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I When are Bayesian and frequentist methods the same?

I Example: Normal-Normal

I Posterior predictive inference

I Credible intervals
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Notation

p(x|θ) likelihood

π(θ) prior

p(x) =

∫
p(x|θ)π(θ) dθ marginal likelihood

p(θ|x) =
p(x|θ)π(θ)

p(x)
posterior probability

p(xnew|x) =

∫
p(xnew|θ)π(θ|x) dθ predictive probability
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Normal-Normal

X1, . . . , Xn|θ
iid∼ N(θ, σ2)

θ ∼ N(µ, τ2),

where σ2 is known. Calculate the distribution of θ|x1, . . . , xn.
Using a ton of math and algebra, you can show that

θ|x1, . . . , xn ∼ N

( nx̄

σ2 + µ
τ2

n

σ2 + 1
τ2

,
1

n

σ2 + 1
τ2

)

= N

(
nx̄τ2 + µσ2

nτ2 + σ2 ,
σ2τ2

nτ2 + σ2

)
.
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Two Useful Things to Know

Definition
The reciprocal of the variance is referred to as the precision. Then

Precision =
1

Variance
.

Suppose the loss we assume is squared error. Let δ(x) be an
estimator of true parameter θ. Then

MSE(δ(x)) = Bias2 + V ariance (1)

=
{
θ − Eθ[δ(x)]

}2
+ Eθ[

{
δ(x)− Eθ[δ(x)]

}2
(2)
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Theorem
Let δn be a sequence of estimators of g(θ) with mean squared
error E(δn − g(θ))2. Let bn(θ) be the bias.

(i) If E[δn − g(θ)]2 → 0 then δn is consistent for g(θ).

(ii) Equivalent to the above, δn is consistent if bn(θ)→ 0 and
V ar(δn)→ 0 for all θ.

(iii) In particular (and most useful), δn is consistent if it is
unbiased for each n and if V ar(δn)→ 0 for all θ.

We omit the proof since it requires Chebychev’s Inequality along
with a bit of probability theory. See Problem 1.8.1 in TPE for the
exercise of proving this.
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Normal-Normal Revisited

We write the posterior mean and posterior variance out.

E(θ|x) =

nx̄

σ2 + µ
τ2

n

σ2 + 1
τ2

.

=

nx̄

σ2

n

σ2 + 1
τ2

+
µ
τ2

n

σ2 + 1
τ2

.

V (θ|x) =
1

n

σ2 + 1
τ2

.

Can someone given an explanation of what’s happening here? How
does this contrast frequentist inference?
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What happens as n→∞?

Divide the posterior mean (numerator and denominator) by n.
Now take n→∞. Then

E(θ|x) =

1

n

nx̄

σ2
+

1

n

µ

τ2

1

n

n

σ2
+

1

n

1

τ2

→

x̄

σ2

1

σ2

= x̄ as n→∞.

In the case of the posterior variance, divide the denominator and
numerator by n. Then

V (θ|x) =

1

n
1

n

n

σ2 +
1

n

1

τ2

≈ σ2

n
→ 0 as n→∞.

Since the posterior mean is unbiased and the posterior variance
goes to 0, the posterior mean is consistent by our Theorem.
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Posterior Predictive Distributions

I We have just seen how estimation can be done in Bayesian
analysis.

I Another goal might be prediction.

I That is given some data y and a new observation ỹ, we may
wish to find the conditional distribution of ỹ given y.

I This distribution is referred to as the posterior predictive
distribution.

I That is, our goal is to find p(ỹ|y).
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Posterior Predictive Distributions
Consider

p(ỹ|y) =
p(ỹ, y)

p(y)

=

∫
θ p(ỹ, y, θ) dθ

p(y)

=

∫
θ p(ỹ|y, θ)p(y, θ) dθ

p(y)

=

∫
θ
p(ỹ|y, θ)p(θ|y) dθ.

In most contexts, if θ is given, then ỹ|θ is independent of y, i.e.,
the value of θ determines the distribution of ỹ, without needing to
also know y. When this is the case, we say that ỹ and y are
conditionally independent given θ. Then the above becomes

p(ỹ|y) =

∫
θ
p(ỹ|θ)p(θ|y) dθ.
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Theorem
If θ is discrete and ỹ and y are conditionally independent given θ,
then the posterior predictive distribution is

p(ỹ|y) =
∑
θ

p(ỹ|θ)p(θ|y).

If θ is continuous and ỹ and y are conditionally independent given
θ, then the posterior predictive distribution is

p(ỹ|y) =

∫
θ
p(ỹ|θ)p(θ|y) dθ.
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Negative Binomial Distribution

I We reintroduce the Negative Binomial distribution.

I The binomial distribution counts the numbers of successes in
a fixed number of iid Bernoulli trials.

I Recall, a Bernoulli trial has a fixed success probability p.

I Suppose instead that we count the number of Bernoulli trials
required to get a fixed number of successes. This formulation
leads to the Negative Binomial distribution.

I In a sequence of independent Bernoulli(p) trials, let X denote
the trial at which the rth success occurs, where r is a fixed
integer.
Then

f(x) =

(
x− 1

r − 1

)
pr(1− p)x−r, x = r, r + 1, . . .

and we say X ∼ Negative Binom(r, p).
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Negative Binomial Distribution

I There is another useful formulation of the Negative Binomial
distribution.

I In many cases, it is defined as Y = number of failures before
the rth success. This formulation is statistically equivalent to
the one given above in term of X = trial at which the rth
success occurs, since Y = X − r. Then

f(y) =

(
r + y − 1

y

)
pr(1− p)y, y = 0, 1, 2, . . .

and we say Y ∼ Negative Binom(r, p).

I When we refer to the Negative Binomial distribution in this
class, we will refer to the second one defined unless we
indicate otherwise.
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X|λ ∼ Poisson(λ)

λ ∼ Gamma(a, b)

Assume that X̃|λ ∼ Poisson(λ) is independent of X. Assume we
have a new observation x̃. Find the posterior predictive
distribution, p(x̃|x). Assume that a is an integer. First, we must
find p(λ|x).
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Recall

p(λ|x) ∝ p(x|λ)(p(λ)

∝ e−λλxλa−1e−λ/b

= λx+a−1e−λ(1+1/b).

Thus, λ|x ∼ Gamma(x+ a, 1
1+1/b), i.e.,

λ|x ∼ Gamma(x+ a, b
b+1). Finish the problem for homework.

15



I Suppose that X is the number of pregnant women arriving at
a particular hospital to deliver their babies during a given
month.

I The discrete count nature of the data plus its natural
interpretation as an arrival rate suggest modeling it with a
Poisson likelihood.

I To use a Bayesian analysis, we require a prior distribution for
θ having support on the positive real line. A convenient choice
is given by the Gamma distribution, since it’s conjugate for
the Poisson likelihood.

The model is given by

X|λ ∼ Poisson(λ)

λ ∼ Gamma(a, b).
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I We are also told 42 moms are observed arriving at the
particular hospital during December 2007. Using prior study
information given, we are told a = 5 and b = 6.

I (We found a, b by working backwards from a prior mean of 30
and prior variance of 180).

We would like to find several things in this example:

1. Plot the likelihood, prior, and posterior distributions as
functions of λ in R.

2. Plot the posterior predictive distribution where the number of
pregnant women arriving falls between [0,100], integer valued.

3. Find the posterior predictive probability that the number of
pregnant women arrive is between 40 and 45 (inclusive). Do
this for homework.
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Confidence intervals vs credible intervals

A confidence interval for an unknown (fixed) parameter θ is an
interval of numbers that we believe is likely to contain the true
value of θ. Intervals are important because they provide us with an
idea of how well we can estimate θ.
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Confidence intervals vs credible intervals

I A confidence interval is constructed to contain θ a percentage
of the time, say 95%.

I Suppose our confidence level is 95% and our interval is
(L,U). Then we are 95% confident that the true value of θ is
contained in (L,U) in the long run.

I In the long run means that this would occur nearly 95% of the
time if we repeated our study millions and millions of times.
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Common Misconceptions in Statistical Inference

I A confidence interval is a statement about θ (a population
parameter). It is not a statement about the sample.

I Remember that a confidence interval is not a statement about
individual subjects in the population.

I As an example, suppose that I tell you that a 95% confidence
interval for the average amount of television watched by
Americans is (2.69, 6.04) hours.

I This doesn’t mean we can say that 95% of all Americans
watch between 2.69 and 6.04 hours of television. We also
cannot say that 95% of Americans in the sample watch
between 2.69 and 6.04 hours of television.

I Beware that statements such as these are false.

I However, we can say that we are 95 percent confident that
the average amount of televison watched by Americans is
between 2.69 and 6.04 hours.
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Credible intervals

Let θ be a random variable (parameter). A confidence (credible
region) on θ is to determine C(Xn) such that

π(θ ∈ C(Xn) | Xn) = 1− α,

where α is predetermined such as 0.05.
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Simple definition of credible interval

A Bayesian credible interval of size 1− α is an interval (a, b) such
that

P (a ≤ θ ≤ b|x) = 1− α.∫ b

a
p(θ|x) dθ = 1− α.

Remark: When you’re calculating credible intervals, you’ll
find the values of a and b by several means. You could be
asked do the following:

I Find the a, b using means of calculus to determine
the credible interval or set.

I Use a Z-table when appropriate.
I Use R to approximate the values of a and b.
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Important Point

Our definition for the credible interval could lead to many choices
of (a, b) for particular problems.
Suppose that we required our credible interval to have equal
probability α/2 in each tail. That is, we will assume

P (θ < a|x) = α/2

and
P (θ > b|x) = α/2.
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Important Point

Is the credible interval still unique? No. Consider

π(θ|x) = I(0 < θ < 0.025) + I(1 < θ < 1.95) + I(3 < θ < 3.025)

so that the density has three separate plateaus. Now notice that
any (a, b) such that 0.025 < a < 1 and 1.95 < b < 3 satisfies the
proposed definition of a ostensibly “unique” credible interval. To
fix this, we can simply require that

{θ : π(θ|x) is positive}

(i.e., the support of the posterior) must be an interval.
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Comparisons

I Conceptually, probability comes into play in a frequentist
confidence interval before collecting the data, i.e., there is a
95% probability that we will collect data that produces an
interval that contains the true parameter value. However, this
is awkward, because we would like to make statements about
the probability that the interval contains the true parameter
value given the data that we actually observed.

I Meanwhile, probability comes into play in a Bayesian credible
interval after collecting the data, i.e., based on the data, we
now think there is a 95% probability that the true parameter
value is in the interval. This is more natural because we want
to make a probability statement regarding that data after we
have observed it.
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Sleep Example

I Consider that we were interested in the proportion of the
population of American college students that sleep at least
eight hours each night (θ).

I Suppose a random sample of 27 students from Duke, where 11
students recorded they slept at least eight hours each night.

I So, we assume the data is distributed as Binomial(27, θ).

Suppose that the prior on θ was Beta(3.3,7.2). Thus, the posterior
distribution is

θ|11 ∼ Beta(11 + 3.3, 27− 11 + 7.2), i.e.,

θ|11 ∼ Beta(14.3, 23.2).
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Sleep Example

I Suppose now we would like to find a 90% credible interval for
θ.

I We cannot compute this in closed form since computing
probabilities for Beta distributions involves messy integrals
that we do not know how to compute.

I However, we can use R to find the interval.

We need to solve
P (θ < c|x) = 0.05

and
P (θ > d|x) = 0.05 for c and d.
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Sleep Example

We cannot compute this in closed form because we need to
compute ∫ c

0
Beta(14.3, 23.2) dθ = 0.05

and ∫ 1

d
Beta(14.3, 23.2) dθ = 0.05.

Note that Beta(14.3,23.2) represents

f(θ) =
Γ(37.5)

Γ(14.3)Γ(23.2)
θ14.3−1(1− θ)23.2−1.
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Sleep Example

The R code for this is very straightforward:

a = 3.3

b = 7.2

n = 27

x = 11

a.star = x+a

b.star = n-x+b

c = qbeta(0.05,a.star,b.star)

d = qbeta(1-0.05,a.star,b.star)

Running the code in R, we find that a 90% credible interval for θ is
(0.256, 0.514), meaning that there is a 90% probability that the
proportion of Duke students who sleep eight or more hours per
night is between 0.256 and 0.514 given the data.
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