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I Recall the Lasso

I The Bayesian Lasso
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The lasso

The lasso1 estimate is defined as

β̂lasso = argmin
β∈Rp

‖y −Xβ‖22 + λ

p∑
j=1

|βj |

= argmin
β∈Rp

‖y −Xβ|22︸ ︷︷ ︸
Loss

+λ ‖β‖1︸︷︷︸
Penalty

The only difference between the lasso problem and ridge regression
is that the latter uses a (squared) `2 penalty ‖β‖22, while the
former uses an `1 penalty ‖β‖1. But even though these problems
look similar, their solutions behave very differently

Note the name “lasso” is actually an acronym for: Least Absolute
Selection and Shrinkage Operator

1Tibshirani (1996), “Regression Shrinkage and Selection via the Lasso”
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β̂lasso = argmin
β∈Rp

‖y −Xβ‖22 + λ‖β‖1

The tuning parameter λ controls the strength of the penalty, and
(like ridge regression) we get β̂lasso = the linear regression estimate
when λ = 0, and β̂lasso = 0 when λ =∞

For λ in between these two extremes, we are balancing two ideas:
fitting a linear model of y on X, and shrinking the coefficients.
But the nature of the `1 penalty causes some coefficients to be
shrunken to zero exactly

This is what makes the lasso substantially different from ridge
regression: it is able to perform variable selection in the linear
model. As λ increases, more coefficients are set to zero (less
variables are selected), and among the nonzero coefficients, more
shrinkage is employed
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Example: visual representation of lasso coefficients

Our running example from last time: n = 50, p = 30, σ2 = 1, 10
large true coefficients, 20 small. Here is a visual representation of
lasso vs. ridge coefficients (with the same degrees of freedom):
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Important details

When including an intercept term in the model, we usually leave
this coefficient unpenalized, just as we do with ridge regression.
Hence the lasso problem with intercept is

β̂0, β̂
lasso = argmin

β0∈R, β∈Rp
‖y − β01−Xβ‖22 + λ‖β‖1

As we’ve seen before, if we center the columns of X, then the
intercept estimate turns out to be β̂0 = ȳ. Therefore we typically
center y,X and don’t include an intercept them

As with ridge regression, the penalty term ‖β‖1 =
∑p

j=1 |βj | is not
fair is the predictor variables are not on the same scale. Hence, if
we know that the variables are not on the same scale to begin
with, we scale the columns of X (to have sample variance 1), and
then we solve the lasso problem
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Bias and variance of the lasso

Although we can’t write down explicit formulas for the bias and
variance of the lasso estimate (e.g., when the true model is linear),
we know the general trend. Recall that

β̂lasso = argmin
β∈Rp

‖y −Xβ‖22 + λ‖β‖1

Generally speaking:

I The bias increases as λ (amount of shrinkage) increases

I The variance decreases as λ (amount of shrinkage) increases

What is the bias at λ = 0? The variance at λ =∞?

In terms of prediction error (or mean squared error), the lasso
performs comparably to ridge regression
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Bayesian Lasso

Tibshirani (1996) suggested that Lasso estimates can be
interpreted as posterior mode estimates when the regression
parameters have independent and identical Laplace (i.e.,
double-exponential) priors.
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Tibshirani and the Bayesian Lasso

Specifically, the lasso estimate can be viewed as the mode of the
posterior distribution of β

β̂L = arg max
β

p(β | y, σ2, τ)

when
p(β | τ) = (τ/2)p exp(−τ ||β||1)

and the likelihood on

p(y | β, σ2) = N(y | Xβ, σ2In).

For any fixed values σ2 > 0, τ > 0, the posterior mode of β is the
lasso estimate with penalty λ = 2τσ2.

(Details – homework).
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The Bayesian lasso2 was motivated by a a conditional Laplace prior
where

π(β | σ2) =
λ

2
√
σ2
e−λ|βj |/

√
σ2

Note: conditioning on σ2 is important as it ensures that the full
posterior is unimodal.

Lack of unimodality slows convergence of the Gibbs sampler and
makes point estimates less meaningful.

2Park and Casella (2008)
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Diabetes data

I The diabetes data contains 442 patients that we measured on
10 baseline variables.

I Examples are age, sex, BMU, BP, etc.

I The response is a measure of disease progression one year
after baseline.
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Full model

We use the improper prior density π(σ2) = 1/σ2 but any
inverse-gamma prior for σ2 also would maintain conjugacy.
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Comparisons

Figure: Lasso (a), Bayesian Lasso (b), and ridge regression (c) trace plots
for estimates of the diabetes data regression parameters versus the
relative L1 norm,
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Comparisons on the Diabetes data

Figure: Posterior median Bayesian Lasso estimates, and corresponding
95% credible intervals (equal-tailed).
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Running this in R

The lasso, Bayesian lasso, and extensions can be done using the
monomvn package in R.

In lab we will do an example of comparing and contrasting the
lasso with the Bayesian lasso.
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I Results from the Bayesian Lasso are strikingly similar to those
from the ordinary Lasso.

I Although more computationally intensive, the Bayesian Lasso
is easy to implement and automatically provides interval
estimates for all parameters, including the error variance.

I We did not cover this, but in the paper there are proposed
methods for choosing λ (Bayesian lasso).

I These could aid in choosing λ for the lasso as well and results
may be more stable.
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