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Re-sampling Methods

A re-sampling method involves repeatedly drawing samples from a
training data set and refitting a model to obtain addition
information about that model.

Example: Suppose we want to know the variability associated with a
linear regression model.

1. Draw different samples from the training data
2. Fit a linear regression to each sample
3. Examine how the fits differ
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Re-sampling Methods

In this module, we focus on cross-validation (CV) and the bootstrap.

» CV can be used to estimate the test error associated with a
statistical learning method to evaluate its performance or to
select a model's level of flexibility

» The boostrap most commonly measures the accuracy of a
parameter estimate or of a given statistical learning method.

1. Model assessment: the process of evaluating a model's
performance

2. Model selection: the process of selectiing the proper level of
flexibility for a model
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Test error versus Training error (review, Ch 2)

» The test error is the average error that results from using a
statistical learning method to predict the response on a new
observation.

» The test error can be easily calculated if a designated test set
is available. (Sometimes this is not the case).

» The training error is the average error that results from using
a statistical learning method to predict the response on the
data that was used to train the method.
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Test Error (via Holding Out Training Data)

> In the absence of a very large designated test set that can be
used to directly estimate the test error rate, a number of
techniques can be used to estimate this quantity using the
available training data.

» (More details in Chapter 6 using mathematical adjustments.)

» Consider a class of methods that estimate the test error rate by
holding out a subset of the training observations from the
fitting process, and then applying the statistical learning
method to those held out observations.

» For simplicity we assume that we are interested in performing
regression with a quantitative response.
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The Validation Set Approach

Goal: we want to estimate the test error associated with fitting a
particular statistical learning method on a set of observations.

We first consider the validation set approach
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The Validation Set Approach

1. Randomly divide the available set of observations into two
parts, a training set and a validation set or hold-out set.

2. Fit the model on the training set.

3. Use the resulting fitted model to predict the responses for the
observations in the validation set.

4. The resulting validation set error rate is typically assessed using
the MSE in the case of a quantitative response. This provides
an estimate of the test error rate.
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The Validation Set Approach
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Figure 1: Toy data set with n observations.
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The Validation Set Approach
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Figure 2: A set of n observations are randomly split into a training set
(shown in blue, containing observations 7, 22, and 13, among others) and
a validation set (shown in beige, and containing observation 91, among
others). The statistical learning method is fit on the training set, and its
performance is evaluated on the validation set.
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Drawbacks to the Validation Approach

1. The validation estimate of the test error rate can be highly
variable, which depends on which observations are in the
training and validations sets.

2. Only a subset of the observations (training set) are used to fit
the model.

The validation set error may tend to over-estimate the test error
rate for the model fit on the entire data set.!

CV addresses both issues abovel!

1This might happen if the training set is very small.
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Leave-One-Out Cross-Validation (LOOCV)

LOOCV does not create two subsets of comparable size. Instead it
does the following:

1. A single observation (xi,y1) is used for the validation set.

2. The remaining observations {(x2,y2), ..., (Xn, ¥n)} make up
the training set.

3. The statistical learning method is fit on the n — 1 training
observations, and a prediction y; is made for the excluded
observation, using its value xj.

4. Since (x1,y1) was not used to fit the model, MSE; = (y1 — 1)?

provides an approximately unbiased estimate for the test error.

This isn't enough though, because it's only for one single
observation.
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Leave-One-Out Cross-Validation (LOOCV)

» We repeat the procedure by selecting (x2, y2) on the validation
set.

» We train the model on the n — 1 observations that are leftover.

» We compute the MSE; as we did before, now using (x2, y2).

We now repeat this process approach n times to produce n squared
errors,

MSE; ..., MSE,.

The LOOCV estimate for the test MSE is the average of these n
test error estimates:

1 n
Viny =~ ; MSE; (1)
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Leave-One-Out Cross-Validation (LOOCV)
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Figure 3: Toy data set with n observations. (The same as the validation
approach.)

14 /44



Leave-One-Out Cross-Validation (LOOCV)
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Figure 4: A set of n data points is repeatedly split into a training set
(shown in blue) containing all but one observation, and a validation set
that contains only that observation (shown in beige).
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Leave-One-Out Cross-Validation (LOOCV)
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Figure 5: A set of n data points is repeatedly split into a training set
(shown in blue) containing all but one observation, and a validation set
that contains only that observation (shown in beige).
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Leave-One-Out Cross-Validation (LOOCV)
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Figure 6: A set of n data points is repeatedly split into a training set
(shown in blue) containing all but one observation, and a validation set
that contains only that observation (shown in beige).
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Leave-One-Out Cross-Validation (LOOCV)

[123 n|
123 n
123 .
123 n
123 .

Figure 7: A set of n data points is repeatedly split into a training set
(shown in blue) containing all but one observation, and a validation set
that contains only that observation (shown in beige). The test error is
then estimated by averaging the n resulting MSE's. The first training set
contains all but observation 1, the second training set contains all but
observation 2, and so forth.
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LOOCV versus the Validation Method

LOOCYV has a couple of major advantages over the validation set
approach.

1. It has far less bias.

» LOOCV: Repeatedly fit the statistical learning method using
training sets that contain n — 1 observations, there are almost
as many as are in the entire data set.

» This contrasts the validation method, where the training set is
about half the size of the original data set.

» LOOCV approach tends not to overestimate the test error rate
as much as the validation set approach does.

2. Performing LOOCV multiple times produces similar results.
This is not typically true for the validation method.

Remark: LOOCV has the potential to be expensive to implement,
since the model has to be fit n times. This can be very time
consuming if n is large, and if each individual model is slow to fit.
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k-fold CV

This approach involves randomly dividing the set of observations
into k groups, or folds, of approximately equal size.

1.

The first fold is treated as a validation set, and the method is
fit on the remaining k — 1 folds.

The mean squared error, MSEq, is then computed on the
observations in the held-out fold.

This procedure is repeated k times;

Each time, a different group of observations is treated as a
validation set.

This process results in k estimates of the test error,

MSE;, ..., MSE.

. The k-fold CV estimate is computed by averaging these values:

Vi = Z MSE; (2)
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k-fold CV

» Notice that LOOCYV is a special case of k-fold CV when k = n.
> In practice, one typically performs k-fold CV using k =5 or

k = 10. Why?
» What is the advantage of using k =5 or k = 10 rather than
k=n?

» The most obvious advantage is computational since LOOCV
requires fitting the statistical learning method n times.
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5-fold CV
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Figure 8: Toy data set with n observations. (The same as the validation
approach.)
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5-fold CV
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Figure 9: A set of n observations is randomly split into five

non-overlapping groups. Each of these fifths acts as a validation set
(shown in beige), and the remainder as a training set (shown in blue). The
test error is estimated by averaging the five resulting MSE estimates.
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Bias-Variance Trade-Off for k-Fold Cross-Validation

> Recall that k-fold CV with k < n has a computational
advantage to LOOCV.

» But putting computational issues aside, a less obvious but
potentially more important advantage of k-fold CV is that it
often gives more accurate estimates of the test error rate
than does LOOCV.

» This has to do with a bias-variance trade-off.

24 /44



Bias-Variance Trade-Off for k-Fold Cross-Validation

» Recall that the validation set approach can lead to
overestimates of the test error rate, since in this approach the
training set used to fit the statistical learning method contains
only half the observations of the entire data set.

» Using this logic, it is not hard to see that LOOCV will give
approximately unbiased estimates of the test error, since each
training set contains n — 1 observations, which is almost as
many as the number of observations in the full data set.

> Performing k-fold CV for, say, k = 5 or k = 10 will lead to an
intermediate level of bias, since each training set contains
(kf)" observations — fewer than in the LOOCV approach,

but substantially more than in the validation set approach.

Therefore, from the perspective of bias reduction, LOOCV is
preferred to k-fold CV.
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What about the variance?

Bias is not the only source for concern in an estimating procedure;
we must also consider the procedure’s variance.

It turns out that LOOCV has higher variance than does k-fold CV
with k < n.
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What about the variance?

» When we perform LOOCV, we are in effect averaging the
outputs of n fitted models, each of which is trained on an
almost identical set of observations.

» These outputs are highly (positively) correlated with each
other.

» In contrast, when we perform k-fold CV with k < n, we are
averaging the outputs of k fitted models that are somewhat
less correlated with each other, since the overlap between the
training sets in each model is smaller.

> Since the mean of many highly correlated quantities has higher
variance than does the mean of many quantities that are not as
highly correlated, the test error estimate resulting from LOOCV
tends to have higher variance than does the test error estimate
resulting from k-fold CV.
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Bias-Variance Tradeoff for k-fold CV

There is a bias-variance trade-off associated with the choice of k in
k-fold cross-validation.

Typically, given these considerations, one performs k-fold
cross-validation using k = 5 or k = 10, as these values have been
shown empirically to yield test error rate estimates that suffer
neither from excessively high bias nor from very high variance.
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Cross-Validation on Classification Problems

» We have illustrated the use of CV in the regression setting
where the outcome Y is quantitative, and so have used MSE to
quantify test error.

» CV can also be a very useful approach in the classification
setting when Y is qualitative.

» CV works the same as above except that rather than using
MSE to quantify test error, we instead use it to quantify the
number of misclassified observations.
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Cross-Validation on Classification Problems

For instance, in the classification setting, the LOOCV error rate
takes the form

1
CV(,,) = E Z EI’I’,’, (3)
i=1

where Err; = I(y; # ;).

» The k-fold CV error rate and validation set error rates are
defined analogously.

See Section 5.1.5 for more details and further reading.
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An Application to the Auto data set

We explore the use of the validation set approach in order to
estimate the test error rates that result from fitting various linear
models on the Auto data set.

We first do some data set up and pre-processing before we begin.
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An Application to the Auto data set

» We set a seed to make our methods reproducible
» Use the sample() function to split the set of observations into
two equal parts.

» We randomly select a random subset of 196 observations out of
the original data set of 392 observations. We refer to this new
sample as the training set
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Data set up

library(ISLR)

set.seed (1)

# randomly select 196 units
# from the original data set.
train <- sample(392,196)
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Linear regression

We now run a linear regression using the training data.

Im.fit <- lm(mpg~horsepower , data = Auto,
subset=train)
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Linear regression

We now use predict() to estimate the response for all 392
observations, and we use the mean() function to calculate the MSE
of the 196 observations in the validation set.

Note that the -train index below selects only the observations that
are not in the training set.

attach(Auto)
mean ( (mpg-predict (lm.fit,Auto)) [-train] ~2)

## [1] 26.14142

Therefore, the estimated test MSE for the linear regression fit is
26.14.
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Linear regression

We can use the poly() function to estimate the test error for the
polynomial and cubic regressions.

lm.fit2=1m(mpg~poly (horsepower ,2),data=Auto,
subset=train)
mean ( (mpg-predict (lm.fit2,Auto)) [-train] ~2)

## [1] 19.82259

1m.fit3=1m(mpg~poly(horsepower ,3),data=Auto,
subset=train)
mean ((mpg-predict (lm.fit3,Auto)) [-train] ~2)

## [1] 19.78252

These error rates are 19.82 and 19.78, respectively. If we choose a
different training set instead, then we will obtain somewhat different

errors on the validation set. (Verify this on your own).
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Summary of validation method

Using this split of the observations into a training set and a
validation set, we find that the validation set error rates for the
models with linear, quadratic, and cubic terms are 23.30, 18.90, and
19.26, respectively.

These results suggest: a model that predicts mpg using a quadratic
function of horsepower performs better than a model that involves
only a linear function of horsepower, and there is little evidence in

favor of a model that uses a cubic function of horsepower.
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LOOCV for Auto data set

The LOOCV estimate can be automatically computed for any
generalized linear model using the gim() and cv.glm() functions.

Recall if we do not give the glm() a family, then it will perform
linear regression.

The cv.glm() function is part of the boot library.

38 /44



LOOCV for Auto data set

# run a linear model using glm package
library(boot)
glm.fit=glm(mpg~horsepower ,data=Auto)
cv.err=cv.glm(Auto,glm.fit)
cv.err$delta

## [1] 24.23151 24.23114

The cv.glm() function produces a list with several components.

The two numbers in the delta vector contain the cross-validation
results. (These coorrespond to the LOOCV statistic, equation 5.1).

Here, they are both the same. (They can differ).

Our cross-validation estimate for the test error is approximately
24.23.
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LOOCV for Auto data set

We can repeat this procedure for increasingly complex polynomial
fits.

#look at polynomial fits

#up to order 5

cv.error=rep(0,5)

for (i in 1:5){
glm.fit=glm(mpg~poly (horsepower ,i),data=Auto)
cv.error[i]l=cv.glm(Auto,glm.fit)$deltal1]

}

Cv.error

## [1] 24.23151 19.24821 19.33498 19.42443 19.03321

We see a sharp drop in the estimated test MSE between the linear
and quadratic fits, but then no clear improvement from using

higher-order polynomials.
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k-fold for Auto data set

» The cv.glm() function can also be used to implement k-fold
Cv.

» Below we use k = 10, a common choice for k, on the Auto
data set.

» We once again set a random seed and initialize a vector in
which we will store the CV errors corresponding to the
polynomial fits of orders one to ten.
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k-fold for Auto data set

set.seed(17)

# look at polynomials of order

# up to 10

cv.error.10=rep(0,10)

for (i in 1:10){
glm.fit=glm(mpg~poly (horsepower ,i),data=Auto)
cv.error.10[i]l=cv.glm(Auto,glm.fit ,K=10)$delta[1]

}

cv.error.10

## [1] 24.20520 19.18924 19.30662 19.33799 18.87911 19.02:
## [8] 19.71201 18.95140 19.50196
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k-fold for Auto data set

» Notice that the computation time is much shorter than that of
LOOCV.

» (In principle, the computation time for LOOCV for a least
squares linear model should be faster than for k-fold CV, due
to the availability of the formula (5.2) for LOOCV; however,
unfortunately the cv.glm() function does not make use of this
formula.)

> We still see little evidence that using cubic or higher-order
polynomial terms leads to lower test error than simply using a
quadratic fit.
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delta for CV

> We saw that the two numbers associated with delta are
essentially the same when LOOCV is performed.

» When we instead perform k-fold CV, then the two numbers
associated with delta differ slightly.

» The first is the standard k-fold CV estimate (equation 5.3).
» The second is a bias-corrected version.

» On this data set, the two estimates are very similar to each
other.
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