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Model assumptions

Goal: Given two files LA and LB, we want to compare the records from
these two files and recognize which pairs relate to the same population
unit.

Suppose there are two population A and B whose elements are
denoted by a and b respectively.

Assume the records in LA and LB are generated from these two
population with some errors and incompleteness.
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Model assumptions

Define two disjoint sets

M = {(a, b)|a = b, a ∈ A, b ∈ B}

and
U = {(a, b)|a 6= b, a ∈ A, b ∈ B}

We need to make a decision on whether a pair of records belong to M
or U for each comparison.
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Model assumptions

Decisions are made based on comparisons

γ[a, b] = [γ1(a, b), . . . , γp(a, b)]

A decision rule (linkage rule) L maps a comparison onto a set of
probabilities:

L(γ) = {P (A1|γ), P (A2|γ), P (A3|γ)}

where A1, A2, A3 are the decisions ”matched”, ”possibly matched”, and
”unmatched” respectively.
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How to evaluate rules

We assume that (a, b) are randomly selected from population A×B,
therefore it is a random variable, and so is the comparison vector γ[a, b]
Define two conditional probabilities of γ as

m(γ) = P (γ[a, b]|(a, b) ∈M)

and
u(γ) = P (γ[a, b]|(a, b) ∈ U)

Then we have two types of error associated with a linkage rule

P (A1|U) =
∑
γ

u(γ)P (A1|γ)

and
P (A3|M) =

∑
γ

m(γ)P (A3|γ)
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Optimal linkage rule

A linkage rule is denoted by L(µ, λ) if

P (A1|U) = µ

and
P (A3|M) = λ

Among the class of rules at the same level, we say a linkage rule
L(µ, λ) is the optimal rule , if the relation

P (A2|L) ≤ P (A2|L′)

holds for every L′(µ, λ)
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Find the optimal linkage rule at level (µ, λ)

We first order the comparison vectors γ in such a way that the
corresponding sequence of

m(γ)/u(γ)

is monotone decreasing. When the value is the same, we order them
arbitrarily.
We index these vectors as γi, i = 1, 2, . . . , NΓ, and also mi = m(γi),
ui = u(γi). Then we choose n and n′ such that

n−1∑
i=1

ui < µ ≤
n∑
i=1

ui

NΓ∑
i=n′

mi < λ ≤
NΓ∑

i=n′+1

mi
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Find the optimal linkage rule at level (µ, λ)

For γi, we assign probabilities to (P (A1|γi), P (A2|γi), P (A3|γi)) as
(1, 0, 0) if i ≤ n− 1

(Pµ, 1− Pµ, 0) if i = n

(0, 1, 0) if n < i ≤ n′ − 1

(0, 1− Pλ, Pλ) if i = n′

(0, 0, 1) if i ≥ n′ + 1

where Pµ and Pλ satisfies

unPµ = µ−
n∑
i=1

ui mn′Pλ = λ−
NΓ∑

i=n′+1

mi

Theorem
Let L0(µ, λ) be the linkage rule defined above. Then L0 is the optimal
linkage rule at the levels (µ, λ),
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Hypothesis testing view

At the levels (µ, λ), if

µ =

n∑
i=1

ui λ =

NΓ∑
i=n′

mi for some n < n′

the optimal linkage rule becomes
(1, 0, 0) if 1 ≤ i ≤ n
(0, 1, 0) if n < i < n′

(0, 0, 1) if n′ ≤ i ≤ NΓ

And if we define Tµ =
m(γn)

u(γn)
and Tλ =

m(γn′)

u(γn′)
, the rule becomes

(1, 0, 0) if Tµ ≤ m(γ)/u(γ)

(0, 1, 0) if Tλ < m(γ)/u(γ) < Tµ

(0, 0, 1) if m(γ)/u(γ) ≤ Tλ
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Application

The large number of possible values of m(γ) and u(γ) make the
computation and storage impractical.
To simplify the model, we assume that all the components of a
comparison vector are independent, which gives

m(γ) = m1(γ1)m2(γ2) . . .mp(γ
p)

u(γ) = u1(γ1)u2(γ2) . . . up(γ
p)

Suppose the kth component takes nk different values, then the total
number of values of γ is obviously n1n2 . . . np. With this assumption,
we only need to determine n1 + n2 + · · ·+ np values.
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Computation of mk(γ
k) and uk(γk)

Suppose we know the distribution of the population A and B, as well
as the probabilities of different types of error introduced into the files,
we can calculate m(γ) and u(γ) directly.
Recall that

mk(γ
k) = P (γk[a, b]|(a, b) ∈M)

uk(γ) = P (γk[a, b]|(a, b) ∈ U)

We have

m(name agrees and is the jth listed value)

=P (name agrees and is the jth listed value|the two records match)

=P (pick the jth listed value from A ∩B)(1− P (error))
(1)

And similar for the other quantities of interest.
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Computation of mk(γ
k) and uk(γk)

If we have access to the files, we can compute the following quantities
by simply counting:

Mh: the proportion of ”agreement” in all components except the
hth

Uh: the proportion of ”agreement” in the hth components
M : the proportion of ”agreement” in all components

Then we have the following equations:

NANBE(Mh) = E(N)
∏
j 6=h

mj + [NANB − E(N)]
∏
j 6=h

uj

NANBE(Uh) = E(N)mh + [NANB − E(N)]uh

NANBE(M) = E(N)
∏
j

mj + [NANB − E(N)]
∏
j

uj
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Computation of mk(γ
k) and uk(γk)

We have the following equations:

NANBE(Mh) = E(N)
∏
j 6=h

mj + [NANB − E(N)]
∏
j 6=h

uj

NANBE(Uh) = E(N)mh + [NANB − E(N)]uh

NANBE(M) = E(N)
∏
j

mj + [NANB − E(N)]
∏
j

uj

where
mh =

∑
γ∈Sh

m(γ) uh =
∑
γ∈Sh

u(γ)

and Sh is the set of comparison vectors whose hth component is
”agreement”.
NA and NB are the known number of records in files LA and LB and
N is the unknown number of matched records.
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Blocking

When the comparison space Γ is too large, we need to restrict the
comparisons to a subspace Γ∗. This can be achieved by partitioning or
”blocking” and making explicit comparisons only between records in
corresponding blocks.
All other γ are considered as ”unmatched”, which gives a different
levels of error:

µ∗ = µ−
∑

Γµ∩Γ̄∗

u(γ) λ∗ = λ+
∑

Γλ∩Γ̄∗

m(γ)

where

Γµ = {γ : Tµ ≤ m(γ)/u(γ)} Γλ = {γ : m(γ)/u(γ) ≤ Tλ}

Be careful when you make decisions or construct optimal rules.
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Choice of comparison space

In practice, we could have many different comparison spaces. The
difference will often be the number of configurations of component
vectors in addition to simple ”agreement”—”disagreement”
configurations (e.g. ”agreement on name John”).

The choice often depends on the specific problem, and we can
evaluate the choices by looking at

P (A2|L) = P (Tλ < m(γ)/u(γ) < Tµ)

where Tλ, Tµ,m(γ), u(γ) are all functions of the comparison space.
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Calculation of threshold values

Recall at the levels (µ, λ), if

µ =

n∑
i=1

ui λ =

NΓ∑
i=n′

mi for some n < n′

and we define Tµ =
m(γn)

u(γn)
and Tλ =

m(γn′)

u(γn′)
, the rule becomes

(1, 0, 0) if Tµ ≤ m(γ)/u(γ)

(0, 1, 0) if Tλ < m(γ)/u(γ) < Tµ

(0, 0, 1) if m(γ)/u(γ) ≤ Tλ
We want to determine (estimate) Tµ and Tλ.
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Calculation of threshold values

We sample γ by sampling the configurations for each component
independently. The total size of sample is S.
For the kth component, we sample with probability zk1 , z

k
2 , . . . , z

k
nk

that are roughly proportional to
mk(γ

k
(1))

uk(γ
k
(1))

,
mk(γ

k
(2))

uk(γ
k
(2))

, . . . ,
mk(γ

k
(nk))

uk(γ
k
(nk))

Then we order these samples by decreasing values of m(γ)/u(γ),
and we index the hth vector as γh.

Then P (
m(γ)

u(γ)
<
m(γh)

u(γh)
|γ ∈M) is estimated by

λh =

S∑
i=h

m(γi)/π(γi) where π(γi) = S

K∏
i=1

zihi

Let λ = λh to solve h, and
m(γh)

u(γh)
is an estimation for Tλ. Similar

for Tµ.
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