^{n-x} \theta^{a-1} (1-\theta)^{b-1} \\
\propto \theta^{x+a-1} (1-\theta)^{n-x+b-1}.
\]

The above expression is just an updated Beta with parameters \(x+a \) and \(n-x+b \), so

\[
\theta \mid x \sim \text{Beta}(x+a, n-x+b).
\]

\[
\Box
\]

03:18 Tuesday 12th January, 2016
How to Choose a and b

In Example 3.5, you may wonder how we choose the values of a and b. In practice, we often have ideas regarding the value of the prior mean and variance. Past studies or expert opinions often help us choose these values. Suppose we know the prior mean of $\text{Beta}(a, b)$ to be μ. We can then say

$$\mu = \frac{a}{(a + b)},$$

however this doesn’t determine the values of a and b uniquely. We still need more information.

If we know the prior variance to be σ^2 then

$$\sigma^2 = \frac{ab}{(a + b)^2(a + b + 1)},$$

and we have a system of two equations involving two unknowns (a and b). Hence, we can uniquely solve for both parameters.

Example 3.6: (Normal-Uniform Prior)

$$X_1, \ldots, X_n|\theta \sim \text{Normal}(\theta, \sigma^2), \sigma^2 \text{ known}$$

$$\theta \sim \text{Uniform}(-\infty, \infty),$$

where $\theta \sim \text{Uniform}(-\infty, \infty)$ means that $p(\theta) \propto 1$.

Calculate the posterior distribution of θ given the data.

$$p(\theta|x) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2}(x_i - \theta)^2\right\}$$

$$= \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \theta)^2\right\}$$

$$\propto \exp\left\{-\frac{1}{2\sigma^2} \sum_{i} (x_i - \bar{x})^2\right\}.$$

Note that $\sum_i (x_i - \theta)^2 = \sum_i (x_i - \bar{x})^2 + n(\bar{x} - \theta)^2$. Then

$$p(\theta|x) \propto \exp\left\{-\frac{1}{2\sigma^2} \sum_{i} (x_i - \bar{x})^2\right\} \exp\left\{-\frac{n}{2\sigma^2}(\bar{x} - \theta)^2\right\}$$

$$\propto \exp\left\{-\frac{n}{2\sigma^2}(\bar{x} - \theta)^2\right\}$$

$$= \exp\left\{-\frac{n}{2\sigma^2}(\theta - \bar{x})^2\right\}.$$

Thus,

$$\theta|x_1, \ldots, x_n \sim \text{Normal}(\bar{x}, \sigma^2/n).$$
Example 3.7: (Beta-Binomial Example in R) We are interested in a population of American college students and the proportion of the population that sleep at least eight hours a night, which we denote by \(\theta \).

The student newspaper, *The Gamecock*, at the University of South Carolina printed an internet article “College Students Don’t Get Enough Sleep” on April 20, 2004. The article reported that most students spend six hours sleeping each night. A year earlier, a similar article appeared in the University of Notre Dame’s paper, *Fresh Writing*. The article entitled *Sleep on It: Implementing a Relaxation Program into the College Curriculum* reported that based on a sample of 100 students “approximately 70% reported to receiving only five to six hours of sleep on the weekdays, 28% receiving seven to eight, and only 2% receiving the healthy nine hours for teenagers.”

As for our data, a random sample of 27 students is taken from the University of Florida. 11 students record that they sleep at least eight hours each night. Based on this information, we are interested in estimating \(\theta \).

Since we are Bayesians, we need to figure out our prior distribution for \(\theta \). We read both the articles from USC and UND and believe it’s probably true that most college students get less than eight hours of sleep. Therefore, we want our prior to assign most of the probability to values of \(\theta \) less than 0.5. From the information given, we decide that our best guess for \(\theta \) is 0.3, although we think it is very possible that \(\theta \) could be any value in \([0, 0.5]\).

Given this information, we believe that the median of \(\theta \) is 0.3 and the 90th percentile is 0.5. Knowing this allows us to estimate the unknown values of \(a \) and \(b \). After some calculations we find that \(a = 3.3 \) and \(b = 7.2 \). How did we actually calculate \(a \) and \(b \)?

We would need to solve the following equations:

\[
\int_0^{0.3} \frac{\Gamma(a + b)}{\Gamma(a)\Gamma(b)} \theta^{a-1}(1 - \theta)^{b-1} d\theta = 0.5 \\
\int_0^{0.5} \frac{\Gamma(a + b)}{\Gamma(a)\Gamma(b)} \theta^{a-1}(1 - \theta)^{b-1} d\theta = 0.9
\]

In non-calculus language, this means the 0.5 quantile (50th percentile) = 0.3. The 0.9 quantile (90th percentile) = 0.5. We can easily solve this numerically in R using a numerical solver `BBsolve`.

Since you won’t have used this command before, you’ll need to install the package `BB` and load the library.

Here is the code in R to find \(a \) and \(b \).

```r
## install the BBsolve package
install.packages("BB", repos="http://cran.r-project.org")
library(BB)
fn = function(x){qbeta(c(0.5,0.9),x[1],x[2])-c(0.3,0.5)}
BBsolve(c(1,1),fn)
```

`BBsolve` is a numerical solver. You give it two arguments. First, you give it a set of initial values as your best guess of \(a \) and \(b \). Then you define a function
3.2. CONTINUOUS AND DISCRETE EXAMPLES

which must take arguments as vectors for the unknown values of \(a\) and \(b\). The solver sets the function to zero and then finds the best solutions for \(a\) and \(b\) (we won't go into the details of how it solves for the values in this class).

So, in place of \(a\) and \(b\), we use \(x[1]\) and \(x[2]\) in our function (since it requires vectors). We also use the \texttt{qbeta} command because we're interested in the 0.5 and 0.9 quantiles. We must subtract 0.3 and 0.5 from each respective quantile since \texttt{BBsolve} sets our function to zero and solves. To do all of this in one step, we represent everything as a vector using \texttt{c()}. For example, \(c(0.3,0.5)\) represents the vector with elements 0.3 and 0.5.

If you have more questions on \texttt{function} or \texttt{BBsolve} remember you can get help by \texttt{?function} or \texttt{?BBsolve}.

Using our calculations from Example 3.5 our model is

\[
X \mid \theta \sim \text{Binomial}(27, \theta) \\
\theta \sim \text{Beta}(3.3, 7.2) \\
\theta \mid x \sim \text{Beta}(x + 3.3, 27 - x + 7.2) \\
\theta \mid 11 \sim \text{Beta}(14.3, 23.2)
\]

We can easily plot the likelihood, prior, and posterior in R. The command \texttt{seq} below creates a sequence of 500 numbers between 0 and 1. Using the \texttt{plot} command, we plot the posterior distribution using \texttt{lty} (line type) 2 and \texttt{lwd} (line width) 3. For the \texttt{xlab} (x-label), we use \texttt{expression(theta)} so that a \(\theta\) will print on the x-axis. The command \texttt{lines} allows us to add more plots onto the original plot. The \texttt{legend} creates a legend which is mostly straightforward. From Figure 4.2 we can see that the posterior is a mixture of the likelihood and the prior. By visual inspection, the posterior mean appears to be around 0.4. We will come back to this example later to analyze other questions of interest.

\[
th = \text{seq}(0,1,\text{length}=500) \\
a = 3.3 \\
b = 7.2 \\
n = 27 \\
x = 11 \\
prior = \text{dbeta}(th,a,b) \\
like = \text{dbeta}(th,x+1,n-x+1) \\
post = \text{dbeta}(th,x+a,n-x+b) \\
\text{pdf("sleep.pdf",width=7,height=5)} \\
\text{plot(th,post,type="l",ylab="Density",lty=2,lwd=3,xlab = expression(theta))} \\
\text{lines(th,like,lty=1,lwd=3)} \\
\text{lines(th,prior,lty=3,lwd=3)} \\
\text{legend(0.7,8,c("Prior","Likelihood","Posterior"),lty=c(3,1,2),lwd=c(3,3,3))} \\
\text{dev.off()}
\]
Figure 3.1: Likelihood $p(X|\theta)$, Prior $p(\theta)$, and Posterior Distribution $p(\theta|X)$

Example 3.8:

$$X_1, \ldots, X_n|\theta \overset{iid}{\sim} N(\theta, \sigma^2)$$
$$\theta \sim N(\mu, \tau^2),$$

where σ^2 is known. Calculate the distribution of $\theta|x_1, \ldots, x_n$.

$$p(\theta|x_1, \ldots, x_n) \propto \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left\{ -\frac{1}{2\sigma^2} (x_i - \theta)^2 \right\} \times \frac{1}{\sqrt{2\pi\tau^2}} \exp \left\{ -\frac{1}{2\tau^2} (\theta - \mu)^2 \right\}$$

$$\propto \exp \left\{ -\frac{1}{2\sigma^2} \sum_i (x_i - \theta)^2 \right\} \exp \left\{ -\frac{1}{2\tau^2} (\theta - \mu)^2 \right\}.$$

Consider

$$\sum_i (x_i - \theta)^2 = \sum_i (x_i - \bar{x} + \bar{x} - \theta)^2 = \sum_i (x_i - \bar{x})^2 + n(\bar{x} - \theta)^2.$$
Then
\[
p(\theta|x_1,\ldots,x_n) = \exp\left\{ \frac{-1}{2\sigma^2} \sum_i (x_i - \bar{x})^2 \right\} \times \exp\left\{ \frac{-1}{2\tau^2} n(\bar{x} - \theta)^2 \right\} \times \exp\left\{ \frac{-1}{2\tau^2} (\theta - \mu)^2 \right\}
\]
\[
\propto \exp\left\{ \frac{-1}{2\sigma^2} n(\bar{x} - \theta)^2 \right\} \exp\left\{ \frac{-1}{2\tau^2} (\theta - \mu)^2 \right\}
\]
\[
= \exp\left\{ \frac{-1}{2} \left[\frac{n}{\sigma^2} (\bar{x}^2 - 2\bar{x}\theta + \theta^2) + \frac{1}{\tau^2} (\theta^2 - 2\theta\mu + \mu^2) \right] \right\}
\]
\[
= \exp\left\{ \frac{-1}{2} \left[\left(\frac{n}{\sigma^2} + \frac{1}{\tau^2} \right) \theta^2 - 2\theta \left(\frac{n\bar{x}}{\sigma^2} + \frac{\mu}{\tau^2} \right) + \frac{n\bar{x}^2}{\sigma^2} + \frac{\mu^2}{\tau^2} \right] \right\}
\]
\[
\propto \exp\left\{ \frac{-1}{2} \left[\left(\frac{n}{\sigma^2} + \frac{1}{\tau^2} \right) \left(\theta - \frac{n\bar{x}}{\sigma^2} + \frac{\mu}{\tau^2} \right)^2 \right] \right\}.
\]

Recall what it means to complete the square as we did above\(^1\). Thus,
\[
\theta|x_1,\ldots,x_n \sim N \left(\frac{n\bar{x}}{\sigma^2} + \frac{\mu}{\tau^2}, \frac{1}{\sigma^2 + \frac{1}{\tau^2}} \right)
\]
\[
= N \left(\frac{n\bar{x}\tau^2 + \mu\sigma^2}{n\tau^2 + \sigma^2}, \frac{\sigma^2\tau^2}{n\tau^2 + \sigma^2} \right).
\]

\(^1\)Recall from algebra that \((x - b)^2 = x^2 - 2bx + b^2\). We want to complete something that resembles \(x^2 - 2bx = x^2 + 2bx + (2b/2)^2 - (2b/2)^2 = (x - b)^2 - b^2\).
3.2. CONTINUOUS AND DISCRETE EXAMPLES

Definition 3.2: The reciprocal of the variance is referred to as the *precision*. That is,

\[\text{Precision} = \frac{1}{\text{Variance}}. \]

Example 3.9: (Normal-Normal Revisited) Recall Example 3.8. We write the posterior mean as \(E(\theta|x) \). Let’s write the posterior mean in this example as

\[E(\theta|x) = \frac{n\bar{x}}{\sigma^2} + \frac{\mu}{\tau^2} = \frac{n\bar{x}}{\sigma^2} + \frac{1}{\tau^2}. \]

We also write the posterior variance as

\[V(\theta|x) = \frac{1}{\sigma^2 + \frac{1}{\tau^2}}. \]

We can see that the posterior mean is a weighted average of the sample mean and the prior mean. The weights are proportional to the reciprocal of the respective variances (precision). In statistics, we often say that the reciprocal of the variance is called the precision. In this case,

\[\text{Posterior Precision} = \frac{1}{\text{Posterior Variance}} = \left(\frac{n}{\sigma^2} \right) + \left(\frac{1}{\tau^2} \right) = \text{Sample Precision} + \text{Prior Precision}. \]

The posterior precision is larger than either the sample precision or the prior precision. Equivalently, the posterior variance, denoted by \(V(\theta|x) \), is smaller than either the sample variance or the prior variance.

What happens as \(n \) gets large?

Divide the posterior mean (numerator and denominator) by \(n \). Then

\[E(\theta|x) = \frac{1}{n} \left(\frac{n\bar{x}}{\sigma^2} + \frac{\mu}{\tau^2} \right) \approx \frac{\bar{x}}{\sigma^2} \approx \bar{x} \quad \text{for large } n. \]

In the case of the posterior variance, divide the denominator and numerator by \(n \). Then

\[V(\theta|x) = \frac{1}{n} \left(\frac{1}{\sigma^2} + \frac{1}{\tau^2} \right) \approx \frac{\sigma^2}{n}, \]

which goes to zero as \(n \) gets large.

03:18 Tuesday 12th January, 2016
Gamma and Inverse Gamma Distributions

Before we introduce the next example, we will first introduce two continuous probability densities—the Gamma and the Inverse Gamma.

Some random variables (such as the Beta distribution) are always non-negative and for various reasons yield distributions of data that are skewed to the right. That is, most of the area under the density function is located near the origin, and the density function drops gradually as x increases.

The lengths of time between malfunctions for aircraft engines possess a skewed frequency distribution, as do the lengths of time between arrivals at a supermarket checkout queue. Furthermore, the lengths of time to complete a routine checkup for a car or aircraft carrier possess a skewed frequency distribution. The populations associated with these random variables often possess distributions that are adequately modeled by the gamma density function.

Suppose $X \sim \text{Gamma}(\alpha, \beta)$. Then

$$f(x) = \frac{1}{\Gamma(\alpha)\beta^\alpha} x^{\alpha-1} e^{-x/\beta}, \quad x > 0, \ \alpha > 0, \ \beta > 0.$$

Suppose $Y \sim \text{IG}(a, b)$, where IG stands for Inverse Gamma. Then

$$f(y) = \frac{b^a}{\Gamma(a)} y^{-a-1} e^{-b/y}, \quad y > 0, \ a > 0, \ b > 0.$$

There is a special relationship between the Gamma and Inverse Gamma random variables. As defined above, using calculus, it is easy to show that $Y = 1/X$. Even though you don’t need to know how to prove this fact in this course, it’s one worth knowing.

03:18 Tuesday 12th January, 2016
Example 3.10:

\[X | \alpha, \beta \sim \text{Gamma}(\alpha, \beta), \ \alpha \text{ known, } \beta \text{ unknown} \]
\[\beta \sim \text{IG}(a, b). \]

Calculate the posterior distribution of \(\beta | x \).

\[
p(\beta | x) \propto \frac{1}{\Gamma(\alpha)\beta^a} x^{\alpha-1} e^{-x/\beta} \times \frac{b^a}{\Gamma(a)} \beta^{a-1} e^{-b/\beta}
\]
\[
\propto \frac{1}{\beta^a} e^{-x/\beta} \beta^{a-1} e^{-b/\beta}
\]
\[
= \beta^{-a-1} e^{-(x+b)/\beta}.
\]

Notice that this looks like an Inverse Gamma distribution with parameters \(\alpha + a \) and \(x + b \). Thus,

\[\beta | x \sim IG(\alpha + a, x + b). \]

Example 3.11: (Bayesian versus Frequentist)

Suppose a child is given an IQ test and his score is \(X \). We assume that

\[X | \theta \sim \text{Normal}(\theta, 100) \]
\[\theta \sim \text{Normal}(100, 225) \]

From previous calculations, we know that the posterior is

\[\theta | x \sim \text{Normal} \left(\frac{400 + 9x}{13}, \frac{900}{13} \right). \]

In the next chapter we will learn about the posterior mean and variance. Here the posterior mean is \((400 + 9x)/13\). Suppose \(x = 115 \). Then the posterior mean becomes 110.4. Contrasting this, we know that the frequentist estimate is the mle, which is \(x = 115 \) in this example.

The posterior variance is \(900/13 = 69.23 \), whereas the variance of the data is \(\sigma^2 = 100 \).

Now suppose we take the Uniform\((-\infty, \infty)\) prior on \(\theta \). From an earlier example, we found that the posterior is

\[\theta | x \sim \text{Normal} \left(115, 100 \right). \]

Notice that the posterior mean and mle are both 115 and the posterior variance and variance of the data are both 100.

When we put little/no prior information on \(\theta \), the data washes away most/all of the prior information (and the results of frequentist and Bayesian estimation are similar or equivalent in this case).

Example 3.12: (Normal Example with Unknown Variance)

Consider

\[X_1, \ldots, X_n | \theta \overset{iid}{\sim} \text{Normal}(\theta, \sigma^2), \ \theta \text{ known, } \sigma^2 \text{ unknown} \]
\[p(\sigma^2) \propto (\sigma^2)^{-1}. \]

03:18 Tuesday 12th January, 2016
3.2. CONTINUOUS AND DISCRETE EXAMPLES

Calculate \(p(\sigma^2|x_1, \ldots, x_n) \).

\[
p(\sigma^2|x_1, \ldots, x_n) \propto (2\pi\sigma^2)^{-n/2} \exp\left\{-\frac{1}{2\sigma^2} \sum_i (x_i - \theta)^2\right\} (\sigma^2)^{-1}
\]

\[
\propto (\sigma^2)^{-n/2-1} \exp\left\{-\frac{1}{2\sigma^2} \sum_i (x_i - \theta)^2\right\}.
\]

Recall, if \(Y \sim IG(a, b) \), then \(f(y) = \frac{b^a}{\Gamma(a)} y^{a-1} e^{-b/y} \). Thus,

\[
\sigma^2|x_1, \ldots, x_n \sim IG\left(\frac{n}{2}, \frac{\sum_{i=1}^n (x_i - \theta)^2}{2}\right).
\]

Example 3.13: (Football Data) Gelman et. al (2003) consider the problem of estimating an unknown variance using American football scores. The focus is on the difference \(d \) between a game outcome (winning score minus losing score) and a published point spread.

We observe \(d_1, \ldots, d_n \), the observed differences between game outcomes and point spreads for \(n = 2240 \) football games. We assume these differences are a random sample from a Normal distribution with mean 0 and unknown variance \(\sigma^2 \). Our goal is to find inference regarding the unknown parameter \(\sigma^2 \), which represents the variability in the game outcomes and point spreads.

We can refer to Example 3.12 since the setup here is the same. Hence the posterior becomes

\[
\sigma^2|d_1, \ldots, d_n \sim IG\left(\frac{n}{2}, \frac{\sum_{i=1}^n (x_i - \theta)^2}{2}\right).
\]

The next logical step would be plotting the posterior distribution in R. As far as I can tell, there is not a built in function predefined in R for the Inverse Gamma density. However, someone saw the need for it and built one in using the pscl package.

Proceeding below, we try and calculate the posterior using the function `densigamma`, which corresponds to the Inverse Gamma density. However, running this line in the code gives the following error:

Warning message:
In `densigamma(sigmas, n/2, sum(d^2)/2)`: value out of range in `gammafn`

What’s the problem? Think about the what the posterior looks like. Recall that

\[
p(\sigma^2|d) = \frac{(\sum_i d_i^2/2)^{n/2}}{\Gamma(n/2)} \left(\frac{\sigma^2}{2}\right)^{-n/2-1} e^{-\left(\sum_i d_i^2\right)/2\sigma^2}.
\]

In the calculation R is doing, it’s dividing by \(\Gamma(1120) \), which is a very large factorial. This is too large for even R to compute, so we’re out of luck here. So, what can we do to analyze the data?
setwd("~/Desktop/sta4930/football")
data = read.table("football.txt",header=T)
names(data)
attach(data)
score = favorite-underdog
d = score-spread
n = length(d)
hist(d)
install.packages("pscl",repos="http://cran.opensourceresources.org")
library(pscl)
?densigamma
sigmas = seq(10,20,by=0.1)
post = densigamma(sigmas,n/2,sum(d^2)/2)
v = sum(d^2)
We know we can’t use the Inverse Gamma density (because of the function in R), but we do know a relationship regarding the Inverse Gamma and Gamma distributions. So, let’s apply this fact.

You may be thinking, we’re going to run into the same problem because we’ll still be dividing by $\Gamma(1120)$. This is true, except the Gamma density function \texttt{dgamma} was built into R by the original writers. The \texttt{dgamma} function is able to do some internal tricks that let it calculate the gamma density even though the individual piece $\Gamma(n/2)$ by itself is too large for R to handle. So, moving forward, we will apply the following fact that we already learned:

If $X \sim IG(a, b)$, then $1/X \sim \text{Gamma}(a, 1/b)$.

Since

$$\sigma^2|d_1, \ldots, d_n \sim IG(n/2, \sum_i d_i^2/2),$$

we know that

$$\frac{1}{\sigma^2}|d_1, \ldots, d_n \sim \text{Gamma}(n/2, 2/v), \quad \text{where } v = \sum_i d_i^2.$$

Now we can plot this posterior distribution in R, however in terms of learning inference about σ^2, this isn’t going to be very useful. This is where we begin to need calculus methods and reach the outer limits that will be taught in this course.

In the code below, we plot the posterior of $\frac{1}{\sigma^2}|d$. In order to do so, we must create a new sequence of x-values since the mean of our gamma will be at $n/v \approx 0.0053$.

```r
xnew = seq(0.004,0.007,.000001)
pdf("football_sigmainv.pdf", width = 5, height = 4.5)
post.d = dgamma(xnew,n/2,scale = 2/v)
plot(xnew,post.d, type= "l", xlab = expression(1/sigma^2), ylab= "density")
dev.off()
```

As we can see from the plot below, viewing the posterior of $\frac{1}{\sigma^2}|d$ isn’t very useful. We would like to get the parameter in terms of σ^2, so that we could plot the posterior distribution of interest as well as calculate the posterior mean and variance. From this point on we need to use a bit of calculus (for which you are not responsible). The calculations are provided just for interest and so you can see when calculus is needed and when situations arise in application that don’t proceed as we might have expected.

\textbf{Calculus details start here.}

To recap, we know

$$\frac{1}{\sigma^2}|d_1, \ldots, d_n \sim \text{Gamma}(n/2, 2/v), \quad \text{where } v = \sum_i d_i^2.$$
Let $u = \frac{1}{\sigma^2}$. We are going to make a transformation of variables now to write the density in terms of σ^2. (Here comes the calculus).

Since $u = \frac{1}{\sigma^2}$, this implies $\sigma^2 = \frac{1}{u}$. Then $\frac{\partial u}{\partial \sigma^2} = \frac{1}{\sigma^4}$.

Now applying the transformation of variables we find that

$$f(\sigma^2|d_1, \ldots, d_n) = \frac{1}{\Gamma(n/2)(2/v)^{n/2}} \left(\frac{1}{\sigma^2} \right)^{n/2 - 1} e^{-\frac{v}{2\sigma^2}} \left(\frac{1}{\sigma^4} \right).$$

Thus, $\sigma^2|d \sim \text{Gamma}(n/2, 2/v) \left(\frac{1}{\sigma^4} \right)$.

Calculus details end here. You are not responsible for knowing any of the results involving calculus. They are simply here in case you are interested in them.

Now, we know the density of $\sigma^2|d$ in a form we can calculate in R.

```r
x.s = seq(150,250,1)
pdf("football_sigma.pdf", height = 5, width = 4.5)
post.s = dgamma(1/x.s,n/2, scale = 2/v)*(1/x.s^2)
plot(x.s,post.s, type="l", xlab = expression(sigma^2), ylab="density")
dev.off()
detach(data)
```

03:18 Tuesday 12th January, 2016
Figure 3.3: Posterior Distribution \(p(\sigma^2|d_1, \ldots, d_n) \)
From the posterior plot in Figure 3.3 we can see that the posterior mean is around 185. This means that the variability of the actual game result around the point spread has a standard deviation around 14 points. If you wanted to actually calculate the posterior mean and variance you would need to use calculus or some sort of numerical method, which I will not go into since this is beyond the scope of this course.

What’s interesting about this example is that there is a lot more variability in football games than the average person would most likely think. Assume that (1) the standard deviation actually is 14 points, and (2) game result is normally distributed (which it’s not, exactly, but this is a reasonable approximation). Things with a normal distribution fall two or more standard deviations from their mean about 5% of the time, so this means that, roughly speaking, about 5% of football games end up 28 or more points away from their spread.
Example 3.14:

\[Y_1, \ldots, Y_n | \mu, \sigma^2 \overset{iid}{\sim} \text{Normal}(\mu, \sigma^2), \]
\[\mu | \sigma^2 \sim \text{Normal}(\mu_0, \frac{\sigma^2}{\kappa_0}), \]
\[\sigma^2 \sim \text{IG}(\nu_0, \frac{\sigma^0_2}{2}), \]

where \(\mu_0, \kappa_0, \nu_0, \sigma_0^2 \) are constant.

Find \(p(\mu, \sigma^2 | y_1, \ldots, y_n) \). Notice that

\[
p(\mu, \sigma^2 | y_1, \ldots, y_n) = \frac{p(\mu, \sigma^2, y_1, \ldots, y_n)}{p(y_1, \ldots, y_n)}
\]
\[
\propto p(y_1, \ldots, y_n | \mu, \sigma^2) p(\mu, \sigma^2)
\]
\[
= p(y_1, \ldots, y_n | \mu, \sigma^2) p(\mu | \sigma^2) p(\sigma^2).
\]

Then

\[
p(\mu, \sigma^2 | y_1, \ldots, y_n) \propto p(y_1, \ldots, y_n | \mu, \sigma^2) p(\mu | \sigma^2) p(\sigma^2)
\]
\[
\propto (\sigma^2)^{-n/2} \exp \left\{-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \mu)^2 \right\} (\sigma^2)^{-1/2} \exp \left\{-\frac{\kappa_0}{2\sigma^2} (\mu - \mu_0)^2 \right\}
\]
\[
\times (\sigma^2)^{-\nu_0/2-1} \exp \left\{-\frac{\sigma^2_0}{2\sigma^2} \right\}.
\]

Consider \(\sum_i (y_i - \mu)^2 = \sum_i (y_i - \bar{y})^2 + n(\bar{y} - \mu)^2 \).

Then

\[
n(\bar{y} - \mu)^2 + \kappa_0 (\mu - \mu_0)^2 = n\bar{y}^2 - 2n\bar{y}\mu + n\mu^2 + \kappa_0 \mu^2 - 2\kappa_0 \mu_0 + \kappa_0 \mu_0^2
\]
\[
= (n + \kappa_0) \mu^2 - 2(n\bar{y} + \kappa_0 \mu_0)\mu + n\bar{y}^2 + \kappa_0 \mu_0^2
\]
\[
= (n + \kappa_0) \left(\mu - \frac{n\bar{y} + \kappa_0 \mu_0}{n + \kappa_0} \right)^2 - \frac{(n\bar{y} + \kappa_0 \mu_0)^2}{n + \kappa_0} + n\bar{y}^2 + \kappa_0 \mu_0^2.
\]

Now consider

\[
n\bar{y}^2 + \kappa_0 \mu_0^2 - \frac{(n\bar{y} + \kappa_0 \mu_0)^2}{n + \kappa_0} = n\bar{y}^2 + \kappa_0 \mu_0^2 - \frac{-n^2\bar{y}^2 - 2n\kappa_0 \mu_0 \bar{y} - \kappa_0^2 \mu_0^2}{n + \kappa_0}
\]
\[
= \frac{n^2\bar{y}^2 + n\kappa_0 \mu_0^2 + n\kappa_0 \bar{y}^2 + \kappa_0^2 \mu_0^2 - n^2\bar{y}^2 - 2n\kappa_0 \mu_0 \bar{y} - \kappa_0^2 \mu_0^2}{n + \kappa_0}
\]
\[
= \frac{n\kappa_0 \mu_0^2 + n\kappa_0 \bar{y}^2 - 2n\kappa_0 \mu_0 \bar{y}}{n + \kappa_0}
\]
\[
= \frac{n\kappa_0 (\mu_0^2 - 2\mu_0 \bar{y} + \bar{y}^2)}{n + \kappa_0}
\]
\[
= \frac{n\kappa_0 (\mu_0 - \bar{y})^2}{n + \kappa_0}.
\]
3.3. POSTERIOR PREDICTIVE DISTRIBUTIONS

Putting this all together, we find

\[p(\mu, \sigma^2 | y_1, \ldots, y_n) \propto \exp \left\{ \frac{-n}{2\sigma^2} (\bar{y} - \mu)^2 \right\} \exp \left\{ \frac{-1}{2\sigma^2} \sum_i (y_i - \bar{y})^2 \right\} \]

\[\times \exp \left\{ \frac{-\kappa_0}{2\sigma^2} \sum_i (\mu - \mu_0)^2 \right\} (\sigma^2)^{-n/2-1/2}(\sigma^2)^{-\nu_0/2-1} \exp \left\{ \frac{-\sigma_0^2}{2\sigma^2} \right\} \]

\[= \exp \left\{ \frac{-n\kappa_0}{2\sigma^2(n + \kappa_0)} (\mu_0 - \bar{y})^2 \right\} \exp \left\{ \frac{-1}{2\sigma^2} \sum_i (y_i - \bar{y})^2 \right\} \]

\[\times \exp \left\{ -\frac{(n + \kappa_0)}{2\sigma^2} \left(\mu - \frac{n\bar{y} + \kappa_0\mu_0}{n + \kappa_0} \right)^2 \right\} (\sigma^2)^{-\nu_0/2-1}(\sigma^2)^{-n/2-1} \exp \left\{ \frac{-\sigma_0^2}{2\sigma^2} \right\} \]

\[= \exp \left\{ -\frac{1}{2\sigma^2} \sum_i (y_i - \bar{y})^2 - \frac{n\kappa_0}{2\sigma^2(n + \kappa_0)} (\mu_0 - \bar{y})^2 - \frac{\sigma_0^2}{2\sigma^2} \right\} (\sigma^2)^{-(n+\nu_0)/2-1} \]

\[\times \exp \left\{ -\frac{(n + \kappa_0)}{2\sigma^2} \left(\mu - \frac{n\bar{y} + \kappa_0\mu_0}{n + \kappa_0} \right)^2 \right\} (\sigma^2)^{-1/2}. \]

Since the posterior above factors, we find

\[\mu | \sigma^2, y \sim \text{Normal} \left(\frac{n\bar{y} + \kappa_0\mu_0}{n + \kappa_0}, \frac{\sigma^2}{n + \kappa_0} \right), \]

\[\sigma^2 | y \sim IG \left(\frac{n + \nu_0}{2}, \frac{1}{2} \left(\sum_i (y_i - \bar{y})^2 + \frac{n\kappa_0}{(n + \kappa_0)} (\mu_0 - \bar{y})^2 + \sigma_0^2 \right) \right). \]

3.3 Posterior Predictive Distributions

We have just gone through many examples illustrating how to calculate many simple posterior distributions. This is the main goal of a Bayesian analysis. Another goal might be prediction. That is given some data, \(y \), and a new observation, \(\tilde{y} \), we may wish to find the conditional distribution of \(\tilde{y} \) given \(y \). This distribution is referred to as the posterior predictive distribution. That is, our goal is to find \(p(\tilde{y} | y) \).

We’ll derive the posterior predictive distribution for the discrete case (\(\theta \) is discrete). It’s the same for the continuous case, with the sums replaced with integrals.

03:18 Tuesday 12th January, 2016
Consider

\[p(\tilde{y}|y) = \frac{p(\tilde{y}, y)}{p(y)} = \frac{\sum_{\theta} p(\tilde{y}, y, \theta)}{p(y)} = \frac{\sum_{\theta} p(\tilde{y}|y, \theta)p(y, \theta)}{p(y)} = \sum_{\theta} p(\tilde{y}|y, \theta)p(\theta|y). \]

In most contexts, if \(\theta \) is given, then \(\tilde{y}|\theta \) is independent of \(y \), i.e., the value of \(\theta \) determines the distribution of \(\tilde{y} \), without needing to also know \(y \). When this is the case, we say that \(\tilde{y} \) and \(y \) are conditionally independent given \(\theta \). Then the above becomes

\[p(\tilde{y}|y) = \sum_{\theta} p(\tilde{y}|\theta)p(\theta|y). \]

Theorem 3.3: If \(\theta \) is discrete and \(\tilde{y} \) and \(y \) are conditionally independent given \(\theta \), then the posterior predictive distribution is

\[p(\tilde{y}|y) = \sum_{\theta} p(\tilde{y}|\theta)p(\theta|y). \]

If \(\theta \) is continuous and \(\tilde{y} \) and \(y \) are conditionally independent given \(\theta \), then the posterior predictive distribution is

\[p(\tilde{y}|y) = \int_{\theta} p(\tilde{y}|\theta)p(\theta|y) \, d\theta. \]
Theorem 3.4: Suppose $p(x)$ is a pdf that looks like $p(x) = cf(x)$, where c is a constant and f is a continuous function of x. Since
\[
\int_x p(x) \, dx = \int_x cf(x) \, dx = 1,
\]
then
\[
\int_x f(x) \, dx = 1/c.
\]
Note: No calculus is needed to compute $\int_x f(x) \, dx$ if $f(x)$ looks like a known pdf.

Example 3.15: Human males have one X-chromosome and one Y-chromosome, whereas females have two X-chromosomes, each chromosome being inherited from one parent. Hemophilia is a disease that exhibits X-chromosome-linked recessive inheritance, meaning that a male who inherits the gene that causes the disease on the X-chromosome is affected, whereas a female carrying the gene on only one of her X-chromosomes is not affected. The disease is generally fatal for women who inherit two such genes, and this is very rare, since the frequency of occurrence of the gene is very low in human populations.

Consider a woman who has an affected brother (X^Y), which implies that her mother must be a carrier of the hemophilia gene (X^X). We are also told that her father is not affected (XY), thus the woman herself has a fifty-fifty chance of having the gene.

Let θ denote the state of the woman. It can take two values: the woman is a carrier ($\theta = 1$) or not ($\theta = 0$). Based on this, the prior can be written as
\[
P(\theta = 1) = P(\theta = 0) = 1/2.
\]
Suppose the woman has a son who does not have hemophilia ($S_1 = 0$). Now suppose the woman has another son. Calculate the probability that this second son also will not have hemophilia ($S_2 = 0$), given that the first son does not have hemophilia. Assume son one and son two are conditionally independent given θ.

Solution:
\[
p(S_2 = 0 | S_1 = 0) = \sum_{\theta} p(S_2 = 0 | \theta) p(\theta | S_1 = 0).
\]
First compute
\[
p(\theta | S_1 = 0) = \frac{p(S_1 = 0 | \theta = 0)p(\theta = 0) + p(S_1 = 0 | \theta = 1)p(\theta = 1)}{p(S_1 = 0 | \theta = 0)p(\theta = 0) + p(S_1 = 0 | \theta = 1)p(\theta = 1)}
\]
\[
= \begin{cases}
(1)(1/2) \
4 \times \frac{1}{3} + (1/2)(1/3)
\end{cases} \quad \text{if } \theta = 0 \\
\frac{1}{3} \quad \text{if } \theta = 1.
\]
Then
\[
p(S_2 = 0 | S_1 = 0) = p(S_2 = 0 | \theta = 0)p(\theta = 0 | S_1 = 0) + p(S_2 = 0 | \theta = 1)p(\theta = 1 | S_1 = 0)
\]
\[
= (1)(2/3) + (1/2)(1/3) = 5/6.
\]
Negative Binomial Distribution

Before doing the next example, we will introduce the Negative Binomial distribution. The binomial distribution counts the numbers of successes in a fixed number of Bernoulli trials. Recall, a Bernoulli trial has a fixed success probability p, where the trials are iid (independent and identically distributed).

Suppose instead, we count the number of Bernoulli trials required to get a fixed number of successes. This formulation leads to the Negative Binomial distribution.

In a sequence of independent Bernoulli(p) trials, let X denote the trial at which the rth success occurs, where r is a fixed integer.

Then

$$f(x) = \binom{x-1}{r-1} p^r (1-p)^{x-r}, \ x = r, r+1, \ldots$$

and we say $X \sim \text{Negative Binom}(r, p)$.

There is another useful formulation of the Negative Binomial distribution. In many cases, it is defined as $Y = \text{number of failures before the } r\text{th success}$.

Then

$$f(y) = \binom{r+y-1}{y} p^r (1-p)^y, \ y = 0, 1, 2, \ldots$$

and we say $Y \sim \text{Negative Binom}(r, p)$.

When we refer to the Negative Binomial distribution in this class, we will refer to the second one defined unless we indicate otherwise.

Example 3.16: (Poisson-Gamma)

$X|\lambda \sim \text{Poisson}(\lambda)$

$\lambda \sim \text{Gamma}(a, b)$

Assume that $\tilde{X}|\lambda \sim \text{Poisson}(\lambda)$ is independent of X. Assume we have a new observation \tilde{x}. Find the posterior predictive distribution, $p(\tilde{x}|x)$. Assume that a is an integer.

Solution:

First, we must find $p(\lambda|x)$.

Recall

$$p(\lambda|x) \propto p(x|\lambda)p(\lambda)$$

$$\propto e^{-\lambda x} \lambda^a e^{-\lambda/b}$$

$$= \lambda^{x+a-1} e^{-\lambda(1+1/b)}.$$

Thus, $\lambda|x \sim \text{Gamma}(x + a, \frac{b}{1+1/b})$, i.e., $\lambda|x \sim \text{Gamma}(x + a, \frac{b}{b+1})$.

03:18 Tuesday 12th January, 2016
It then follows that

\[p(\tilde{x}|x) = \int_{\lambda} p(\tilde{x} | \lambda)p(\lambda|x) \, d\lambda \]

\[= \int_{\lambda} e^{-\lambda \tilde{x}/\tilde{x}!} \frac{1}{\Gamma(x + a)} \frac{1}{(b + 1)^{x+a}} \lambda^{x+a-1} e^{-\lambda/(b+1)} \, d\lambda \]

\[= \frac{1}{\tilde{x}! \Gamma(x + a)} \frac{1}{(b + 1)^{x+a}} \int_{\lambda} \lambda^{\tilde{x}+x+a-1} e^{-\lambda/(2b+1)} \, d\lambda \]

\[= \frac{1}{\tilde{x}! \Gamma(x + a)(b + 1)^{x+a}} \Gamma(\tilde{x} + x + a)(b/(2b + 1)^{\tilde{x}+x+a} \]

\[= \frac{\Gamma(\tilde{x} + x + a)}{\tilde{x}! \Gamma(x + a)(b + 1)^{\tilde{x}+x+a}} (b/(2b + 1)^{\tilde{x}+x+a} \]

\[= \frac{\Gamma(\tilde{x} + x + a)}{\tilde{x}! \Gamma(x + a)} \frac{b^{\tilde{x}+x+a}}{(2b + 1)^{\tilde{x}+x+a}} \frac{(b + 1)^{x+a}}{(x + a - 1)! \tilde{x}! (2b + 1)^{\tilde{x}+x+a}} \]

\[= \left(\frac{\tilde{x} + x + a - 1}{\tilde{x}}\right) \left(\frac{b}{2b + 1}\right)^{\tilde{x}} \left(\frac{b + 1}{2b + 1}\right)^{x+a} \].

Let \(p = b/(2b + 1) \), which implies \(1 - p = (b + 1)/(2b + 1) \).

Then

\[p(\tilde{x}|x) = \left(\frac{\tilde{x} + x + a - 1}{\tilde{x}}\right) p^{\tilde{x}} (1 - p)^{x+a} \].

Thus,

\(\tilde{x}|x \sim \text{Negative Binom} \left(x + a, \frac{b}{2b + 1} \right) \).
Example 3.17: Suppose that X is the number of pregnant women arriving at a particular hospital to deliver their babies during a given month. The discrete count nature of the data plus its natural interpretation as an arrival rate suggest modeling it with a Poisson likelihood.

To use a Bayesian analysis, we require a prior distribution for θ having support on the positive real line. A convenient choice is given by the Gamma distribution, since it’s conjugate for the Poisson likelihood.

The model is given by:

$$X|\lambda \sim \text{Poisson}(\lambda)$$
$$\lambda \sim \text{Gamma}(a, b).$$

We are also told 42 moms are observed arriving at the particular hospital during December 2007. Using prior study information given, we are told $a = 5$ and $b = 6$. (We found a, b by working backwards from a prior mean of 30 and prior variance of 180).

We would like to find several things in this example:

1. Plot the likelihood, prior, and posterior distributions as functions of λ in \mathbb{R}.

2. Plot the posterior predictive distribution where the number of pregnant women arriving falls between $[0, 100]$, integer valued.

3. Find the posterior predictive probability that the number of pregnant women arrive is between 40 and 45 (inclusive).

Solution: The first thing we need to know to do this problem are $p(\lambda|x)$ and $p(\bar{x}|x)$. We found these in Example 3.16. So,

$$\lambda|x \sim \text{Gamma} \left(x + a, \frac{b}{b + 1} \right),$$

and

$$\bar{x}|x \sim \text{Negative Binom} \left(x + a, \frac{b}{2b + 1} \right).$$
Next, we can move right into R for our analysis.

```r
setwd("~/Desktop/sta4930/ch3")
lam = seq(0,100, length=500)
x = 42
a = 5
b = 6
like = dgamma(lam,x+1, scale=1)
prior = dgamma(lam,5, scale=6)
post = dgamma(lam,x+a, scale=b/(b+1))
pdf("preg.pdf", width = 5, height = 4.5)
plot(lam, post, xlab = expression(lambda), ylab= "Density", lty=2, lwd=3, type="l")
lines(lam,like, lty=1,lwd=3)
lines(lam,prior, lty=3,lwd=3)
legend(70,.06,c("Prior", "Likelihood","Posterior"), lty = c(2,1,3),
lwd=c(3,3,3))
dev.off()

##posterior predictive distribution
xnew = seq(0,100) ## will all be ints
post_pred_values = dnbinom(xnew,x+a,b/(2*b+1))
plot(xnew, post_pred_values, type="h", xlab = "x", ylab="Posterior Predictive Distribution")

## what is posterior predictive prob that number
of pregnant women arrive is between 40 and 45 (inclusive)
(ans = sum(post_pred_values[41:46])) ##recall we included 0
```

In the first part of the code, we plot the posterior, likelihood, and posterior. This should be self explanatory since we have already done an example of this.

When we find our posterior predictive distribution, we must create a sequence of integers from 0 to 100 (inclusive) using the `seq` command. Then we find the posterior predictive values using the function `dnbinom`. Then we simply plot the sequence of `xnew` on the x-axis and the corresponding posterior predictive values on the y-axis. We set `type="h"` so that our plot will appear somewhat like a smooth histogram.

Finally, in order to calculate the posterior predictive probability that the number of pregnant women arrive is between 40 and 45, we simply add up the posterior predictive probabilities that correspond to these values. We find that the posterior predictive probability that the number of pregnant women arrive is between 40 and 45 is 0.1284.

3.4 Exercises

1. Consider the following

 \[X | \theta \sim \text{Normal}(\theta, \sigma^2) \]
 \[\theta \sim \text{Normal}(\mu, \tau^2) \]

 (a) Find the posterior distribution of \(\theta \) given the data. Work out all the details (don’t just simply give the result).
(b) Write down the posterior mean, $E(\theta|x)$. Write the posterior mean as a weighted average of x and the prior mean.

2. Let

$$p(y|\theta) = \theta^{-1}e^{-y/\theta}, \ y > 0, \ \theta > 0.$$
$$p(\theta) = \theta^{-a}e^{-b/\theta}, \ \theta > 0, \ a > 2, \ b > 0.$$

(a) Find the posterior distribution of $\theta|y$.
(b) Calculate the posterior mean and posterior variance.
(c) Notice the prior is still proper when $1 < a \leq 2$. How would such a change affect the posterior mean and posterior variance?

3. Let

$$X|\theta \sim \text{Pareto}(\theta, \beta), \ \theta \text{ unknown, } \beta \text{ known}$$
$$\theta \sim \text{Gamma}(a, b).$$

Find the posterior distribution of $\theta|x$.

4. Consider

$$X_1, \ldots, X_n|\theta \sim \text{Geometric}(\theta).$$

(a) Find the posterior for θ that is conjugate to the Geometric likelihood and give any relevant parameters.
(b) Using your answer in (a), derive the posterior distribution of $\theta|x_1, \ldots, x_n$.

5. Consider

$$X|\theta \sim \text{NegBin}(r, \theta), \ r \text{ known, } \theta \text{ unknown},$$

where $f(x|\theta) = \binom{r-1}{x-1}\theta^r(1-\theta)^{x-r}, \ x = r, r+1, \ldots; \ r > 0, \ 0 < \theta \leq 1$.

(a) Find the prior on θ that is conjugate to the likelihood above.
(b) Using your answer in (a), derive the posterior distribution of $\theta|x$.
(c) Consider $\tilde{X}|\theta \sim \text{NegBin}(r, \theta), \ r \text{ known, } \theta \text{ unknown}$. Assume that \tilde{X} and X are conditionally independent given θ. Show that

$$p(\tilde{x}|x) = \binom{\tilde{x} - 1}{r - 1} \frac{\Gamma(2r + a)}{\Gamma(r + a)} \frac{\Gamma(x + a + b)\Gamma(\tilde{x} + x + b - 2r)}{\Gamma(\tilde{x} + x + a + b)} \frac{\Gamma(x + b - r)}{\Gamma(x + b)}.$$

6. Let X be a random variable with Geometric probability density function (pdf). That is,

$$P(X = x|\theta) = \theta(1-\theta)^{x-1}, \ x = 1, 2, \ldots$$

Consider the prior under which $P(\theta = 1/4) = 2/3, P(\theta = 1) = 1/3$. Find the posterior distribution of θ given the data. Hint: You’ll need to consider two cases. Look at $x = 1$ and $x > 1$ separately.

03:18 Tuesday 12th January, 2016
7. Suppose $X_1, \ldots, X_n|\theta \sim \text{Exp}(\theta)$. Then $f(x) = \theta e^{-\theta x}$, $x > 0$, $\theta > 0$.

(a) State the prior distribution on θ that is conjugate to the exponential likelihood above (give its distribution and parameters). Your prior should be a continuous distribution function and take two parameter values. (Other priors you give will not be accepted for credit.)

(b) Then derive the posterior distribution of $\theta|x_1, \ldots, x_n$.

(c) Also give the posterior mean and variance, $E(\theta|x_1, \ldots, x_n)$ and $V(\theta|x_1, \ldots, x_n)$.

8. Let

$$X_1, \ldots, X_n|\alpha, \beta \sim \text{IG}(\alpha, \beta), \ \alpha \text{ known, } \beta \text{ unknown}$$

$$\beta \sim \text{Gamma}(a, b),$$

Calculate the posterior distribution of $\beta|x_1, \ldots, x_n$.

9. Suppose $a < x < b$. Consider the notation $I_{(a,b)}(x)$, where I denotes the indicator function. We define $I_{(a,b)}(x)$ to be the following:

$$I_{(a,b)}(x) = \begin{cases}
1 & \text{if } a < x < b, \\
0 & \text{otherwise.}
\end{cases}$$

Let

$$X|\theta \sim \text{Uniform}(0, \theta)$$

$$\theta \sim \text{Pareto}(\alpha, \beta),$$

where $p(\theta) = \frac{\alpha \beta^\alpha}{\theta^\alpha + 1}I_{(\beta, \infty)}(\theta)$. Calculate the posterior distribution of $\theta|x$.

03:18 Tuesday 12th January, 2016
Chapter 4

Bayesian Inference

4.1 Posterior Mean and Variance

Now that we have learned how to compute the posterior distribution, we will want to compute simpler statistics that summarize the idea of the posterior. For example, in the sleep example, it would be of interest to know the average number of hours that students sleep as well as an estimate of the variance. The posterior mean and variance have different interpretations than the mean and variance did when we did frequentist calculations.

Definition 4.1: The posterior mean is $E[\theta|x]$. Recall that for discrete random variables this is

$$E[\theta|x] = \sum_{\theta} \theta p(\theta|x).$$

For continuous random variables, we get the following:

$$E[\theta|x] = \int_{\theta} \theta p(\theta|x) \, d\theta.$$

Definition 4.2: The posterior variance is defined as $V(\theta|x)$.

Theorem 4.1: The posterior variance, $V(\theta|x)$, can be calculated via

$$V(\theta|x) = E(\theta^2|x) - E(\theta|x)^2.$$

Example 4.1: (Beta-Binomial Posterior Mean and Variance)
Recall in Chapter 3, we looked at the following model

$$X | \theta \sim \text{Binomial}(n, \theta)$$

$$\theta \sim \text{Beta}(a, b).$$

We found that

$$\theta|x \sim \text{Beta}(x + a, n - x + b).$$
Recall if $Y \sim \text{Beta}(a,b)$, then $E(Y) = \frac{a}{a + b}$ and $V(Y) = \frac{ab}{(a + b)^2(a + b + 1)}$.

Thus,

$$E(\theta|x) = \frac{x + a}{x + a + n - x + b} = \frac{x + a}{a + b + n}.$$

Also,

$$V(\theta|x) = \frac{x + a}{(a + b + n)^2(a + b + n + 1)}.$$

4.1.1 Interpretation of the Posterior Mean and Posterior Variance

In order to understand how we interpret the posterior mean, $E(\theta|x)$, and the posterior variance, $V(\theta|x)$, we must first explain a bit about a subject called decision theory.

Suppose the following:

- θ is the true parameter value (unknown) that we want to estimate, i.e., this is our target.
- It would be optimal if $\hat{\theta}$ was equal to θ every time.
- In reality, our estimate will be sometimes too low or too high compared to the target.
Consider the following:

- We suffer a penalty depending on how far off the estimate, $\hat{\theta}$, is from the target, θ.
- If the estimate is close to the target, we suffer little penalty.
- If the estimate if far away from the target, we suffer a larger penalty.

We can think of the penalty term as taking the difference between the estimate and the target and then squaring it. We call this the squared error loss function between $\hat{\theta}$ and θ. There are other loss functions that could be taken, for example, we could take the absolute difference of the estimate and true value. This loss function is referred to as absolute error loss.

Definition 4.3: The squared error loss function is defined to be

$$L(\theta, \hat{\theta}) = (\hat{\theta} - \theta)^2$$

and $\hat{\theta}$ is our estimate of θ.

If you think about the loss function defined, we would like the loss function to be as small as possible as we average over the probability distribution described by the posterior. Since we want the loss function to be as small as possible as we average over the posterior distribution, this translates to finding the value of $\hat{\theta}$ that minimizes $E[L(\theta, \hat{\theta})|X = x]$. The value that minimizes the above expression is called the Bayes estimate, $\hat{\theta}^B$.

Definition 4.4: The Bayes estimate, $\hat{\theta}^B$, is the value of θ that minimizes $E[L(\theta, \hat{\theta})|X = x]$.

Theorem 4.2: If the loss function is squared error, i.e.,

$$L(\theta, \hat{\theta}) = (\hat{\theta} - \theta)^2$$

then the Bayes estimate is $\hat{\theta}^B = E(\theta|x)$. In other words, the Bayes estimate is simply the posterior mean.

Theorem 4.3: If the loss function is absolute error, i.e.,

$$L(\theta, \hat{\theta}) = |\hat{\theta} - \theta|$$

then the Bayes estimate is the posterior median. If your posterior is symmetric, then the posterior mean and median are the same. For example, the Normal is symmetric. Also, if $a = b$, then the Beta(a, b) distribution is symmetric about $1/2$.

Example 4.2: Suppose the University of Florida is building a new basketball arena. Define the following:

- Let θ be the number of people who want to attend games in the new arena.
• Let \(\hat{\theta} \) be the number of seats in the new arena.

If the new arena contains too few seats, then the school will lose out on ticket sales. However, if the arena has too many seats, some number of seats will remain empty and the school will lose money. The school could quantify this using some loss function and then find the number of seats, \(\hat{\theta} \), that minimizes the loss function, based on some data they collect.

For example, we could define

\[
L(\hat{\theta}, \theta) = |\hat{\theta} - \theta|.
\]

Then the school collects some data that depends on \(\theta \). Suppose the school believes the following information:

\[
X_1, \ldots, X_n | \theta \overset{iid}{\sim} \text{Normal}(\theta, \sigma^2) \\
\theta \sim \text{Normal}(\mu, \tau^2).
\]

Finally, the school would seek to find the value of \(\hat{\theta} \) that minimizes

\[
E[|\hat{\theta} - \theta| | X = x].
\]

By Theorem 4.3, we know that the Bayes estimate, i.e., the posterior median, minimizes \(E[|\hat{\theta} - \theta| | X = x] \).

Recall the posterior distribution is

\[
\theta | x_1, \ldots, x_n \sim N\left(\frac{n\bar{x}\tau^2 + \mu\sigma^2}{n\tau^2 + \sigma^2}, \frac{\sigma^2\tau^2}{n\tau^2 + \sigma^2}\right).
\]

Since the Normal is symmetric about its mean, the posterior mean and median are the same. Thus, the Bayes estimate is

\[
\hat{\theta}^B = \frac{n\bar{x}\tau^2 + \mu\sigma^2}{n\tau^2 + \sigma^2}.
\]

Posterior Variance

Another idea we might want to consider is the precision about our posterior beliefs about \(\theta \). We may be very sure that \(\theta \) is close to some value, or we may be unsure about the value of \(\theta \). One way to quantify this idea is by talking about the spread of the posterior distribution. The most common form here is calculating the posterior variance.

Example 4.3: Recall Example 3.7 where we had the following model:

\[
X_1, \ldots, X_n | \theta \sim \text{Normal}(\theta, \sigma^2) \\
\theta \sim \text{Normal}(\mu, \tau^2),
\]
where \(\sigma^2 \) is known. Recall that

\[
\theta | x_1, \ldots, x_n \sim N \left(\frac{n \bar{x} \tau^2 + \mu \sigma^2}{n \tau^2 \sigma^2}, \frac{\sigma^2 \tau^2}{n \tau^2 \sigma^2} \right).
\]

Calculate the posterior mean and posterior variance under squared error loss. Also, find the Bayes estimate.

\[
E[\theta | X_1, \ldots, X_n] = \frac{n \bar{x} \tau^2 + \mu \sigma^2}{n \tau^2 + \sigma^2}.
\]

\[
V[\theta | X_1, \ldots, X_n] = \frac{\sigma^2 \tau^2}{n \tau^2 + \sigma^2}.
\]

The Bayes estimate is simply the posterior mean since we are using squared error loss.

Example 4.4: Sleep Example: Posterior Mean and Variance

Recall the Beta-Binomial example from Section 3.2 where we were interested in the proportion of the population of American college students that sleep at least eight hours each night (\(\theta \)).

Recall that we had a random sample of 27 students from UF, where 11 students recorded they slept at least eight hours each night. So, we assume the data is distributed as Binomial(27, \(\theta \)).

If you look back to the example, we assumed that the prior on \(\theta \) was Beta(3.3, 7.2). Thus, the posterior distribution is \(\theta | 11 \sim \text{Beta}(11 + 3.3, 27 - 11 + 7.2) \), i.e.,

\[
\theta | 11 \sim \text{Beta}(14.3, 23.2).
\]

We could easily calculate the posterior mean and variance out by hand or in R. Using the code below, we find that \(E(\theta | x) = 0.381 \) and \(V(\theta | x) = 0.0061 \). You could just as easily do this using your calculator.

Interpreting the above results, this means that on average approximately 38 percent of college students sleep at least eight hours each night. We are averaging over the posterior beliefs about \(\theta \). We are not averaging over repeated samples as is done in frequentist analysis.

Interpreting the posterior standard deviation is a bit more natural since it’s on the same scale as the posterior mean. Here, the posterior standard deviation is \(\sqrt{0.0061} = 0.078 \). This gives us an idea of the amount of spread in the posterior distribution around its mean.

Suppose our loss function was squared error, what would the Bayes estimate be?

\[
a = 3.3 \\
b = 7.2 \\
n = 27 \\
s = seq(0,1,0.01)
\]
\[x = 11 \]
\[\text{post} = \text{dbeta}(s, x+a, n-x+b) \]
\[a.\text{new} = x+a \]
\[b.\text{new} = n-x+b \]
\[\text{post.mean} = \frac{a.\text{new}}{a.\text{new} + b.\text{new}} \]
\[\text{post.var} = \frac{a.\text{new}*b.\text{new}}{(a.\text{new} + b.\text{new})^2*(a.\text{new} + b.\text{new}+1)} \]

Squared Error versus Absolute Error

We have discussed two loss function so far: squared error and absolute error. Why would we choose one over the other?

- Squared error is usually chosen out of convenience. It’s differentiable and very easy to work with, even for very complicated expressions.
- Absolute error is not differentiable but is robust to outliers.

4.2 Confidence Intervals versus Credible Intervals

One major difference between Bayesians and frequentists is how they interpret intervals. Let’s quickly review what a frequentist confidence interval is and how to interpret one.

Frequentist Confidence Intervals

A confidence interval for an unknown (fixed) parameter, \(\theta \), is an interval of numbers that we believe is likely to contain the true value of \(\theta \). Intervals are important because they provide us with an idea of how well we can estimate \(\theta \).

Definition 4.5: A confidence interval is constructed to contain \(\theta \) a percentage of the time, say 95%. Suppose our confidence level is 95% and our interval is \((L, U)\). Then we are 95% confident that the true value of \(\theta \) is contained in \((L, U)\) in the long run. In the long run means that this would occur nearly 95% of the time if we repeated our study millions and millions of times.
Misconceptions

- A confidence interval is a statement about θ (a population parameter). It is not a statement about the sample.

- Remember that a confidence interval is not a statement about individual subjects in the population. As an example, suppose that I tell you that a 95% confidence interval for the average amount of television watched by Americans is (2.69, 6.04) hours. This doesn’t mean we can say that 95% of all Americans watch between 2.69 and 6.04 hours of television. We also cannot say that 95% of Americans in the sample watch between 2.69 and 6.04 hours of television. Beware that statements such as these are false. However, we can say that we are 95 percent confident that the average amount of television watched by Americans is between 2.69 and 6.04 hours.

Bayesian Credible Intervals

Recall that frequentists treat θ as fixed, but Bayesians treat θ as a random variable. The main difference between frequentist confidence intervals and Bayesian credible intervals is the following:

- Frequentists invoke the concept of probability before observing the data. For any fixed value of θ, a frequentist confidence interval will contain the true parameter θ with some probability, e.g., 0.95.

- Bayesians invoke the concept of probability after observing the data. For some particular set of data $X = x$, the random variable θ lies in a Bayesian credible interval with some probability, e.g., 0.95.

Assumptions

In lower level classes, you wrote down assumptions whenever you did confidence intervals. This is redundant for any problem we construct in this course since we always know the data is randomly distributed and we assume it comes from some underlying distribution, say Normal, Gamma, etc. We also always assume our observations are i.i.d. (independent and identically distributed), meaning that the observations are all independent and they all have the same variance. Thus, when working a particular problem, we will assume these assumptions are satisfied given the proposed model holds.

Definition 4.6: A Bayesian credible interval of size $1 - \alpha$ is an interval (a, b) such that

$$ P(a \leq \theta \leq b | x) = 1 - \alpha. $$

$$ \int_a^b p(\theta | x) \, d\theta = 1 - \alpha. $$
4.2. CONFIDENCE INTERVALS VERSUS CREDIBLE INTERVALS

Remark: When you’re calculating credible intervals, you’ll find the values of \(a \) and \(b \) by several means. You could be asked do the following:

- Use a Z-table when appropriate.
- Use R to approximate the values of \(a \) and \(b \).
- You could be given R code/output and asked to find the values of \(a \) and \(b \).

Important Point

Our definition for the credible interval could lead to many choices of \((a, b)\) for particular problems. For this course, we will require that our credible interval have equal probability \(\alpha/2 \) in each tail so that our interval will be unique. That is, we will assume

\[
P(\theta < a|x) = \alpha/2
\]

and

\[
P(\theta > b|x) = \alpha/2.
\]

To see this more clearly, see Figure 5.1.

Figure 4.1: Illustration of 95\% credible interval

03:18 Tuesday 12th January, 2016
4.2. CONFIDENCE INTERVALS VERSUS CREDIBLE INTERVALS

Interpretation

We interpret Bayesian credible intervals as follows: There is a 95% probability that the true value of θ is in the interval (a, b), given the data.

Comparisons

- Conceptually, probability comes into play in a frequentist confidence interval before collecting the data, i.e., there is a 95% probability that we will collect data that produces an interval that contains the true parameter value. However, this is awkward, because we would like to make statements about the probability that the interval contains the true parameter value given the data that we actually observed.

- Meanwhile, probability comes into play in a Bayesian credible interval after collecting the data, i.e., based on the data, we now think there is a 95% probability that the true parameter value is in the interval. This is more natural because we want to make a probability statement regarding that data after we have observed it.

Example 4.5: Suppose

$$X_1, \ldots, X_n | \theta \sim N(\theta, \sigma^2)$$

$$\theta \sim N(\mu, \tau^2),$$

where μ, σ^2, and τ^2 are known. Calculate a 95% credible interval for θ.

Recall

$$\theta | x_1, \ldots, x_n \sim N \left(\frac{n\bar{x} \tau^2 + \mu \sigma^2}{n\tau^2 + \sigma^2}, \frac{\sigma^2 \tau^2}{n\tau^2 + \sigma^2} \right).$$

Let

$$\mu^* = \frac{n\bar{x} \tau^2 + \mu \sigma^2}{n\tau^2 + \sigma^2},$$

$$\sigma^* = \frac{\sigma^2 \tau^2}{n\tau^2 + \sigma^2}.$$

We want to calculate a and b such that $P(\theta < a | x_1, \ldots, x_n) = 0.05/2 = 0.025$ and $P(\theta > b | x_1, \ldots, x_n) = 0.05/2 = 0.025$. So,

$$0.025 = P(\theta < a | x_1, \ldots, x_n)$$

$$= P \left(\frac{\theta - \mu^*}{\sigma^*} < \frac{a - \mu^*}{\sigma^*} \middle| x_1, \ldots, x_n \right)$$

$$= P \left(Z < \frac{a - \mu^*}{\sigma^*} \middle| x_1, \ldots, x_n \right),$$

where $Z \sim N(0, 1)$.

Thus, we now must find an a such that $P \left(Z < \frac{a - \mu^*}{\sigma^*} \middle| x_1, \ldots, x_n \right) = 0.025$.

From a Z-table, we know that

$$\frac{a - \mu^*}{\sigma^*} = -1.96.$$
This tells us that \(a = \mu^* - 1.96\sigma^* \). Similarly, \(b = \mu^* + 1.96\sigma^* \). (Work this part out on your own at home). Therefore, a 95\% credible interval is

\[\mu^* \pm 1.96\sigma^*. \]
Example 4.6: We’re interested in knowing the true average number of ornaments on a Christmas tree. Call this \(\theta \). We take a random sample of \(n \) Christmas trees, count the ornaments on each one, and call the results \(X_1, \ldots, X_n \). Let the prior on \(\theta \) be Normal(75, 225).

Using data (trees.txt) we have, we will calculate the 95% credible interval and confidence interval for \(\theta \). In R we first read in the data file trees.txt. We then set the initial values for our known parameters, \(n, \sigma, \mu \), and \(\tau \).

Next, we refer to Example 4.5 and calculate the values of \(\mu^* \) and \(\sigma^* \) using this example. Finally, again referring to Example 4.5, we recall that the formula for a 95% credible interval here is

\[
\mu^* \pm 1.96\sigma^*.
\]

On the other hand, recalling back to STA 2023, a 95% confidence interval in this situation is

\[
\bar{x} \pm 1.96\sigma/\sqrt{n}.
\]

From the R code, we find that there is a 95% probability that the average number of ornaments per tree is in \((45.00, 57.13)\) given the data. We also find that we are 95% confident that the average number of ornaments per tree is contained in \((43.80, 56.20)\). If we compare the width of each interval, we see that the credible interval is slightly narrower. It is also shifted towards slightly higher values than the confidence interval for this data, which makes sense because the prior mean was higher than the sample mean. What would happen to the width of the intervals if we increased \(n \)? Does this make sense?

```r
x = read.table("trees.txt", header=T)
attach(x)
n = 10
sigma = 10
mu = 75
tau = 15

mu.star = (n*mean(orn)*tau^2+mu*sigma^2)/(n*tau^2+sigma^2)
sigma.star = sqrt((sigma^2*tau^2)/(n*tau^2+sigma^2))

(cred.i = mu.star+c(-1,1)*qnorm(0.975)*sigma.star)
(conf.i = mean(orn)+c(-1,1)*qnorm(0.975)*sigma/sqrt(n))

diff(cred.i)
diff(conf.i)
detach(x)
```

Example 4.7: (Sleep Example Revisited)
Recall the Beta-Binomial example from Section 3.2 where we were interested in the proportion of the population of American college students that sleep at least eight hours each night (\(\theta \)).

03:18 Tuesday 12th January, 2016
Recall that we had a random sample of 27 students from UF, where 11 students recorded they slept at least eight hours each night. So, we assume the data is distributed as Binomial$(27, \theta)$.

If you look back to the example, we assumed that the prior on θ was Beta$(3.3, 7.2)$. Thus, the posterior distribution is

$$\theta|11 \sim \text{Beta}(11 + 3.3, 27 - 11 + 7.2), \text{ i.e.,}$$

$$\theta|11 \sim \text{Beta}(14.3, 23.2).$$

Suppose now we would like to find a 90 percent credible interval for θ. We cannot compute this in closed form since computing probabilities for Beta distributions involves messy integrals that we do not know how to compute. However, we can use R to find the interval.

We need to solve

$$P(\theta < c|x) = 0.05$$

and

$$P(\theta > d|x) = 0.05$$

for c and d.

The reason we cannot compute this in closed form is because we need to compute

$$\int_0^c \text{Beta}(14.3, 23.2) \, d\theta = 0.05$$

and

$$\int_d^1 \text{Beta}(14.3, 23.2) \, d\theta = 0.05.$$

Note that Beta$(14.3, 23.2)$ represents

$$f(\theta) = \frac{\Gamma(37.5)}{\Gamma(14.3)\Gamma(23.2)} \theta^{14.3-1}(1-\theta)^{23.2-1}.$$

The R code for this is very straightforward:

```r
a = 3.3
b = 7.2
n = 27
x = 11
a.star = x+a
b.star = n-x+b
c = qbeta(0.05,a.star,b.star)
d = qbeta(1-0.05,a.star,b.star)
```

Running the code in R, we find that a 90 percent credible interval for θ is $(0.256, 0.514)$, meaning that there is a 90 percent probability that the proportion of UF students who sleep eight or more hours per night is between 0.256 and 0.514 given the data.
4.3 Bayesian Robustness

4.3.1 Motivation: Heart Transplant Example

We consider the problem of learning about the rate of success of heart transplant surgery of a particular hospital in the United States. For this hospital, we record the number of transplant surgeries, \(n\), and the number of deaths, \(y\), within 30 days of surgery. We assume the following model:

\[Y|\lambda \sim \text{Poisson}(e\lambda), \]

where \(e\) is the exposure and \(\lambda\) is the mortality rate.

A frequentist would estimate \(\lambda\) using \(\hat{\lambda} = y/e\), however this estimate is poor when the number of deaths, \(y\), is close to zero. In the situation when small death counts are possible, it is desirable to use Bayesian inference and take advantage of prior knowledge of the size of the mortality rate. A convenient choice for the prior distribution is a \(\text{Gamma}(\alpha, \beta)\) due to conjugacy.

There are two formulations for the Gamma distribution. There is the one we have dealt with all semester in class (where \(\beta\) is the scale parameter), however there is another formulation that is very convenient at times (here \(\beta\) is taken to be the rate parameter). The second formulation is as follows:

Definition 4.7: Suppose \(X \sim \text{Gamma}(\alpha, \beta)\), where \(\beta\) is the rate parameter. Then

\[f(x) = \frac{\beta^\alpha}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}, \quad x > 0, \quad \alpha > 0, \quad \beta > 0. \]

Suppose the prior density here is expressed as

\[p(\lambda) \propto \lambda^{\alpha-1} \exp\{-\beta\lambda\}. \]

We first consider a small hospital in Florida which experienced only one death and has exposure, \(e = 66\). We will look at two different Gamma posteriors, i.e., they will have different values of \(\alpha\) and \(\beta\). We will want to see how the two priors, denoted by Prior A and Prior B, influence their corresponding posterior distributions.

- Prior A: \(\lambda \sim \text{Gamma}(16, 15174)\).
- Prior B: \(\lambda \sim \text{Gamma}(20, 10000)\).

We easily find that the posterior distribution

\[\lambda|y \sim \text{Gamma}(\alpha + y, \beta + e). \]

You can check that this is the correct posterior on your own.

Let’s now compare the two posterior distributions of \(\lambda|y\) in \(R\).

To see the impact the prior has on its corresponding posterior distribution, it is helpful to display the densities on the same plot. From Figure 4.2, we see that Prior A results in a posterior with a smaller mortality rate. The estimated mortality rate using Prior B will be about twice that using Prior A.
4.3. BAYESIAN ROBUSTNESS

- Clearly the choice of prior matters in this example.
- With a bigger sample size, we would see less of an effect of the prior.
- A noninformative prior might be a good choice here. We will talk more about noninformative priors in the next section.

![Prior $p(\lambda)$ and Posterior Distribution $p(\lambda|y)$ using Priors A and B](image)

Figure 4.2: Prior $p(\lambda)$ and Posterior Distribution $p(\lambda|y)$ using Priors A and B
Below we find the R code for analyzing this example.

```r
setwd("/Users/resteorts/Desktop/sta4930/ch4")
a=16; b=15174; y=1; e=66
lam = seq(0,0.004,length=500)
priorA = dgamma(lam,shape=a,rate=b)
priorB = dgamma(lam,shape=a,rate=b)
pdf("heart.pdf",width=5,height=4)
plot(lam,postA, type = "l", col = "red", lty = 1,
    xlab=expression(lambda),ylab="Density",ylim=c(0,1600))
lines(lam, priorA, lty = 2, col ="red")
lines(lam, postB, lty = 1, col ="blue")
lines(lam, priorB, lty = 4, col ="blue")
legend(0.0025,1500,c("Prior A","Post A","Prior B","Post B"),
    lty=c(1,2,1,4),col=c("red","red","blue","blue"),bty="n")
dev.off()
```

Definition 4.8: A Bayesian analysis is said to be robust to the choice of prior if the inference is insensitive to the different priors that match the user’s beliefs.

Recall that in Example 3.9, we showed that for the Normal-Normal setup, for large \(n \), the posterior mean was approximately \(\bar{x} \) and the posterior variance was approximately \(\sigma^2/n \). Notice that these results do not depend on the values of \(\mu \) and \(\tau^2 \) in the prior. This illustrates a general property of many Bayesian models: for large \(n \), a Bayesian analysis is usually robust. This holds not only for the Normal-Normal setup, but for most other simple setups as well.

4.4 Informative and Noninformative Priors

Thus far in this course, we have mostly considered informative or subjective priors. Ideally, we want to choose a prior reflecting our beliefs about the unknown parameter of interest. This is a subjective choice. All Bayesians agree that wherever prior information is available, one should try to incorporate a prior reflecting this information as much as possible. We have mentioned how incorporation of a prior expert opinion would strengthen purely data-based analysis in real-life decision problems. Using prior information can also be useful in problems of statistical inference when your sample size is small or you have a high or infinite dimensional parameter space.

However, in dealing with real-life problems you may run into problems such as

- not having past historical data
4.4. INFORMATIVE AND NONINFORMATIVE PRIORS

- not having an expert opinion to base your prior knowledge on (perhaps your research is cutting edge and new)
- as your model becomes more complicated, it becomes hard to know what priors to put on each unknown parameter

The problems we have dealt with all semester have been very simple in nature. We have only had one parameter to estimate (except for one example). Think about a more complex problem such as the following (we looked at this problem in Ch 3):

\[
X|\theta \sim N(\theta, \sigma^2) \\
\theta|\sigma^2 \sim N(\mu, \tau) \\
\sigma^2 \sim IG(a, b)
\]

where now \(\theta\) and \(\sigma^2\) are both unknown and we must find the posterior distributions of \(\theta|X, \sigma^2\) and \(\sigma^2|X\). For this slightly more complex problem, it is much harder to think about what values \(\mu, \tau, a, b\) should take for a particular problem. What should we do in these type of situations?

Often no reliable prior information concerning \(\theta\) exists or inference based completely on the data is desired. It might appear that inference in such settings would be inappropriate, but reaching this conclusion is too hasty.

Suppose we could find a distribution \(p(\theta)\) that contained no or little information about \(\theta\) in the sense that it didn’t favor one value of \(\theta\) over another (provided this is possible). Then it would be natural to refer to such a distribution as a noninformative prior. We could also argue that all or most of the information contained in the posterior distribution, \(p(\theta|x)\), came from the data. Thus, all resulting inferences were objective and not subjective.

Definition 4.9: Informative/subjective priors represent our prior beliefs about parameter values before collecting any data. For example, in reality, if statisticians are unsure about specifying the prior, they will turn to the experts in the field or experimenters to look at past data to help fix the prior.

Example 4.8: (Pregnant Mothers) Suppose that \(X\) is the number of pregnant mothers arriving at a hospital to deliver their babies during a given month. The discrete count nature of the data as well as its natural interpretation leads to adopting a Poisson likelihood,

\[
p(x|\theta) = \frac{e^{-\theta} \theta^x}{x!}, \ x \in \{0, 1, 2, \ldots\}, \ \theta > 0.
\]

A convenient choice for the prior distribution here is a Gamma\((a, b)\) since it is conjugate for the Poisson likelihood. To illustrate the example further, suppose that 42 moms deliver babies during the month of December. Suppose from past data at this hospital, we assume a prior of Gamma\((5, 6)\). From this, we can easily calculate the posterior distribution, posterior mean and variance, and do various calculations of interest in R.

03:18 Tuesday 12th January, 2016
Definition 4.10: Noninformative/objective priors contain little or no information about θ in the sense that they do not favor one value of θ over another. Therefore, when we calculate the posterior distribution, most if not all of the inference will arise from the likelihood. Inferences in this case are objective and not subjective. Note that objective priors are typically improper, yet have proper posteriors. Let’s look at the following example to see why we might consider such priors.
Example 4.9: (Pregnant Mothers Continued) Recall Example 4.8. As we noted earlier, it would be natural to take the prior on θ as Gamma(a,b) since it is the conjugate prior for the Poisson likelihood, however suppose that for this data set we do not have any information on the number of pregnant mothers arriving at the hospital so there is no basis for using a Gamma prior or any other informative prior. In this situation, we could take some noninformative prior.

Comment: It is worth noting that many of the objective priors are improper, so we must check that the posterior is proper.

Theorem 4.4: Propriety of the Posterior

- If the prior is proper, then the posterior will always be proper.
- If the prior is improper, you must check that the posterior is proper.

4.4.1 Meaning Of Flat

What does a “flat prior” really mean? People really abuse the word flat and interchange it for noninformative. Let’s talk about what people really mean when they use the term “flat,” since it can have different meanings.

Example 4.10: Often statisticians will refer to a prior as being flat, when it actually looks flats. An example of this would be taking such a prior to be $\theta \sim \text{Unif}(0,1)$. We can plot the density of this prior to see that the density is flat.

Example 4.11: Now suppose we consider Jeffreys’ prior, $p_J(\theta)$, where $X \sim \text{Bin}(n, \theta)$.

We calculate Jeffreys’ prior by finding the Fisher information. The Fisher information tells us how much information the data gives us for certain parameter values.

In this example, it can be shown that $p_J(\theta) \propto \text{Beta}(1/2, 1/2)$. Let’s consider the plot of this prior. Flat here is a purely abstract idea. In order to achieve objective inference, we need to compensate more for values on the boundary than values in the middle.

Example 4.12: Finally, we consider the following prior on θ:

$\theta \sim N(0,1000)$.

What happens in this situation? We look at two plots to consider the behavior of this prior.
4.4. INFORMATIVE AND NONINFORMATIVE PRIORS

Figure 4.3: Unif(0,1) prior

Figure 4.4: Jeffreys’ prior for Binom likelihood
Figure 4.5: Normal priors
4.4. Objective Priors in More Detail

Uniform Prior of Bayes and Laplace

Example 4.13: (Thomas Bayes) In 1763, Thomas Bayes considered the question of what prior to use when estimating a binomial success probability p. He described the problem quite differently back then by considering throwing balls onto a billiard table. He separated the billiard table into many different intervals and considered different events. By doing so (and not going into the details of this), he argued that a Uniform(0,1) prior was appropriate for p.

Example 4.14: (Laplace) In 1814, Pierre-Simon Laplace wanted to know the probability that the sun will rise tomorrow. He answered this question using the following Bayesian analysis:

- Let X represent the number of days the sun rises. Let p be the probability the sun will rise tomorrow.
- Let $X|p \sim \text{Bin}(n, p)$.
- Suppose $p \sim \text{Uniform}(0, 1)$.
- Based on reading the Bible, we compute the total number of days, n, and the total number of days, x, recorded in history in which the sun rose. Clearly, $x = n$.

Then

$$
\pi(p|x) \propto \binom{n}{x} p^x (1 - p)^{n-x} \cdot 1
\propto p^x (1 - p)^{n-x+1}
$$

This implies

$$p|x \sim \text{Beta}(x + 1, n - x + 1)$$

Then

$$\hat{p} = E[p|x] = \frac{x + 1}{x + 1 + n - x + 1} = \frac{x + 1}{n + 2} = \frac{n + 1}{n + 2}.$$

Thus, Laplace’s estimate for the probability that the sun rises tomorrow is $(n + 1)/(n + 2)$, where n is the total number of days recorded in history. For instance, if so far we have encountered 100 days in the history of our universe, this would say that the probability the sun will rise tomorrow is 101/102 \approx 0.9902. However, we know that this calculation is ridiculous because the sun always rises. Thus, objective Bayesian methods shouldn’t be recklessly applied to every problem we study.
Criticism of the Uniform Prior

The Uniform prior of Bayes and Laplace and has been criticized for many different reasons. We will discuss one important reason for criticism and not go into the other reasons since they go beyond the scope of this course.

In statistics, it is often a good property when a rule for choosing a prior is invariant under what are called one-to-one transformations. Invariant basically means unchanging in some sense. The invariance principle means that a rule for choosing a prior should provide equivalent beliefs even if we consider a transformed version of our parameter, like p^2 or $\log p$ instead of p.

Jeffreys’ Prior

One prior that is invariant under one-to-one transformations is Jeffreys’ prior (Bayesian Data Analysis, Gelman, et al., p. 63). You are not responsible for this invariance proof (calculus is involved).

What does the invariance principle mean? Suppose our prior parameter is θ, however we would like to transform to ϕ.

Define $\phi = f(\theta)$.

Jeffreys’ prior says that if θ has the distribution specified by Jeffreys’ prior for θ, then $f(\theta)$ will have the distribution specified by Jeffreys’ prior for ϕ. If this isn’t clear, we will make this more clear by going over two examples to illustrate this idea.

However, suppose θ has a Uniform prior. Then one can show $\phi = f(\theta)$ will not have a Uniform prior.

Aside from the invariance property of Jeffreys’ prior, in the univariate case, Jeffreys’ prior satisfies many optimality criteria that statisticians are interested in. One such that you might have heard of is called the Kullback-Leibler divergence.

Definition 4.11: Define

$$I(\theta) = -E \left[\frac{\partial^2 \log p(y|\theta)}{\partial \theta^2} \right],$$

where $I(\theta)$ is called the Fisher information. Then Jeffreys’ prior is defined to be

$$p_J(\theta) = \sqrt{I(\theta)}.$$

Since calculating Jeffreys’ prior involves calculus, for a problem you will be either given the Fisher information or Jeffreys’ prior. You will not be expected to compute the Fisher information. You should understand why it would be desirable to use Jeffreys’ prior though and that its form changes whenever the likelihood changes.

03:18 Tuesday 12th January, 2016
Example 4.15: (Uniform Prior is Not Invariant to Transformation)

Any calculus that is given, you are not responsible for knowing. This example is given to simply illustrate the ideas just presented.

Let \(\theta \sim \text{Uniform}(0, 1) \). Suppose now we would like to transform from \(\theta \) to \(\theta^2 \).

Let \(\phi = \theta^2 \). Then \(\theta = \sqrt{\phi} \). It follows (by calculus) that

\[
\frac{\partial \theta}{\partial \phi} = \frac{1}{2\sqrt{\phi}}.
\]

Thus, \(p(\phi) = \frac{1}{2\sqrt{\phi}} \), \(0 < \phi < 1 \) which shows that \(\phi \) is not Uniform on \((0, 1)\).

Hence, the transformation is not invariant. Criticism such as this led to consideration of Jeffreys’ prior.

Example 4.16: (Jeffreys’ Prior Invariance Example)

Any calculus that is given, you are not responsible for knowing. This example is given to simply illustrate the ideas just presented.

Suppose

\(X|\theta \sim \text{Exp}(\theta) \)

One can show using calculus that \(I(\theta) = 1/\theta^2 \). Then \(p_J(\theta) = 1/\theta \). Suppose that \(\phi = \theta^2 \). It follows (by calculus) that

\[
\frac{\partial \theta}{\partial \phi} = \frac{1}{2\sqrt{\phi}}.
\]

By calculus, we know

\[
p_J(\phi) = p_J(\sqrt{\phi}) \left| \frac{\partial \theta}{\partial \phi} \right| = \frac{1}{\sqrt{\phi}} \frac{1}{\sqrt{2\phi}} \propto \frac{1}{\phi}.
\]

Hence, we have shown for this example, that Jeffreys’ prior is invariant under the transformation \(\phi = \theta^2 \).
Example 4.17: (Jeffreys’ prior) Suppose $X|\theta \sim \text{Binomial}(n, \theta)$

Let’s calculate the posterior using Jeffrey’s prior. We are given that

$$p_J(\theta) = \sqrt{n \theta (1 - \theta)} \propto \text{Beta}(1/2, 1/2).$$

We then find that

$$p(x|\theta) \propto \theta^x (1 - \theta)^{n-x} \theta^{1/2-1} (1 - \theta)^{1/2-1}$$
$$= \theta^{x+1/2} (1 - \theta)^{n-x+1/2}$$
$$= \theta^{x+1/2+1-1} (1 - \theta)^{n-x+1/2+1-1}.$$

Thus, $\theta|x \sim \text{Beta}(x + 1/2, n - x + 1/2)$, which is a proper posterior since the prior is proper.

Note: It is very important to check that your posterior is proper.

Haldane’s Prior

In 1963, Haldane introduced the following improper prior:

$$p(\theta) \propto \theta^{-1} (1 - \theta)^{-1}.$$

It can be shown to be improper using simple calculus, which we will not go into. However, the posterior is proper under certain conditions.

Let $Y|\theta \sim \text{Bin}(n, \theta)$.

Calculate $p(\theta|y)$ and show that it is improper when $y = 0$ or $y = n$.

Remark: Recall that for a Binomial distribution, Y can take values $y = 0, 1, 2, \ldots, n$.

We will first calculate $p(\theta|y)$.

$$p(\theta|y) \propto \binom{n}{y} \theta^y (1 - \theta)^{n-y} \theta(1 - \theta)$$
$$\propto \theta^{y-1} (1 - \theta)^{n-y-1}$$
$$= \theta^{y-1} (1 - \theta)^{(n-y)-1}.$$

The density of a $\text{Beta}(a, b)$ is the following:

$$f(\theta) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \theta^{a-1} (1 - \theta)^{b-1}, \quad \theta > 0$$
This implies that $\theta | Y \sim \text{Beta}(y, n - y)$.

We need to check that our posterior is proper finally. Recall that the parameters of the Beta need to be positive. Thus, $y > 0$ and $n - y > 0$. This means that $y \neq 0$ and $n \neq y$ in order for the posterior to be proper.

Remark: Recall that the Beta density must integrate to 1 whenever the parameter values are positive. Hence, when they are not positive, the density does not integrate to 1 and integrates to ∞. Thus, for the problem above, when $y = 0$ and $n = y$ the density is improper.

There are many other objective priors that are used in Bayesian inference, however, this is the level of exposure that we will cover in this course. If you’re interested in learning more about objective priors (g-prior, probability matching priors), see me and I can give you some references.

4.5 Exercises

1. Suppose that $X_1, \ldots, X_n | \theta \sim \text{Poisson}(\theta)$.
 (a) What prior is conjugate for the Poisson likelihood? Give the distribution for θ along with any associated parameters.
 (b) Calculate the posterior distribution of $\theta | x_1, \ldots, x_n$ using your prior in (a).
 (c) Find the posterior mean.
 (d) Write the posterior mean as a weighted average of the prior mean and the sample average. What are the weights of the prior mean and the sample average?
 (e) What happens to the posterior mean if $n >> b$? What happens to the posterior mean if $n << b$? The symbol $>>$ stands for much greater than, and $<<$ represents much less than.

2. Let

 $$Y | \theta \sim \text{Exp}(\theta)$$
 $$\theta \sim \text{Gamma}(a, b).$$

Suppose we have a new observation $\tilde{Y} | \theta \sim \text{Exp}(\theta)$, where conditional on θ, Y and \tilde{Y} are independent. Show that

$$p(\tilde{y} | y) = \frac{b(a + 1)(by + 1)^{a+1}}{(by + 1)^{a+2}},$$

where a is an integer. (Note that this is a valid density function that integrates to 1).
3. Let $X \sim \text{Geometric}(\theta)$.

Consider the prior under which $P(\theta = 1/4) = 2/3, P(\theta = 1) = 1/3$.

$$p(\theta|x > 1) = \begin{cases} 0 & \text{if } \theta = 1 \\ 1 & \text{if } \theta = 1/4. \end{cases}$$

Suppose $\tilde{X} | \theta \sim \text{Geometric}(\theta)$. Assume that given θ, \tilde{X} and X are independent.

Derive $p(\tilde{x}|x)$ for the cases $x = 1$ and $x > 1$. That is, show the following:

- If $x = 1$,
 $$p(\tilde{x}|x = 1) = \begin{cases} 3/4 & \text{if } \tilde{x} = 1 \\ 1/12 \left(\frac{3}{4} \right)^{\tilde{x}-1} & \text{if } \tilde{x} > 1. \end{cases}$$

- If $x > 1$, $\tilde{X}|x \sim \text{Geometric}(1/4)$.

4. Refer to Example 3.10. Recall

$$X_1, \ldots, X_n | \alpha, \beta \overset{iid}{\sim} \Gamma(\alpha, \beta), \alpha \text{ known, } \beta \text{ unknown}$$

$$\beta \sim \text{IG}(a, b).$$

(a) Find the posterior of $\beta|x_1, \ldots, x_n$.

(b) Suppose we take our loss function to be squared error loss. What is the Bayes estimate in terms of the problem (be specific)? Explain what the Bayes estimate means in words.

(c) If we used absolute error loss instead, what would the Bayes estimate be?

5. Find a 90 percent credible interval for λ using the methods of Chapter 4 for the following model:

$$X | \lambda \sim \text{Poisson}(\lambda)$$

$$\lambda \sim \Gamma(a, b),$$

where X is the number of babies delivered at a hospital during a particular month and λ is the average number of babies that are delivered per month. Be sure to interpret your interval in terms of the problem. Hint: You’ll want to use R to solve this problem, so include any code with your write up. For full credit make it very clear what you’re doing in your write up and in R. Assume the following: $x = 42, a = 5, b = 6$.

03:18 Tuesday 12th January, 2016
6. Suppose

\[X_1, \ldots, X_n | \theta \overset{iid}{\sim} \text{Poisson}(\theta). \]

Assume \(I(\theta) = \frac{n}{\theta} \).

(a) Find Jeffreys’ prior. Is it proper or improper? Show that it’s proper or improper without using any calculus.

(b) Find \(p(\theta | x_1, \ldots, x_n) \) under Jeffreys’ prior.

7. Suppose

\[X_1, \ldots, X_n | \sigma^2 \overset{iid}{\sim} \text{Normal}(0, \sigma^2) \]

\[p_J(\sigma^2) \propto \sigma^{-2}. \]

Find \(p(\sigma^2 | x_1, \ldots, x_n) \).
Chapter 5

Bayesian Risk and Minimaxity

5.1 Motivations

What is risk and why do we study it? Risk is the average amount we expect to lose in the long run. For example, if we own 10 shares of Coca-Cola stock, then the risk is the average amount we expect to lose over the long run (or we could interpret this to be average amount we gain).

We think about risk inadvertently whether we realize it or not when we make important decisions. As statisticians, risk is something we would like to minimize.

Example 5.1: (Nancy Reagan) Faced with early-stage breast cancer, former First Lady Nancy Reagan weighed the pros and cons that went along with having a mastectomy, instead of a lumpectomy. At the time, Nancy Reagan said,

“At the time of my operation, there were some people, including doctors, who thought I have taken too drastic a step in choosing the mastectomy instead of lumpectomy, which involved removing only the tumor itself and a small amount of tissue—but also weeks of radiation. I resented these statements, and I still do. This is a very personal decision, one that each woman must make for herself. This was my choice, and I don’t believe I should have been criticized for it. For some women, it would have been wrong, but for me it was right. Perhaps, if I had been 20 years old and unmarried, I would have made a different decision. But I’ve already had my children and I have a wonderful understanding husband.”

This example shows the risk analysis that Nancy Reagan went through in deciding between two surgery operations. People make these same types of decisions every day. We will show how to make them from a statistical point of view so that we can make the best choice possible.
5.2 Introduction to Loss and Risk

After we observe the data $X = x$, we can make a decision regarding θ. We define the set of allowable decisions to be the action space, \mathcal{A}. Often \mathcal{A} is the same as the parameter space, in which case the decision d is equivalent to estimating the value of θ.

Definition 5.1: (Loss Function) The *loss function*, $L(\theta, d)$, is the amount of loss incurred from estimating the parameter θ by some statistic d (a function of the data).

The loss function in an estimation problem reflects the fact that if some decision d is close to an unknown parameter θ, then the decision d is reasonable and little loss is incurred. However, if d is far away from θ, a large loss is incurred. Our decision is based on the data X, so we will usually write the decision as $d(X)$.

Example 5.2: (Examples of Loss Functions)

- Squared Error: $L(\theta, d) = (d - \theta)^2$.
- Absolute Value: $L(\theta, d) = |d - \theta|$.

The squared error loss function penalizes more heavily than the absolute value loss function when d is farther away from θ.

Definition 5.2: (Risk) The (frequentist) risk is defined as

$$R(\theta, d) = E_\theta[L(\theta, d(X))]$$

which is the average loss over time that results from using the estimator d.

Remark 1: We write the subscript θ on the expectation because the risk is calculated as if the value of θ is fixed, i.e., each value of θ gives a corresponding value of the risk.

Remark 2: We can write the risk as

$$R(\theta, d) = \int_x L(\theta, d(x))p(x|\theta) \, dx$$

or

$$R(\theta, d) = \sum_x L(\theta, d(x))p(x|\theta).$$

Definition 5.3: (Bayes Risk) The Bayes risk is defined as

$$r(d) = E[p(R(\theta, d)),$$

where the expectation is taken over some prior $p(\theta)$ that specifies the probabilities of different values of θ.
Remark 1: We can write the Bayes risk as

\[r(d) = \int \theta R(\theta, d) p(\theta) \, d\theta \]

or

\[r(d) = \sum_{\theta} R(\theta, d) p(\theta). \]
Definition 5.4: Basic Decision Problem

The general non-sequential decision theory consists of three basic principles.

1. The possible states of nature, denoted by Θ, sometimes referred to as the parameter space.

2. A set of actions, A, available to the statistician.

3. A loss function, $L(\theta, a)$, where θ is any state of nature in Θ and a is any action in A.

The triplet expression (Θ, A, L) defines what is called a game. The game is played as follows. Nature selects a point in Θ, and the statistician without being informed of the choice of nature, chooses an action (or decision) in A. As a consequence of these two choices, the statistician loses an amount $L(\theta, a)$.

Example 5.3: Two Contestants

Two contestants simultaneously put up either one or two fingers. One of the players, say player I, wins if the sum of the digits showing is odd. The other player, say player II, wins if the sum of the digits showing is even. The winner in all cases receives in dollars the sum of the digits showing, which is paid to him by the loser.

We label player I as nature and player II as the statistician. If we denote 1 and 2 by the respective decisions to put up one or two fingers, then $\Theta = A = \{1, 2\}$.

We can easily write down the loss functions for this example:

$$L(1, 1) = -2, \quad L(1, 2) = L(2, 1) = 3, \quad L(2, 2) = -4.$$

We can also view the loss function in the form of a table.

<table>
<thead>
<tr>
<th>A, Θ</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>-4</td>
</tr>
</tbody>
</table>

Table 5.1: Loss function of two players from view of statistician

Example 5.4: Recall the set up of Example 5.3 Suppose before the game is played, player II (statistician) is allowed to ask player I (nature) how many fingers he intends to put up. Suppose nature must answer truthfully with probability 3/4 (and thus untruthfully with probability 1/4).

Therefore, the statistician therefore observes a random variable X (the answer nature gives) taking either the values 1 or 2. Note that

$$f_1(1) = 3/4, \quad f_1(2) = 1/4, \quad f_2(1) = 1/4, \quad f_2(2) = 3/4.$$

There are exactly four possible decision rules d_1, d_2, d_3, d_4 with

$$d_1(1) = d_1(2) = 1$$
5.2. INTRODUCTION TO LOSS AND RISK

\begin{align*}
d_2(1) &= 1, d_2(2) = 2 \\
d_3(1) &= 2, d_3(2) = 1 \\
d_4(1) &= d_4(2) = 2
\end{align*}

Let’s calculate \(R(\theta, d_1) \). Suppose

\[
R(\theta, d_1) = \sum_x L(\theta, d_1)p(x|\theta) = L(\theta, d_1(1))f_{\theta}(1) + L(\theta, d_1(2))f_{\theta}(2).
\]

Recall \(\theta = 1, 2 \).

\[
R(1, d_1) = L(1, d_1(1))f_1(1) + L(1, d_1(2))f_1(2) = L(1, 1) = -2.
\]

\[
R(2, d_1) = L(2, d_1(2))f_2(1) + L(2, d_1(2))f_2(2) = L(2, 1) = 3.
\]

It is easy to calculate the (frequentist) risk for \(d_2, d_3, d_4 \).
5.2. How Often Should the Statistician Carry His Umbrella?

Suppose a statistician at the University of Florida doesn’t particularly like getting wet, so he’s interested in knowing how often he should carry his umbrella given the probability that it will rain on a given day.

<table>
<thead>
<tr>
<th>Nature</th>
<th>Takes Umbrella (T)</th>
<th>Doesn’t Take (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rain (R)</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>No Rain (N)</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 5.2: Loss Function

First, let’s consider what our loss function is in terms of the table above. Note that

\[
L(\theta, d) = \begin{cases}
0, & \text{for } L(R, T), \\
10, & \text{for } L(R, D), \\
1, & \text{for } L(N, T), \\
0, & \text{for } L(N, D).
\end{cases}
\]

Notice that in this example, there is no data \(X\). That means that for any particular state of nature (\(R\) or \(N\)) and any particular decision (\(T\) or \(D\)), there is nothing random going on. Thus, \(R(\theta, d) = E_\theta[L(\theta, d(X))]\) is really just \(E_\theta[L(\theta, d)] = L(\theta, d)\), so the risk and the loss are the same. This is always the case in no data problems.

Suppose we can predict “Rain” with 100% accuracy. Let’s now find the value of \(d\) that minimizes \(R(\theta, d)\).

Solution:

\[
R(R, d) = \begin{cases}
0, & \text{if } d = T, \\
10, & \text{if } d = D.
\end{cases}
\]

The \(d\) that minimizes the risk above is \(d = T\), meaning the statistician would take his umbrella. Similarly, if we know \(\theta = N\) with 100% accuracy, then we decide \(D\), and the statistician decides to leave his umbrella at home.

The cases above are unreasonable, so let’s consider the situation where we know

\[
\theta = \begin{cases}
R, & \text{with probability } p, \\
N, & \text{with probability } 1 - p.
\end{cases}
\]

This is a prior \(p(\theta)\) on the values of \(\theta\).

Now we would like to minimize the Bayes risk, \(r(d) = E[R(\theta, d)]\).
Solution: If the statistician takes the umbrella, then

\[r(d) = E[R(\theta, T)] = p \cdot 0 + (1 - p) \cdot 1 = 1 - p. \]

If the statistician decides to leave his umbrella at home then

\[r(d) = E[R(\theta, D)] = p \cdot 10 + (1 - p) \cdot 0 = 10p. \]

If \(1 - p < 10p \), then the statistician should take his umbrella. On the other hand, if \(1 - p > 10p \), the statistician should leave his umbrella at home. Note that we have minimized the Bayes risk.

As an example, if \(p = 0.2 \), then the risk from taking is \(1 - p = 0.8 \) and from not taking is \(10p = 2 \). So, the statistician assumes less Bayes risk of getting wet by carrying his umbrella around.

The statistician might now wonder what the changepoint value is for this problem. That is, what is the value of \(p \) when the statistician takes and doesn’t take his umbrella that results in the two situations having equal Bayes risk. To find this value of \(p \), we simply solve

\[1 - p = 10p \]

and find that \(p = 1/11 \).

As a homework exercise, redo with a general \(L(R, D) = q \) and see how sensitive the risk and Bayes risk are for different values of \(q \). You may use \(R \) for this.

5.3 Minimaxity

We now introduce a concept that appears as an “insurance against the worst case” in the sense that it aims to minimize the expected loss in the least favorable case. This idea appears in economics and not only in statistics (a subject called game theory), where two adversaries compete. In our case, they will usually be the Statistician and Nature. Once the statistician has determined the procedure at hand, nature selects the state of nature, i.e., the parameter, which maximizes the loss of the statistician.

Definition 5.5: An estimator is minimax if it minimizes the maximum risk. For solving problems, we will first maximize the risk over all possible parameter values. Then we find the estimator that minimizes this maximum risk.

Theorem 5.1: If the Bayes estimate, \(\hat{\theta}_B \), has constant (frequentist) risk under the given prior, then \(\hat{\theta}_B \) is considered to be minimax.

Example 5.5: The first oil drilling platforms in the North Sea were designed according to a minimax principle. They were supposed to resist the conjugate action of the worst gale (wind) and worst storm ever observed, at the minimal record temperature. This strategy obviously gives a very comfortable margin of safety, but at a great margin of cost. For more recent platforms, engineers have taken into account the distribution of these weather phenomena in order to reduce the production cost.

03:18 Tuesday 12th January, 2016
Example 5.6: (Umbrella Example Continued) Recall our example where we considered a statistician carrying an umbrella and we found the following loss function:

\[
L(\theta, d) = \begin{cases}
0, & \text{for } L(R, T), \\
10, & \text{for } L(R, D), \\
1, & \text{for } L(N, T), \\
0, & \text{for } L(N, D).
\end{cases}
\]

Since this is a no data problem, \(R(\theta, d) = L(\theta, d) \). Then to find the minimax estimator \(d \), we first maximize over all possible values of \(\theta \) for each estimator \(d \), i.e., we maximize over rain and not rain. The maximum risks for \(D \) and \(T \) are \(R(R, D) = 10 \) and \(R(N, T) = 1 \). Then minimizing the risk functions over the estimators, we find \(R(N, T) = 1 \). So, the minimax estimator is \(d = T \), or rather for the statistician to always carry his umbrella.

Example 5.7: Two people, \(A \) and \(B \), are suspected of committing a robbery and have been apprehended. They are placed in separate cells. Both suspects are questioned and enticed to confess to the burglary. If neither person talks, then they will both serve very little jail time. However, the incentive offered by the police is that the person who cooperates first will get immunity from prosecution. Table 5.3 gives the loss as perceived by person \(A \) (in years of prison time), where \(a_1 \) denotes that person \(A \) talks and \(a_2 \) denotes that \(A \) doesn’t talk. Similarly, \(\theta_1 \) denotes the state of nature that \(B \) talks, while \(\theta_2 \) represents the state of nature that \(B \) doesn’t talk.

<table>
<thead>
<tr>
<th>(\theta_1)</th>
<th>(a_1)</th>
<th>(a_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\theta_2)</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 5.3: Loss Function for Robbery Example

Note that this is a no data problem, so the frequentist risk equals the loss. We want to find the minimax estimator \(a_1 \) or \(a_2 \) in terms of person \(A \).

Solution: Step 1: We want to calculate the maximum risk over \(\theta_1 \) and \(\theta_2 \) for each choice of \(a_1 \) and \(a_2 \). Doing so, we get \(R(\theta_1, a_1) = 10 \) and \(R(\theta_1, a_2) = 20 \).

Step 2: Now we minimize over all values of \(a \). This leads to \(R(\theta_1, a_1) = 10 \). This implies the minimax estimator is \(a_1 \) or rather that person \(A \) should confess.

Similarly, if we look at the risk for person \(B \), we find the minimax estimator should be that person \(B \) should also confess. Thus, minimaxity leads to both people going to jail for the full 20 years.

Intuitively above, we’re picking the worst case scenario for each situation. The we pick the one with the “best” worst case scenario.
5.4. CHOOSING THE BEST ESTIMATOR

Example 5.8: Minimax Example
Suppose $X \sim \text{Geo}(\theta)$. Then

$$P(X = x|\theta) = \theta(1 - \theta)^{x-1}, \ x = 1, 2, \ldots$$

Consider the prior under which $P(\theta = 1/4) = 2/3, \ P(\theta = 1) = 1/3$. Find the Bayes estimate of θ under the above prior using squared error loss. Recall from a previous homework assignment

$$P(\theta = 1/4|x = 1) = 1/3$$

and

$$P(\theta = 1|x = 1) = 2/3.$$

Also for

$$k > 1, P(\theta = 1|X = k) = 0,$$

which implies

$$P(\theta = 1/4|X = k) = 1 \text{ for all } k > 1.$$

Hence, the Bayes estimate under squared error loss under the given prior is simply the posterior mean. If $k = 1$,

$$d(1) = \hat{\theta}^B = (1/4)(1/3) + (1)(2/3) = 3/4.$$

If $k > 1$,

$$d(k) = \hat{\theta}^B = 1/4.$$

Now consider

$$R(\theta, d) = \sum_x L(\theta, \hat{\theta})p(x|\theta)$$

$$= (3/4 - \theta)^2P(X = 1|\theta) + (1/4 - \theta)^2P(X \neq 1|\theta)$$

$$= (3/4 - \theta)^2\theta + (1/4 - \theta)^2(1 - \theta)$$

$$= 1/16.$$

Since the Bayes estimate has constant risk under the prior given, we know that the Bayes estimate is minimax.

5.4 Choosing the Best Estimator

We’ve looked at different estimators throughout the course such as the mle and the Bayes estimate. But which one is best? The is often a very hard question to answer and is in a sense beyond the scope of this course. The main conclusion we can reach, however, is that usually one estimator is not uniformly better than another one. The next example illustrates why.

03:18 Tuesday 12th January, 2016
Example 5.9: Let $X_1, \ldots, X_{16} | \theta$ constitute a random sample of size 16 from $N(\theta, 1)$. We will assume the squared error loss function out of convenience. That is,

$$L(\theta, d) = (\theta - d)^2.$$

The following two estimators are suggested:

$$d_1(x) = \frac{1}{16} \sum_i x_i$$

and

$$d_2(x) = 0.$$

We can easily compute the frequentist risk.

$$R(\theta, d_1(x)) = E_\theta[(\bar{X} - \theta)^2].$$

Recall

$$\bar{X} \sim N(\theta, 1/16).$$

This implies

$$\bar{X} - \theta \sim N(0, 1/16).$$

Thus,

$$R(\theta, d_1(x)) = E_\theta[(\bar{X} - \theta)^2] = 1/16.$$

Clearly,

$$R(\theta, d_2(x)) = \theta^2.$$

Plotting both of these, we find that neither d_1 nor d_2 is uniformly better than the other.
Figure 5.1: Frequentist risk plot for d_1 and d_2