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Intro to Markov chain Monte Carlo (MCMC)

Goal: sample from f(x), or approximate Ef [h(X)].

Recall that f(x) is very complicated and hard to sample from.

How to deal with this?

1. What’s a simple way?

2. What are two other ways?

3. What happens in high dimensions?
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High dimensional spaces

I In low dimensions, IS and RS works pretty well.

I But in high dimensions, a proposal g(x) that worked in 2-D,
often doesn’t mean that it will work in any dimension.

I Why? It’s hard to capture high dimensional spaces!

Figure 1: A high dimensional space (many images).

We turn to Markov chain Monte Carlo (MCMC).
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Intution
Imagine that we have a complicated function f below and it’s high
probability regions are represented in green.

Figure 2: Example of a Markov chain
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Intution

Figure 3: Example of a Markov chain and red starting point

5



Intution

Figure 4: Example of a Markov chain and moving from the starting point
to a high probability region.
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What is Markov Chain Monte Carlo

I Markov Chain – where we go next only depends on our last
state (the Markov property).

I Monte Carlo – just simulating data.
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Why MCMC?

(a) the region of high probability tends to be “connected”

I That is, we can get from one point to another without going
through a low-probability region, and

(b) we tend to be interested in the expectations of functions that
are relatively smooth and have lots of “symmetries”

I That is, one only needs to evaluate them at a small number of
representative points in order to get the general picture.
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Advantages/Disadvantages of MCMC:

Advantages:

I applicable even when we can’t directly draw samples

I works for complicated distributions in high-dimensional
spaces, even when we don’t know where the regions of high
probability are

I relatively easy to implement

I fairly reliable

Disadvantages:

I slower than simple Monte Carlo or importance sampling (i.e.,
requires more samples for the same level of accuracy)

I can be very difficult to assess accuracy and evaluate
convergence, even empirically
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Hard Discs in a Box Example

Figure 5: Example of a phase diagram in chemistry.

Many materials have phase diagrams that look like the picture
above.
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Hard Discs in a Box Example

To understand this phenoma, a theoretical model was proposed:
Metropolis, Rosenbluth, Rosenbluth, and Teller, 1953

Figure 6: Example of N molecules (hard discs) bouncing around in a box.

Called hard discs because the molecules cannot overlap.
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Hard Discs in a Box Example

Have an (x, y) coordinate for each molecule.

The total dimension of the space is R2N .

Figure 7: Example of N molecules (hard discs) bouncing around in a box.
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Hard Discs in a Box Example

X ∼ f(x) (Boltzman distribution).

Goal: compute Ef [h(x)].

Since X is high dimensional, they proposed “clever moves” of the
molecules.
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High Level Overview of Metropolis Algorithm

Metropolis algorithm: For iterations i = 1, . . . , n, do:

1. Consider a molecule and a box around the molecule.

2. Uniformly draw a point in the box.

3. According to a “rule”, you accept or reject the point.

4. If it’s accepted, you move the molecule.

[For clarification, you could use this as pseudocode on the exam
instead of writing R code.]
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Example of one iteration of algorithm

Consider a molecule and a box around the molecule.

Figure 8: This illustrates step 1 of the algorithm.
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Example of one iteration of algorithm

Uniformly draw a point in the box.

Figure 9: This illustrates step 2 of the algorithm.
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Example of one iteration of algorithm

According to a “rule”, you accept or reject the point.

Here, it was accepted, so we move the point.

Figure 10: This illustrates step 3 and 4 of the algorithm.
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Example of one iteration of algorithm
Here, we show one entire iteration of the algorithm.

Figure 11: This illustrates one iteration of the algorithm.

After running many iterations n (not N), we have an
approximation for Ef (h(X)), which is 1

n

∑
i h(Xi).

We will talk about the details later of why this is a “good
approximation.”
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Some food for thought

We just covered the Metropolis algorithm (1953 paper).

I We did not cover the exact procedure for accepting or
rejecting (to come).

I Are the Xi’s independent?

I Our approximation holds by The Ergodic Theorem
for those that want to learn more about it.

I The ergodic theorem says: “if we start at a point xo and we
keeping moving around in our high dimensional space, then we
are guaranteed to eventually reach all points in that space
with probability 1.”

19

https://www.youtube.com/watch?v=ZjrJpkD3o1w


Metropolis Algorithm

Setup: Assume pmf π on X (countable).

Have f : X → R.

Goal:

a) sample/approximate from π

b) approximate Eπ[f(x)], X ∼ π.
The assumption is that π and or f(X) are complicated!
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Why things work!

Big idea and why it works: we apply the ergodic theorem.

“If we take samples X = (X0, X1, . . . , ) then by the ergodic
theorem, they will eventually reach π, which is known as the
stationary distribution (the true pmf).”
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Metropolis Algorithm

The approach is to apply the ergodic theorem.

1. If we run the Markov chain long enough, then the last state is
approximately from π.

2. Under some regularly conditions,

1

n

n∑
i=1

f(Xi)
a.s−→ Eπ[f(x)].
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Terminology

1. Proposal matrix = stochastic matrix.

Let
Q = (Qab : a, b ∈ X ).

Note: I will use Qab = Q(a, b) at times.

2. Note:
π(x) = π̃(x)/z, z > 0.

What is known and unknown above?

23



Metropolis Algorithm

I Choose a symmetric proposal matrix Q. So, Qab = Qba.

I Initialize xo ∈ X.
I for i ∈ 1, 2, . . . , n− 1:

I Sample proposal x from Q(xi, x) = p(x | xi).
I Sample r from Uniform(0, 1).
I If

r <
π̃(x)

π̃(xi)
,

accept and xi+1 = x.
I Otherwise, reject and xi+1 = xi.

You do not need to know the general proof of this.

24



Metropolis within a Bayesian setting

Goal: We want to sample from

p(θ | y) =
f(y | θ)π(θ)

m(y)
.

Typically, we don’t know m(y).

The notation is a bit more complicated, but the set up is the same.

We’ll approach it a bit differently, but the idea is exactly the same.

25



Building a Metropolis sampler

We know π(θ) and f(y | θ), so we can can draw samples from
these.

Our notation here will be that we assume parameter values
θ1, θ2, . . . , θs which are drawn from π(θ).

We assume a new parameter value comes in that is θ∗.
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Similar to before we assume a symmetric proposal distribution,
which we call J(θ∗ | θ(s)).

I What does symmetry mean here? J(θa | θb) = J(θb | θa).
I That is, the probability of proposing θ∗ = θa given that
θ(s) = θb is equal to the probability of proposing θ∗ = θb given
that θ(s) = θa.

I Symmetric proposals include:

J(θ∗ | θ(s)) = Uniform(θ(s) − δ, θ(s) + δ)

and
J(θ∗ | θ(s)) = Normal(θ(s), δ2).

27



The Metropolis algorithm proceeds as follows:

1. Sample θ∗ ∼ J(θ | θ(s)).
2. Compute the acceptance ratio (r):

r =
p(θ∗|y)

p(θ(s)|y)
=

p(y | θ∗)p(θ∗)
p(y | θ(s))p(θ(s))

.

3. Let

θ(s+1) =

{
θ∗ with prob min(r,1)

θ(s) otherwise.

Remark: Step 3 can be accomplished by sampling
u ∼ Uniform(0, 1) and setting θ(s+1) = θ∗ if u < r and setting
θ(s+1) = θ(s) otherwise.

Exercise: Convince yourselves that step 3 is the same as the
remark!
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A Toy Example of Metropolis

Let’s test out the Metropolis algorithm for the conjugate
Normal-Normal model with a known variance situation.

X1, . . . , Xn | θ
iid∼ Normal(θ, σ2)

θ ∼ Normal(µ, τ2).

Recall that the posterior of θ is Normal(µn, τ
2
n), where

µn = x̄
n/σ2

n/σ2 + 1/τ2
+ µ

1/τ2

n/σ2 + 1/τ2

and

τ2n =
1

n/σ2 + 1/τ2
.
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A Toy Example of Metropolis

In this example: σ2 = 1, τ2 = 10, µ = 5, n = 5, and

y = (9.37, 10.18, 9.16, 11.60, 10.33).

For these data, µn = 10.03 and τ2n = 0.20.

Note: this is a toy example for illustration.
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We need to compute the acceptance ratio r. Then

r =
p(θ∗|x)

p(θ(s)|x)
(1)

=
p(x|θ∗)p(θ∗)
p(x|θ(s))p(θ(s))

(2)

=

( ∏
i dnorm(xi, θ

∗, σ)∏
i dnorm(xi, θ(s), σ)

)(
dnorm(θ∗, µ, τ)

dnorm(θ(s), µ, τ)

)
(3)
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In many cases, computing the ratio r directly can be numerically
unstable, however, this can be modified by taking log r.
This results in

log r =
∑
i

[
log dnorm(xi, θ

∗, σ)− log dnorm(xi, θ
(s), σ)

]
+
∑
i

[
log dnorm(θ∗, µ, τ)− log dnorm(θ(s), µ, τ)

]
.

Then a proposal is accepted if log u < log r, where u is sample
from the Uniform(0,1).
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We generate 10,000 iterations of the Metropolis algorithm starting
at θ(0) = 0 and using a normal proposal distribution, where

θ(s+1) ∼ Normal(θ(s), 2).

Figure 12 shows a trace plot for this run as well as a histogram for
the Metropolis algorithm compared with a draw from the true
normal density.
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Figure 12: Left: trace plot of the Metropolis sampler. Right: Histogram
versus true normal density for 10,000 iterations.
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# setting values

set.seed(1)

s2<-1

t2<-10

mu<-5;

n<-5

# rounding the rnorm to 2 decimal places

y<-round(rnorm(n,10,1),2)

# mean of the normal posterior

mu.n<-( mean(y)*n/s2 + mu/t2 )/( n/s2+1/t2)

# variance of the normal posterior

t2.n<-1/(n/s2+1/t2)

# defining the data

y<-c(9.37, 10.18, 9.16, 11.60, 10.33)
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####metropolis part####

##S = total num of simulations

theta<-0 ; delta<-2 ; S<-10000 ; THETA<-NULL ; set.seed(1)

for(s in 1:S){

## simulating our proposal

#the new value of theta

theta.star<-rnorm(1,theta,sqrt(delta))

##taking the log of the ratio r

log.r<-( sum(dnorm(y,theta.star,sqrt(s2),log=TRUE))

+ dnorm(theta.star,mu,sqrt(t2),log=TRUE) )

- ( sum(dnorm(y,theta,sqrt(s2),log=TRUE))

+ dnorm(theta,mu,sqrt(t2),log=TRUE) )

if(log(runif(1))<log.r) { theta<-theta.star }

##updating THETA

THETA<-c(THETA,theta)

} 36



##two plots: trace of theta and

comparing the empirical distribution

##of simulated values to the true posterior

par(mar=c(3,3,1,1),mgp=c(1.75,.75,0))

par(mfrow=c(1,2))

# creating a sequence

skeep<-seq(10,S,by=10)

# making a trace place

plot(skeep,THETA[skeep],type="l",

xlab="iteration",ylab=expression(theta))

# making a histogram

hist(THETA[-(1:50)],prob=TRUE,main="",

xlab=expression(theta),ylab="density")

th<-seq(min(THETA),max(THETA),length=100)

lines(th,dnorm(th,mu.n,sqrt(t2.n)) )
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Questions you should be able to answer!

I What is the goal of Metropolis?

I What is known and unknown?

I What are good proposals?

I What does the ergodic theorem say in words?

I Are good proposals always easy to choose?

I When would we use Metropolis over Importance sampling and
Rejection sampling?

I What is a simple diagnostic of a Markov chain?

I Are we guaranteed convergence of the Markov chain?
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