
Bootstrapping and Bagging

Rebecca C. Steorts

Department of Statistical Sciences
Duke University

Predictive Modeling

November 15, 2015

Here, the bootstrap can be calculated to improve statistical
learning of decision trees.

• The key to dealing with uncertainty in parameters and
functionals is the sampling distribution of estimators.

• Knowing what distribution we’d get for our estimates on
repeating the experiment would give us things like standard
errors.

• Efron’s insight was that we can simulate replication.

• After all, we have already fitted a model to the data, which is
a guess at the mechanism which generated the data.

• Running that mechanism generates simulated data which, by
hypothesis, has the same distribution as the real data.

• Feeding the simulated data through our estimator gives us one
draw from the sampling distribution; repeating this many
times yields the sampling distribution.

Since we are using the model to give us its own uncertainty, Efron
called this “bootstrapping”

data
.00168

-0.00249

0.0183

-0.00587

0.0139

es
tim

at
or

fitted model

q0.01 = -0.0326

parameter calculation

sim
ulati

on

simulated data
.00183

-0.00378

0.00754

-0.00587

-0.00673

es
tim

at
or

q0.01 = -0.0323

re-estimate

• Suppose the original data is x .

• Our parameter estimate from the data is θ̂.

• Surrogate data sets simulated from fitted model:
X̃1, X̃2, . . . X̃B .

• Corresponding re-estimates of the parameters on the
surrogate data are θ̃1, θ̃2, . . . θ̃B .

• Function of interest is estimated by the statistic T , with
sample value t̂ = T (x),

• Values of the surrogates of

t̃1 = T (X̃1), t̃2 = T (X̃2), . . . t̃B = T (X̃B).

• When the function of interest is the parameter everything
applies without modification.

We will assume that the model is correct for some value of θ,
which we will call θ0. The true (population or ensemble) values of
the functional is likewise t0.

• Simple approach: get the variance or standard error:

V̂ar
[
t̂
]

= Var [t̃] (1)

ŝe(t̂) = sd(t̃) (2)

• Idea: simulated X̃ has about the same distribution as the real
X that our data, x , was drawn from.

• applying the same estimation procedure to the surrogate data
gives us the sampling distribution.

• This assumes, of course, that our model is right, and that θ̂ is
not too far from θ0.

Pseudo-code is provided in below:

rboot <- function(B, statistic, simulator) {

tboots <- replicate(B, statistic(simulator()))

return(tboots)

bootstrap.se <- function(simulator, statistic, B) {

tboots <- rboot(B, statistic, simulator)

se <- sd(tboots)

return(se)

• Sketch of code for calculating bootstrap standard errors.

• The function rboot generates B bootstrap samples (using the simulator

function) and calculates the statistic g on them (using statistic).

• simulator needs to be a function which returns a surrogate data set in a form
suitable for statistic. (How would you modify the code to pass arguments to
simulator and/or statistic?)

• Every use of bootstrapping is going to need to do this, it makes sense to break
it out as a separate function, rather than writing the same code many times.

• bootstrap.se just calls rboot and takes a standard deviation.

Bootstrapping corrects a biased estimator. Sampling distribution of
t̃ is close to that of t̂, and t̂ itself is close to t0, implies

E
[
t̂
]
− t0 ≈ E [t̃]− t̂ (3)

• LHS is the bias that we want to know, and the RHS is what
we can calculate with the bootstrap.

• Eq. 3 remains valid so long as the sampling distribution of
t̂ − t0 is close to that of t̃ − t̂.

• Weaker requirement than asking for t̂ and t̃ themselves to
have similar distributions, or asking for t̂ to be close to t0.

bootstrap.bias <- function(simulator, statistic, B,

t.hat) {

tboots <- rboot(B, statistic, simulator)

bias <- mean(tboots) - t.hat

return(bias)

}

• Sketch of code for bootstrap bias correction.

• Arguments are as in

• Note that t.hat is the estimate on the original data.

The Pareto distribution1, or power-law distribution, is a popular
model for data with “heavy tails”, i.e. where the probability
density f (x) goes to zero only very slowly as x →∞. The
probability density is

f (x) =
θ − 1

x0

(
x

x0

)−θ

(4)

where x0 is the minimum scale of the distribution, and θ is the
scaling exponent. (Exercise: show that x0 is the mode of the
distribution.) The Pareto is highly right-skewed, with the mean
being much larger than the median.

1Named after Vilfredo Pareto, the highly influential late-19th/early-20th
century economist, political scientist, and proto-Fascist.

If we know x0, can show that the maximum likelihood estimator of
the exponent θ is

θ̂ = 1 +
n∑n

i=1 log xi
x0

(5)

and that this is consistent2, and efficient.

• Picking x0 is a harder problem — for the present purposes,
pretend that the Oracle tells us.

• The file pareto.R, on the class website, contains a number of
functions related to the Pareto distribution, including a
function pareto.fit for estimating it. (There’s an example
of its use below.)

2Because the sample mean of logX converges, under the law of large
numbers

• Pareto came up with this density to model the distn of wealth.

• Approximately, but quite robustly across countries and
time-periods, the upper tail of the distribution of income and
wealth follows a power law, with the exponent varying as
money is more or less concentrated among the very richest3.

• Figure 1 shows the distribution of net worth for the 400
richest Americans in 2003. Taking x0 = 9× 108, the number
of individuals in the tail is 302, and the estimated exponent is
θ̂ = 2.34.

> source("pareto.R")

> wealth <- scan("wealth.dat")

> wealth.pareto <- pareto.fit(wealth,threshold=9e8)

> signif(wealth.pareto$exponent,3)

[1] 2.34

3Most of the distribution conforms to a log-normal, at least roughly.

1e+09 2e+09 5e+09 1e+10 2e+10 5e+10

0.
00
2

0.
00
5

0.
02
0

0.
05
0

0.
20
0

0.
50
0

Net worth (dollars)

Fr
ac

tio
n

of
 in

di
vi

du
al

s
at

 o
r a

bo
ve

 th
at

 n
et

 w
or

th

plot.survival.loglog(wealth,xlab="Net worth (dollars)",

ylab="Fraction of individuals at or above that net worth")

rug(wealth,side=1,col="grey")

curve((302/400)*ppareto(x,threshold=9e8,exponent=2.34,lower.tail=FALSE),

add=TRUE,lty=2,from=9e8,to=2*max(wealth))

Figure 1: Upper cumulative distribution function (or “survival function”)
of net worth for the 400 richest individuals in the US (2000 data).

• The solid line shows the fraction of the 400 individuals whose
net worth W equaled or exceeded a given value w ,
Pr (W ≥ w). (Note the logarithmic scale for both axes.)

• The dashed line is a maximum-likelihood estimate of the
Pareto distribution, taking x0 = $9× 108.

• Since there are 302 individuals at or above the threshold, the
cumulative distribution function of the Pareto has to be
reduced by a factor of (302/400).

How much uncertainty is there in this estimate of the exponent?
Let’s bootstrap.

• We need a function to generate Pareto-distributed random
variables; this, along with some related functions, is part of
the file pareto.R on the course website.

• With that tool, parametric bootstrapping proceeds shown
above.

rboot.pareto <- function(B,exponent,x0,n) {

replicate(B,pareto.fit(rpareto(n,x0,exponent),x0)$exponent)

}

pareto.se <- function(B,exponent,x0,n) {

return(sd(rboot.pareto(B,exponent,x0,n)))

}

pareto.bias <- function(B,exponent,x0,n) {

return(mean(rboot.pareto(B,exponent,x0,n)) - exponent)

}

• With θ̂ = 2.34, x0 = 9× 108, n = 302 and B = 104, this gives
a standard error of ±0.077.

• This matches some asymptotic theory but didn’t require
asymptotic assumptions.

• Asymptotically, the bias is known to go to zero; at this size,
bootstrapping gives a bias of 3× 10−3, which is effectively
negligible.

Why on earth do we need to know about bootstrapping?

• The decision trees in the last chapter suffer from high
variance,

• If we split the training data into two parts at random and fit a
decision tree to both halves, the results could be quite
different.

• In contrast, a procedure with low variance will yield similar
results if applied repeatedly to distinct data sets;

• linear regression tends to have low variance, if the ratio of n to
p is moderately large.

• Bootstrap aggregation or bagging is a general-purpose
procedure for reducing the variance of a statistical learning
method.

• We use it here for decision trees.

• Suppose n independent observations

Z1, . . . ,Zn ∼ (Z̄ , σ2).4

• How to reduce the variance and increase the prediction
accuracy?

• Take many training sets from the population.
• Guild a separate prediction model using each training set.
• Average the resulting predictions.

4So, averaging a set of observations reduces the variance.

We could do the following:

1 Calculate f̂ 1(x), . . . , f̂ B(x) using B separate training sets

2 Average these to find a single low-variance learning model
given by

f̂avg(x) =
1

B

B∑
b=1

f̂ b(x).

This is not practical! Why?

We generally do not have access to multiple training sets.
However, instead, we can bootstrap. That is, we can take repeated

samples from the single training data set.

1 We generate B different bootstrapped training data sets.

2 Then we train our method on the bth bootstrapped training
set in order to get f̂ b∗(x).

3 Finally, we average all the predictions to obtain

f̂bag(x) =
1

B

B∑
b=1

f̂ b∗(x).

This is called bagging.

Using Heart data: Survival of patients on the waiting list for the
Stanford heart transplant program.

• Figure 8.8 shows the results from bagging trees.

• The test error rate is shown as a function of B, the number of
trees constructed using bootstrapped training data sets.

• We see that the bagging test error rate is slightly lower in this
case than the test error rate obtained from a single tree.

• The number of trees B is not a critical parameter with
bagging; using a very large value of B will not lead to
overfitting.

• In practice we use a value of B sufficiently large that the error
has settled down.

• Using B = 100 is sufficient to achieve good performance here.

0 50 100 150 200 250 300

0
.1

0
0

.1
5

0
.2

0
0

.2
5

0
.3

0

Number of Trees

E
rr

o
r

Test: Bagging

Test: RandomForest

OOB: Bagging

OOB: RandomForest

Figure 2: default

Variable importance computed using the mean decrease in Gini
index and expressed relative to the maximum.

Thal

Ca

ChestPain

Oldpeak

MaxHR

RestBP

Age

Chol

Slope

Sex

ExAng

RestECG

Fbs

0 20 40 60 80 100

Variable Importance

Figure 3: default

	The Bootstrap Principle
	Variances and Standard Errors
	Bias Correction
	Parametric Bootstrapping Example: Pareto's Law of Wealth Inequality

	Bagging and Random Forests
	Intro example on Heart data

