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Agenda

I What are tree based methods?
I Regression trees
I Motivation using Hitter’s data set
I How to interpret a regression tree
I How to build a regression tree
I Application
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Basics of Decision (Predictions) Trees

I The general idea is that we will segment the predictor space
into a number of simple regions.

I In order to make a prediction for a given observation, we
typically use the mean of the training data in the region to
which it belongs.

I Since the set of splitting rules used to segment the predictor
space can be summarized by a tree such approaches are called
decision tree methods.

I These methods are simple and useful for interpretation.
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Basics of Decision Trees

I We want to predict a response or class Y from inputs
X1,X2, . . .Xp. We do this by growing a binary tree.

I At each internal node in the tree, we apply a test to one of the
inputs, say Xi .

I Depending on the outcome of the test, we go to either the left
or the right sub-branch of the tree.

I Eventually we come to a leaf node, where we make a prediction.
I This prediction aggregates or averages all the training data

points which reach that leaf.

4 / 49



Basics of Decision Trees

I Decision trees can be applied to both regression and
classification problems.

I We will first consider regression trees and then move onto
classification trees.

5 / 49



Regression Trees

In order to motivate regression trees, we begin with a simple
example.

6 / 49



Prediction of baseball player’s salary

I Our motivation is to to predict a baseball player’s Salary based
on Years (the number of years that he has played in the major
leagues) and Hits (the number of hits that he made in the
previous year).

I We first remove observations that are missing Salary values,
and log-transform Salary so that its distribution has more of a
typical bell-shape.

I Recall that Salary is measured in thousands of dollars.
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Prediction of baseball player’s salary

Figure 1: A regression tree for predicting the log salary of a baseball player,
based on the number of years that he has played in the major leagues and
the number of hits that he made in the previous year. At a given internal
node, the label (of the form Xj < tk) indicates the left-hand branch
resulting from that split, and the right-hand branch corresponds to
Xj ≥ tk .
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What does the tree mean?

I The tree represents a series of splits starting at the top of the
tree.

I The top split assigns observations having Years < 4.5 to the
left branch.

I The predicted salary for these players is given by the mean
response value for the players in the data set with Years < 4.5.

I For such players, the mean log salary is 5.107, and so we make
a prediction of e5.107 thousands of dollars, i.e. 165, 174
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What does the tree mean?

I How would you interpret the rest (right branch) of the tree?
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Prediction of baseball player’s salary

Figure 2: The three-region partition for the Hitters data set from the
regression tree illustrated in Figure 2.
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What do the regions mean?

Figure 3: The three-region partition for the Hitters data set from the
regression tree illustrated in Figure 2.

We can write these regions as the following:

1. R1 = X | Years < 4.5
2. R2 = X | Years ≥ 4.5,Hits < 117.5
3. R3 = X | Years ≥ 4.5,Hits ≥ 117.5.
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Terminology

I In keeping with the tree analogy, the regions R1, R2, and R3
are known as terminal nodes or leaves of the tree.

I As is the case for Figure 2, decision trees are typically drawn
upside down, in the sense that the leaves are at the bottom
of the tree.

I The points along the tree where the predictor space is split are
referred to as internal nodes.

I In Figure 2, the two internal nodes are indicated by the text
Years < 4.5 and Hits < 117.5.

I We refer to the segments of the trees that connect the nodes
as branches.
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Interpretation of Figure 2

I Years is the most important factor in determining Salary, and
players with less experience earn lower salaries than more
experienced players.

I Given that a player is less experienced, the number of hits that
he made in the previous year seems to play little role in his
salary.

I But among players who have been in the major leagues for five
or more years, the number of hits made in the previous year
does affect salary, and players who made more hits last year
tend to have higher salaries.

I The regression tree shown in Figure 2 is likely an
over-simplification of the true relationship between Hits, Years,
and Salary, but it’s a very nice easy interpretation over more
complicated approaches.
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How do we build the regression tree?

1. We divide the predictor space—that is, the set of possible
values for X1, . . . ,Xp—into J distinct and non-overlapping
regions, R1, . . . ,RJ .

2. For every observation that falls into the region Rj , we make the
same prediction, which is simply the mean of the response
values for the training observations in Rj .

Suppose that in Step 1, we obtain two regions and that the
response mean of the training observations in the first region is 10,
while the response mean in the second region is 20. Then for a
given observation X = x , if x ∈ R1, we will predict a value of 10,
and if x ∈ R2, we will predict a value of 20.

But how do we actually construct the regions?
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Constructing the regions

I The regions in theory could have any shape.
I However, we choose to divide the predictor space into

high-dimensional rectangles or boxes (for simplicity and ease of
interpretation of the resulting predictive model).

Our goal is to find boxes R1, . . . ,RJ that minimize the RSS given by

RSS =
J∑

j=1

∑
i∈Rj

(yi − ŷRj )2, (1)

where ŷRj is the mean response for the training observations within
the jth box.
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Issue with this construction

I Computationally infeasible to consider every possible partition
of the feature space into J boxes.

I Thus, we take a top-down, greedy approach called recursive
binary splitting.

I Called top-down since it begins at the top of the tree (all
observations below to a single region) and then successively
splits the predictor space.

I Each split is indicated via two new branches further down on
the tree.

I It is greedy since at each step of the tree building process, the
best split is made at that particular split (rather than looking
ahead and picking a split that will lead to a better tree in a
future split).
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How to build regression trees?

I One alternative is to the build the tree so long as the decrease
in RSS due to each split exceeds a threshold (high).

I This results in smaller trees, however, this is problematic since
a worthless split early on in the three might be followed by a
very good split later on – that is, a split that leads to a large
reduction in RSS later on.
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How to build regression trees — Pruning

I A better strategy is to grow a very large tree To and then
prune it back to obtain a subtree.

I How to we find the best subtree?
I We want to select a subtree that leads to the lowest test error

rate.
I Given a subtree, we can estimate the test error rate using

cross-validation (CV).
I Note that estimate the CV for every possible subtree would

take a long time since there are many subtrees.
I Thus, we need a way to select a small set of subtrees to

consider.
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Pruning

Cost complexity pruning or weakest link pruning gives us a way to
do just this!

Rather than looking at all possible subtrees, we consider a sequence
of trees indexed by a nonnegative tuning parameter α.
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Algorithm for Building a Regression Tree

1. Use recursive binary splitting to grow a large tree on the
training data, stopping only when each terminal node has fewer
than some minimum number of observations.

2. Apply cost complexity pruning to the large tree in order to
obtain a sequence of best subtrees, as a function of α.

3. Use K -fold cross-validation to choose α. That is, divide the
training observations into K folds. For each k = 1, . . . ,K :
3.1 Repeat Steps 1 and 2 on all but the kth fold of the training

data.
3.2 Evaluate the mean squared prediction error on the data in the

left-out kth fold, as a function of α.
Average the results for each value of α, and pick α to minimize
the average error.

4. Return the subtree from Step 2 that corresponds to the chosen
value of α.
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Algorithm for Building a Regression Tree (continued)

I |T | indicates the number of terminal nodes of the tree T
I Rm is the rectangle or box corresponding to the mth terminal

node
I ŷRm is the predicted response associated with Rm
I α controls a trade-off between the subtree’s complexity and its

fit to the training data

For each value of α, there is a corresponding subtree T ∈ To such
that

|T |∑
m=1

∑
xi ∈Rm

(yi − ŷRm )2 + α|T | (2)

is as small as possible.
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Algorithm for Building a Regression Tree (continued)

This is equivalent to constraining the value of |T |, i.e.,

min
ŷRm
{
∑

i
(yi − ŷRm )2} subject to |T | ≤ cα.

Using Lagrange multipliers, we find that

∆g =
∑

i
(yi − ŷRm )2 + λ(|T | − cα) (3)
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Algorithm for Building a Regression Tree (continued)

We wish to find this minT ,λ ∆g , which is a discrete optimization
problem. However, since we’re minimizing over T and λ this implies
the location of the minimizing T doesn’t depend on cα. But each
cα will imply an optimal value of λ. As far as finding the best tree is
concerned, we might as well, just pick a value of λ, and minimize

∆g ′ =
∑

i
(yi − ŷRm )2 + λ(|T |) (4)

If we declare λ = α, we have returned (2).
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Some insights

I When α = 0, then the subtree T will simply equal To, because
then (2) just measures the training error.

I However, as α = 0 increases, there is a price to pay for having
a tree with many terminal nodes, and so (2) will be minimized
for a smaller sub-tree.

I If you have seen the lasso, (2) is similar to it in the sense the
ways the lasso controls the complexity of the linear model.

I As α = 0 increases from 0 in (2), branches are pruned from the
tree in a nested and predictable way (resulting in the whole
sequence of subtrees as a function of α = 0 is easy). We can
select an α using a validation set of using cross-validation.
This process is summarized in the algorithm above.
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Application to Hitters data set

Let’s return to growing a regression tree for the Hitters dataset.

Recall that we use the Hitters data set to predict a baseball players
Salary based on Years (the number of years that he has played in
the major leagues) and Hits (the number of hits that he made in the
previous year).

There are several R packages for regression trees; the easiest one is
called, simply, tree.
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Task 1

Remove observations that are missing Hitters or Salary values, and
log-transform Salary so that its distribution has more of a typical
bell-shape.

Then build a regression tree.
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Solution to Task 1

library(ISLR)
library(tree)
attach(Hitters)
# remove NA values
Hitters <- na.omit(Hitters)
Salary <- na.omit(Salary)
# put salary on log scale and fit reg. tree
treefit <- tree(log(Salary) ~ Years + Hits, data=Hitters)
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Solution to Task 2

Find the summary of the above regression tree and plot the
regression tree. Explain your results.
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Solution to Task 2

summary(treefit)

##
## Regression tree:
## tree(formula = log(Salary) ~ Years + Hits, data = Hitters)
## Number of terminal nodes: 8
## Residual mean deviance: 0.2708 = 69.06 / 255
## Distribution of residuals:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -2.2400 -0.2980 -0.0365 0.0000 0.3233 2.1520

I There are 8 terminal nodes or leaves of the tree.
I Here “deviance” is just mean squared error; this gives us an

RMS error of 0.27.
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Solution to Task 2
plot(treefit)
text(treefit,cex=0.75)

|
Years < 4.5

Years < 3.5

Hits < 114
Hits < 40.5

Hits < 117.5

Years < 6.5
Hits < 50.5

5.511 4.624
5.264

5.583

5.689
5.730 6.215

6.740
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Solution to Task 2
|

Years < 4.5

Years < 3.5

Hits < 114
Hits < 40.5

Hits < 117.5

Years < 6.5
Hits < 50.5

5.511 4.624
5.264

5.583

5.689
5.730 6.215

6.740

Regression tree for predicting log salary from hits and years played. At each internal node, we ask the associated
question, and go to the left child if the answer is “yes”, to the right child if the answer is “no”. Note that leaves are
labeled with log salary; the plotting function isn’t flexible enough, unfortunately, to apply transformations to the
labels.
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Task 3
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5.26

5.58

5.69

5.73

6.22

6.74

How would you reproduce the above plot? (Hint: think about
breaking salary up into quantiles. Reproducing the plot and giving
the caption is the goal of Task 3.)
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Cross-Validation and Pruning

The tree package contains functions prune.tree and cv.tree for
pruning trees by cross-validation.

The function prune.tree takes a tree you fit by tree, and evaluates
the error of the tree and various prunings of the tree, all the way
down to the stump.

The evaluation can be done either on new data, if supplied, or on
the training data (the default).

If you ask it for a particular size of tree, it gives you the best
pruning of that size.

If you don’t ask it for the best tree, it gives an object which shows
the number of leaves in the pruned trees, and the error of each one.

This object can be plotted.
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Pruning your tree

The prune.tree has an optional method argument.

The default is method=“deviance”, which fits by minimizing the
mean squared error (for continuous responses) or the negative log
likelihood (for discrete responses).

The function cv.tree does k-fold cross-validation (default is 10).

It requires as an argument a fitted tree, and a function which will
take that tree and new data. By default, this function is prune.tree.
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Generic code for pruning a tree

my.tree = tree(y ~ x1 + x2, data=my.data) # Fits tree
prune.tree(my.tree,best=5) # Returns best pruned tree
prune.tree(my.tree,best=5,newdata=test.set)
my.tree.seq = prune.tree(my.tree) # Sequence of pruned
# tree sizes/errors
plot(my.tree.seq) # Plots size vs. error
my.tree.seq$dev # Vector of error
# rates for prunings, in order
opt.trees = which(my.tree.seq$dev == min(my.tree.seq$dev))
# Positions of

# optimal (with respect to error) trees
min(my.tree.seq$size[opt.trees])
# Size of smallest optimal tree
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5-fold CV on Hitters Data Set

Let’s create a training and test data set, fit a new tree on just the
training data, and then evaluate how well the tree does on the held
out training data.

Specifically, we will use 5-fold CV for evaluation.
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Training and Test Set

fold <- floor(runif(nrow(Hitters),1,11))
Hitters$fold <- fold
## the test set is just the first fold
test.set <- Hitters[Hitters$fold == 1,]
##exclude the first fold from the data here
train.set <- Hitters[Hitters$fold != 1,]
my.tree <- tree(log(Salary) ~ Years

+ Hits,data=train.set, mindev=0.001)
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Prune Tree on Training Data
# Return best pruned tree with 5 leaves,
# evaluating error on training data
prune.tree(my.tree, best=5)

## node), split, n, deviance, yval
## * denotes terminal node
##
## 1) root 235 189.200 5.948
## 2) Years < 4.5 84 40.260 5.144
## 4) Years < 3.5 57 22.220 4.916
## 8) Hits < 114 38 16.700 4.742 *
## 9) Hits > 114 19 2.069 5.264 *
## 5) Years > 3.5 27 8.854 5.624 *
## 3) Years > 4.5 151 64.340 6.395
## 6) Hits < 117.5 75 24.130 6.017 *
## 7) Hits > 117.5 76 18.890 6.769 *
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Prune Tree on Test Data
# Ditto, but evaluates on test.set
prune.tree(my.tree,best=5,newdata=test.set)

## node), split, n, deviance, yval
## * denotes terminal node
##
## 1) root 235 189.200 5.948
## 2) Years < 4.5 84 40.260 5.144
## 4) Years < 3.5 57 22.220 4.916
## 8) Hits < 114 38 16.700 4.742 *
## 9) Hits > 114 19 2.069 5.264 *
## 5) Years > 3.5 27 8.854 5.624 *
## 3) Years > 4.5 151 64.340 6.395
## 6) Hits < 117.5 75 24.130 6.017 *
## 7) Hits > 117.5 76 18.890 6.769 *

40 / 49



Prune Tree on Test Data
# Sequence of pruned tree sizes/errors
my.tree.seq = prune.tree(my.tree)
plot(my.tree.seq) # error versus plot size

size

de
vi

an
ce

60
80
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0
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0
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0

16
0

18
0

1 5 10 15 20 25

85.00  9.20  3.40  2.00  1.00  0.73  0.68  0.58  0.38  0.34  0.21  −Inf
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Prune Tree on Test Data

# Vector of error rates
#for prunings, in order
my.tree.seq$dev

## [1] 50.96518 51.16487 51.37464 51.92452 52.26719 52.63390 53.01537
## [8] 53.39839 53.97898 55.23122 55.90812 57.28763 58.01469 59.64162
## [15] 60.66070 62.14591 64.11904 67.23910 70.63947 74.08926 83.27184
## [22] 104.59653 189.17362
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Prune Tree on Test Data

# Positions of
# optimal (with respect to error) trees

opt.trees = which(my.tree.seq$dev == min(my.tree.seq$dev))
# Size of smallest optimal tree
(best.leaves = min(my.tree.seq$size[opt.trees]))

## [1] 27

my.tree.pruned = prune.tree(my.tree,best=best.leaves)
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Task 4

Now plot the pruned tree and also the corresponding partition of
regions for this tree. Interpret the pruned tree and the partition of
the regions for the tree.

44 / 49



Solution to Task 4
plot(my.tree.pruned)
text(my.tree.pruned,cex=0.3,digits=3)

|
Years < 4.5

Years < 3.5

Hits < 114

Hits < 40.5

Years < 2.5
Hits < 82 Hits < 72

Years < 2.5

Hits < 105
Hits < 149.5

Hits < 117.5

Years < 6.5

Hits < 58.5 Hits < 99
Hits < 76.5

Hits < 95.5

Hits < 50.5Years < 7.5Hits < 58.5

Years < 6.5
Hits < 169Years < 5.5 Years < 5.5 Hits < 141.5

Hits < 159.5Hits < 152.5

5.51
4.34 4.70 4.75 5.03

5.10 5.45

5.38 5.71 6.04

5.42
5.72 6.09 5.44

5.82 6.37 6.31 6.02
6.52

6.38 6.64 6.87 6.56 6.71
7.10 6.50

7.08
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Solution to Task 4
plot(Years,Hits,col=grey(10:2/11)[cut.salary],pch=20, xlab="Years",ylab="Hits")
partition.tree(my.tree.pruned,ordvars=c("Years","Hits"), add=TRUE,cex=0.5)
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Test

my.tree.cv = cv.tree(my.tree)
cv.tree(my.tree,best=5)

## node), split, n, deviance, yval
## * denotes terminal node
##
## 1) root 235 189.200 5.948
## 2) Years < 4.5 84 40.260 5.144
## 4) Years < 3.5 57 22.220 4.916
## 8) Hits < 114 38 16.700 4.742 *
## 9) Hits > 114 19 2.069 5.264 *
## 5) Years > 3.5 27 8.854 5.624 *
## 3) Years > 4.5 151 64.340 6.395
## 6) Hits < 117.5 75 24.130 6.017 *
## 7) Hits > 117.5 76 18.890 6.769 *
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Test

cv.tree(my.tree)

## $size
## [1] 27 26 25 23 22 21 20 19 18 16 15 13 12 10 9 8 7 6 5 4 3 2 1
##
## $dev
## [1] 79.08460 79.08460 79.08460 79.08460 79.08460 79.08460 79.08460
## [8] 79.08460 79.08460 79.08460 79.08460 79.08460 79.08460 79.08460
## [15] 79.08460 79.08460 78.44413 81.69170 81.98365 81.95965 87.98783
## [22] 107.98663 190.43038
##
## $k
## [1] -Inf 0.1996820 0.2097749 0.2749388 0.3426721 0.3667108
## [7] 0.3814724 0.3830205 0.5805901 0.6261173 0.6769023 0.6897523
## [13] 0.7270663 0.8134646 1.0190775 1.4852158 1.9731213 3.1200601
## [19] 3.4003728 3.4497897 9.1825804 21.3246890 84.5770933
##
## $method
## [1] "deviance"
##
## attr(,"class")
## [1] "prune" "tree.sequence"
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Test
plot(cv.tree(my.tree))
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