Intro to Monte Carlo

Rebecca C. Steorts
Bayesian Methods and Modern Statistics: STA 360/601

Module 5
1. The PhD notes
2. Homework
3. Lab (it’s duplicated for a reason)
4. Class modules
5. Questions you ask me
How I write the exam

1. I sit down and I go through the slides
2. I think about what we talked about in class
3. I look at what I assigned for your for reading in the notes, homework, Hoff, and labs.
4. I think about the big concepts and I write problems to test your knowledge of this.
Where many of your went wrong

1. You derived the Normal-Normal (you wasted time).
2. You froze on the exam – it happens.
3. You didn’t use your time wisely.
4. You wrote nothing down for some problems.
5. Advice: write down things that make sense. We know when you’re writing things down that are wrong. (Like when I make a typo in class).
How to turn your semester around

1. Have perfect homework grades
2. Start preparing for midterm 2 now. (It’s on March 10th).
3. You midterm grades were a worst case scenario.
4. There will be a curve and most of your grades will keep going up. (READ THIS AGAIN).
5. Keep working hard. (And yes, I know you’re all working very hard).
6. Undergrads: stay after class for a few minutes. I want to talk to you apart from the grad students.
1. Homework 4: posted and due March 2, 11:55 PM.
2. Lab next week: importance and rejection sampling
3. Lab before midterm 2: Gibbs sampling
4. Class: importance sampling, rejection, and Gibbs sampling.
Goal: approximate
\[\int_X h(x)f(x) \, dx \]
that is intractable, where \(f(x) \) is a probability density.

What’s the problem? Typically \(h(x) \) is messy!

Why not use numerical integration techniques?

In dimension \(d = 3 \) or higher, Monte carlo really improves upon numerical integration.
Numerical integration

- Suppose we have a d-dimensional integral.
- Numerical integration typically entails evaluating the integrand over some grid of points.
- However, if d is even moderately large, then any reasonably fine grid will contain an impractically large number of points.
Let $d = 6$. Then a grid with just ten points in each dimension will consist of 10^6 points.

If $d = 50$, then even an absurdly coarse grid with just two points in each dimension will consist of 2^{50} points (note that $2^{50} > 10^{15}$).

What’s happening here?
Numerical integration error rates (big Ohh concepts)

If $d = 1$ and we assume crude numerical integration based on a grid size n, then we typically get an error of order n^{-1}.

For most dimensions d, estimates based on numerical integrations required m^d evaluations to achieve an error of m^{-1}.

Said differently, with n evaluations, you get an error of order $n^{-1/d}$.

But, the Monte Carlo estimate retains an error rate of $n^{-1/2}$. (The constant in this error rate may be quite large).
The generic problem here is to evaluate

$$E_f[h(x)] = \int_X h(x)f(x) \, dx.$$

The classical way to solve this is generate a sample (X_1, \ldots, X_n) from f.

Now propose as an approximation the empirical average:

$$\bar{h}_n = \frac{1}{n} \sum_{j=1}^{n} h(x_j).$$

Why? \bar{h}_n converges a.s. (i.e. for almost every generated sequence) to $E_f[h(X)]$ by the Strong Law of Large Numbers.
Also, under certain assumptions\(^1\), the asymptotic variance can be approximated and then can be estimated from the sample \((X_1, \ldots, X_n)\) by

\[
v_n = \frac{1}{n} \sum_{j=1}^{n} [h(x_j) - \bar{h}_n]^2.
\]

Finally, by the CLT (for large \(n\)),

\[
\frac{\bar{h}_n - E_f[h(X)]}{\sqrt{v_n}} \overset{\text{approx.}}{\sim} N(0, 1).
\]

(Technically, it converges in distribution).

\(^1\)see Casella and Robert, page 65, for details
Importance Sampling

Recall that we have a difficult, problem child of a function $h(x)$!

- Generate samples from a distribution $g(x)$.
- We then “re-weight” the output.

Note: g is chosen to give greater mass to regions where h is large (the important part of the space).

This is called importance sampling.
Importance Sampling

Let g be an arbitrary density function and then we can write

$$I = E_f[h(x)] = \int_x h(x) \frac{f(x)}{g(x)} g(x) \, dx = E_g \left[\frac{h(x)f(x)}{g(x)} \right]. \quad (1)$$

This is estimated by

$$\hat{I} = \frac{1}{n} \sum_{j=1}^n \frac{f(X_j)}{g(X_j)} h(X_j) \rightarrow E_f[h(X)] \quad (2)$$

based on a sample generated from g (not f). Since (1) can be written as an expectation under g, (2) converges to (1) for the same reason the Monte carlo estimator \bar{h}_n converges.
The Variance

\[
Var(\hat{I}) = \frac{1}{n^2} \sum_i Var \left(\frac{h(X_i)f(X_i)}{g(X_i)} \right)
\]

\[
= \frac{1}{n} Var \left(\frac{h(X_i)f(X_i)}{g(X_i)} \right) \quad \Rightarrow \quad (4)
\]

\[
\hat{Var}(\hat{I}) = \frac{1}{n} \hat{Var} \left(\frac{h(X_i)f(X_i)}{g(X_i)} \right).
\]

\[
\text{(3)}
\]

\[
\text{(4)}
\]

\[
\text{(5)}
\]
Suppose we want to estimate $P(X > 5)$, where $X \sim N(0, 1)$.

Naive method:
- Generate $X_1 \ldots X_n \overset{iid}{\sim} N(0, 1)$
- Take the proportion $\hat{p} = \bar{X} > 5$ as your estimate

Importance sampling method:
- Sample from a distribution that gives high probability to the “important region” (the set $(5, \infty)$).
- Do re-weighting.
Importance Sampling Solution

Let $f = \phi_o$ and $g = \phi_\theta$ be the densities of the $N(0, 1)$ and $N(\theta, 1)$ distributions (θ taken around 5 will work). Then

$$p = \int I(u > 5) \phi_o(u) \, du$$

$$= \int \left[I(u > 5) \frac{\phi_o(u)}{\phi_\theta(u)} \right] \phi_\theta(u) \, du. \quad (7)$$

In other words, if

$$h(u) = I(u > 5) \frac{\phi_o(u)}{\phi_\theta(u)}$$

then $p = E_{\phi_\theta}[h(X)]$.

If $X_1, \ldots, X_n \sim N(\theta, 1)$, then an unbiased estimate is

$$\hat{p} = \frac{1}{n} \sum_i h(X_i).$$
Simple Example Code

```r
1 - pnorm(5)  # gives 2.866516e-07

## Naive method
set.seed(1)
mySample <- 100000
x <- rnorm(n=mySample)
pHat <- sum(x>5)/length(x)
sdPHat <- sqrt(pHat*(1-pHat)/length(x))  # gives 0

## IS method

set.seed(1)
y <- rnorm(n=mySample, mean=5)
h <- dnorm(y, mean=0)/dnorm(y, mean=5) * I(y>5)
mean(h)  # gives 2.865596e-07
sd(h)/sqrt(length(h))  # gives 2.157211e-09

Notice the difference between the naive method and IS method!
```
Harder example

Let $f(x)$ be the pdf of a $N(0, 1)$. Assume we want to compute

$$a = \int_{-1}^{1} f(x) dx = \int_{-1}^{1} N(0, 1) dx$$

Let $g(X)$ be an arbitrary pdf,

$$a(x) = \int_{-1}^{1} \frac{f(x)}{g(x)} g(x) \ dx.$$

We want to be able to draw $g(x) \sim Y$ easily. But how should we go about choosing $g(x)$?
Harder example

- Note that if $g \sim Y$, then $a = E[I_{[-1,1]}(Y) \frac{f(Y)}{g(Y)}]$.

- Some g's which are easy to simulate from are the pdf’s of:
 - the Uniform($-1, 1$),
 - the Normal($0, 1$),
 - and a Cauchy with location parameter 0 (Student t with 1 degree of freedom).

- Below, there is code of how to get a sample from

\[
I_{[-1,1]}(Y) \frac{f(Y)}{g(Y)}
\]

for the three choices of g.
Harder example

```r
uniformIS <- function(sampleSize=10) {
  sapply(runif(sampleSize,-1,1),
      function(xx) dnorm(xx,0,1)/dunif(xx,-1,1)) }

cauchyIS <- function(sampleSize=10) {
  sapply(rt(sampleSize,1),
      function(xx)
      (xx <= 1)*(xx >= -1)*dnorm(xx,0,1)/dt(xx,2)) }

gaussianIS <- function(sampleSize=10) {
  sapply(rnorm(sampleSize,0,1),
      function(xx) (xx <= 1)*(xx >= -1)) }
```
Figure 1: Histograms for samples from $I_{[-1,1]}(Y) \frac{f(Y)}{g(Y)}$ when g is, respectively, a uniform, a Cauchy and a Normal pdf.
Often we have sample from μ, but know $\pi(x)$ except for a multiplicative $\mu(x)$ constant. Typical example is Bayesian situation:

- $\pi(x) = \nu_Y = \text{posterior of } \theta \mid Y \text{ when prior density is } \nu$.
- $\mu(x) = \lambda_Y = \text{posterior of } \theta \mid Y \text{ when prior density is } \lambda$.

Consider

$$
\frac{\pi(x)}{\mu(x)} = \frac{c_\nu L(\theta) \nu(\theta)}{c_\lambda L(\theta) \lambda(\theta)} = c \frac{\nu(\theta)}{\lambda(\theta)} = c \ell(x),
$$

where $\ell(x)$ is known and c is unknown.

This implies that

$$
\pi(x) = c \ell(x) \mu(x).
$$

2 I’m motivating this in a Bayesian context. The way Hoff writes this is equivalent.
Then if we’re estimating $h(x)$, we find

$$
\int h(x) \pi(x) \, dx = \int h(x) c \ell(x) \mu(x) \, d(x)
$$

(8)

$$
= \frac{\int h(x) c \ell(x) \mu(x) \, d(x)}{\int \pi(x) \, d(x)}
$$

(9)

$$
= \frac{\int h(x) c \ell(x) \mu(x) \, d(x)}{\int c \ell(x) \mu(x) \, d(x)}
$$

(10)

$$
= \frac{\int h(x) \ell(x) \mu(x) \, d(x)}{\int \ell(x) \mu(x) \, d(x)}.
$$

(11)

Generate $X_1, \ldots, X_n \sim \mu$ and estimate via

$$
\frac{\sum_i h(X_i) \ell(X_i)}{\sum_i \ell(X_i)} = \sum_i h(X_i) \left(\frac{\ell(X_i)}{\sum_j \ell(X_j)} \right) = \sum_i w_i h(X_i)
$$

where $w_i = \frac{\ell(X_i)}{\sum_j \ell(X_j)} = \frac{\nu(\theta_i)/\lambda(\theta_i)}{\sum_j \nu(\theta_j)/\lambda(\theta_j)}$.

Why the choice above for $\ell(X)$? Just taking a ratio of priors. The motivation is the following for example:

- Suppose our application is to Bayesian statistics where $\theta_1, \ldots, \theta_n \sim \lambda_Y$.
- Think of $\pi = \nu$ as a complicated prior.
- Think of $\mu = \lambda$ as a conjugate prior.
- Then the weights are $w_i = \frac{\nu(\theta_i)/\lambda(\theta_i)}{\sum_j \nu(\theta_j)/\lambda(\theta_j)}$.
1. If μ and π i.e. ν and λ differ greatly most of the weight will be taken up by a few observations resulting in an unstable estimate.

2. We can get an estimate of the variance of

$$\sum_i \frac{h(X_i) \ell(X_i)}{\ell(X_i)}$$

but we need to use theorems from advanced probability theory (The Cramer-Wold device and the Multivariate Delta Method). These details are beyond the scope of the class.

3. In Bayesian statistics, the cancellation of a potentially very complicated likelihood can lead to a great simplification.

4. The original purpose of importance sampling was to sample more heavily from regions that are important. So, we may do importance sampling using a density μ because it’s more convenient than using a density π. (These could also be measures if the densities don’t exist for those taking measure theory).
Rejection Sampling

Rejection sampling is a method for drawing random samples from a distribution whose p.d.f. can be evaluated up to a constant of proportionality.

Difficulties? You must design a good proposal distribution (which can be difficult, especially in high-dimensional settings).
Uniform Sampler

Goal: Generate samples from Uniform(A), where A is complicated.

Example: \(X \sim \text{Uniform(Mandelbrot)} \).

How? Consider \(I_X(A) \).

Figure 2: A complicated function \(A \), called the Mandelbrot!
Proposition

- Suppose $A \subset B$.
- Let $Y_1, Y_2, \ldots \sim \text{Uniform}(B)$ iid and
- $X = Y_k$ where $k = \min\{k : Y_k \in A\}$,

Then it follows that

$$X \sim \text{Uniform}(A).$$

Proof: Exercise. Hint: Try the discrete case first and use a geometric series.
Figure 3: (Left) How to draw uniform samples from region A? (Right) Draw uniform samples from B and keep only those that are in A.
General Rejection Sampling Algorithm

Goal: Sample from a complicated pdf \(f(x) \).

Suppose that
\[
f(x) = \frac{\tilde{f}(x)}{\alpha}, \alpha > 0
\]

Algorithm:
1. Choose a proposal distribution \(q \) such that \(c > 0 \) with
\[
cq(x) \geq \tilde{f}(x).
\]

2. Sample \(X \sim q \), sample \(Y \sim \text{Unif}(0, cq(X)) \) (given \(X \))

3. If \(Y \leq \tilde{f}(X) \), \(Z = X \), we reject and return to step (2).

Output: \(Z \sim f \)

Proof: Exercise.
Figure 4: Visualizing just f.
Figure 5: Visualizing just f and \tilde{f}.
Figure 6: Visualizing f and \tilde{f}. Now we look at enveloping q over f.
Figure 7: Visualizing f and \tilde{f}. Now we look at enveloping cq over \tilde{f}.
Figure 8: Recalling the sampling method and accept/reject step.

\[X \sim q \]
\[Y \sim \text{Unif}(0, cq) \]
\[Y \leq \tilde{f} \]
reject

\[f \]
\[\tilde{f} \]
Figure 9: Entire picture and an example point X and Y.
Suppose we want to generate random variables from the Beta(5.5,5.5) distribution.

There are no direct methods for generating from Beta(a,b) if a,b are not integers.

One possibility is to use a Uniform(0,1) as the trial distribution. A better idea is to use an approximating normal distribution.

Do this as an exercise on your own.