Dirichlet-Multinomial

- \(\theta = (\theta_1, \ldots, \theta_m) \),
- \(X_i \in \{1, \ldots, m\} \),
- \(\sum_i \theta_i = 1 \).

Assume that

\[
X \mid \theta \overset{\text{ind}}{\sim} \text{Multinomial}(\theta)
\]

or

\[
X \mid \theta \overset{\text{ind}}{\sim} \text{Categorical}(\theta)
\]

\[
P(X_i = j \mid \theta) = \theta_j
\]
$\theta \sim \text{Dirichlet}(\alpha)$

What is the density of the Dirichlet?

$$p(\theta \mid \alpha) \propto \prod_{j=1}^{m} \theta_{j}^{\alpha_j-1},$$

where $\sum_{j} \theta_{j} = 1$, $\theta_{i} \geq 0$ for all i

Figure 1: 3 dimensional support of the θ space. Called the simplex!
Likelihood

Define the data as $D = (x_1, \ldots, x_n)$, $x_i \in \{1, \ldots m\}$. Consider

$$p(D \mid \theta) = \prod_{i=1}^{n} P(X_i = x_i \mid \theta)$$ \hspace{1cm} (1)

$$= \prod_{i=1}^{n} \theta_{x_i}$$ \hspace{1cm} (2)

$$= \prod_{i=1}^{n} \prod_{j=1}^{m} \theta_j^{I(x_i = j)}$$ \hspace{1cm} (3)

$$= \prod_{j=1}^{m} \theta_j^{\sum_{i} I(x_i = j)}$$ \hspace{1cm} (4)

$$= \prod_{j=1}^{m} \theta_j^{c_j}$$ \hspace{1cm} (5)

where $c = (c_1, \ldots, c_m)$, $c_j = \# \{i : x_i = j\}$.
Likelihood, Prior, and Posterior

\[
p(D \mid \theta) = \prod_{j=1}^{m} \theta_{j}^{c_j}
\]

\[
P(\theta) \propto \prod_{j=1}^{m} \theta_{j}^{\alpha_j-1} I(\sum_j \theta_j = 1, \theta_i \geq 0 \forall i)
\]

Then

\[
P(\theta \mid D) \propto \prod_{j=1}^{m} \theta_{j}^{c_j} \times \prod_{j=1}^{m} \theta_{j}^{\alpha_j-1} I(\sum_j \theta_j = 1, \theta_i \geq 0 \forall i) \tag{6}
\]

\[
\propto \prod_{j=1}^{m} \theta_{j}^{c_j+\alpha_j-1} I(\sum_j \theta_j = 1, \theta_i \geq 0 \forall i) \tag{7}
\]

This implies

\[
\theta \mid D \sim \text{Dirichlet}(c + \alpha).
\]
Takeaways

1. Dirichlet is conjugate for Categorical or Multinomial."}
2. Useful formula:

\[\prod_i \text{Multinomial}(x_i \mid \theta) \times \text{Dir}(\theta \mid \alpha) \propto \text{Dir}(\theta \mid c + \alpha). \]

\(^1\text{The word Categorical seems to be used in CS and ML. The word Multinominal seems to be used in Statistics and Mathematics. I have no idea what is used in other sciences.}\)
Exercises

1. Derive the mean and variance of the Dirichlet distribution.

2. Suppose we have a new data point x. That is calculate $p(x \mid D)$. Derive this on your own. (You need to do 1 to complete 2).