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Agenda

I Gibbs sampling
I Exponential example
I Normal example
I Pareto example



Gibbs sampler

I Suppose p(x , y) is a p.d.f. or p.m.f. that is difficult to sample
from directly.

I Suppose, though, that we can easily sample from the
conditional distributions p(x |y) and p(y |x).

I The Gibbs sampler proceeds as follows:
1. set x and y to some initial starting values
2. then sample x |y , then sample y |x ,

then x |y , and so on.



Gibbs sampler

0. Set (x0, y0) to some starting value.
1. Sample x1 ∼ p(x |y0), that is, from the conditional distribution

X | Y = y0.
Current state: (x1, y0)
Sample y1 ∼ p(y |x1), that is, from the conditional distribution
Y | X = x1.
Current state: (x1, y1)

2. Sample x2 ∼ p(x |y1), that is, from the conditional distribution
X | Y = y1.
Current state: (x2, y1)
Sample y2 ∼ p(y |x2), that is, from the conditional distribution
Y | X = x2.
Current state: (x2, y2)
...

Repeat iterations 1 and 2, M times.



Gibbs sampler

This procedure defines a sequence of pairs of random variables

(X0,Y0), (X1,Y1), (X2,Y2), (X3,Y3), . . .



Markov chain and dependence

(X0,Y0), (X1,Y1), (X2,Y2), (X3,Y3), . . .

satisfies the property of being a Markov chain.

The conditional distribution of (Xi ,Yi ) given all of the previous
pairs depends only on (Xi−1,Yi−1)

(X0,Y0), (X1,Y1), (X2,Y2), (X3,Y3), . . . are not iid samples (Think
about why).



Ideal Properties of MCMC

I (x0, y0) chosen to be in a region of high probability under
p(x , y), but often this is not so easy.

I We run the chain for M iterations and discard the first B
samples (X1,Y1), . . . , (XB,YB). This is called burn-in.

I Typically: if you run the chain long enough, the choice of B
doesn’t matter.

I Roughly speaking, the performance of an MCMC
algorithm—that is, how quickly the sample averages
1
N
∑N

i=1 h(Xi ,Yi ) converge—is referred to as the mixing rate.
I An algorithm with good performance is said to “have good

mixing”, or “mix well”.



Exponential Example

Consider the following Exponential model for observation(s)
x = (x1, . . . , xn).1:

p(x |a, b) = ab exp(−abx)I(x > 0)

and suppose the prior is

p(a, b) = exp(−a − b)I(a, b > 0).

You want to sample from the posterior p(a, b|x).

1Please note that in the attached data there are 40 observations, which can
be found in data-exponential.csv.



Conditional distributions

p(x|a, b) =
n∏

i=1
p(xi |a, b)

=
n∏

i=1
ab exp(−abxi )

= (ab)n exp
(
−ab

n∑
i=1

xi

)
.

The function is symmetric for a and b, so we only need to derive
p(a|x, b).



Conditional distributions

This conditional distribution satisfies

p(a|x, b) ∝a p(a, b, x)
= p(x|a, b)p(a, b)
= fill in full details for homework



Gibbs sampling code

knitr::opts_chunk$set(cache=TRUE)
library(MASS)
data <- read.csv("data-exponential.csv", header = FALSE)



Gibbs sampling code

#######################################
# This function is a Gibbs sampler
#
# Args
# start.a: initial value for a
# start.b: initial value for b
# n.sims: number of iterations to run
# data: observed data, should be in a

# data frame with one column
#
# Returns:
# A two column matrix with samples

# for a in first column and
# samples for b in second column
#######################################



Gibbs sampling code
sampleGibbs <- function(start.a, start.b, n.sims, data){

# get sum, which is sufficient statistic
x <- sum(data)
# get n
n <- nrow(data)
# create empty matrix, allocate memory for efficiency
res <- matrix(NA, nrow = n.sims, ncol = 2)
res[1,] <- c(start.a,start.b)
for (i in 2:n.sims){

# sample the values
res[i,1] <- rgamma(1, shape = n+1,

rate = res[i-1,2]*x+1)
res[i,2] <- rgamma(1, shape = n+1,

rate = res[i,1]*x+1)
}
return(res)

}



Gibbs sampler code

# run Gibbs sampler
n.sims <- 10000
# return the result (res)
res <- sampleGibbs(.25,.25,n.sims,data)
head(res)

## [,1] [,2]
## [1,] 0.250000 0.2500000
## [2,] 1.651202 0.2970126
## [3,] 1.412094 0.3807388
## [4,] 1.588245 0.2890392
## [5,] 1.652233 0.3254774
## [6,] 1.641554 0.3946844



Toy Example

I The Gibbs sampling approach is to alternately sample from
p(x |y) and p(y |x).

I Note p(x , y) is symmetric with respect to x and y .
I Hence, only need to derive one of these and then we can get

the other one by just swapping x and y .
I Let’s look at p(x |y).



Toy Example

p(x , y) ∝ e−xy1(x , y ∈ (0, c))

p(x |y) ∝
x

p(x , y) ∝
x

e−xy1(0 < x < c) ∝
x
Exp(x |y)1(x < c).2

I p(x |y) is a truncated version of the Exp(y) distribution
I It is the same as taking X ∼ Exp(y) and conditioning on it

being less than c, i.e., X | X < c.
I Let’s refer to this as the TExp(y , (0, c)) distribution.

2Under ∝, we write the random variable (x) for clarity.



Toy Example

An easy way to generate a sample from Z ∼ TExp(θ, (0, c)), is:

1. Sample U ∼ Uniform(0,F (c|θ)) where

F (x |θ) = 1− e−θx

is the Exp(θ) c.d.f.
2. Set Z = F −1(U|θ) where

F −1(u|θ) = −(1/θ) log(1− u)

is the inverse c.d.f. for u ∈ (0, 1).

Hint: To verify the last step: apply the rejection principle (along
with the inverse cdf technique). Verify the last step on your own.



Toy example

Let’s apply Gibbs sampling, denoting S = (0, c).

0. Initialize x0, y0 ∈ S.
1. Sample x1 ∼ TExp(y0,S), then sample y1 ∼ TExp(x1,S).
2. Sample x2 ∼ TExp(y1,S), then sample y2 ∼ TExp(x2,S).

...
N. Sample xN ∼ TExp(yN−1, S), sample yN ∼ TExp(xN , S).

Figure 1 demonstrates the algorithm, with c = 2 and initial point
(x0, y0) = (1, 1).



Toy example

Figure 1: (Left) Schematic representation of the first 5 Gibbs sampling
iterations/sweeps/scans. (Right) Scatterplot of samples from 104 Gibbs
sampling iterations.



Example: Normal with semi-conjugate prior

Consider X1, . . . ,Xn|µ, λ
iid∼ N (µ, λ−1). Then independently

consider

µ ∼ N (µ0, λ
−1
0 )

λ ∼ Gamma(a, b)

This is called a semi-conjugate situation, in the sense that the prior
on µ is conjugate for each fixed value of λ, and the prior on λ is
conjugate for each fixed value of µ.

For ease of notation, denote the observed data points by x1:n.



Example
We know that for the Normal–Normal model, we know that for any
fixed value of λ,

µ|λ, x1:n ∼ N (Mλ, L−1
λ )

where
Lλ = λ0 + nλ and Mλ = λ0µ0 + λ

∑n
i=1 xi

λ0 + nλ .

For any fixed value of µ, it is straightforward to derive3 that

λ|µ, x1:n ∼ Gamma(Aµ,Bµ) (1)

where Aµ = a + n/2 and

Bµ = b + 1
2
∑

(xi − µ)2 = nσ̂2 + n(x̄ − µ)2

where σ̂2 = 1
n
∑

(xi − x̄)2.
3do this on your own



Example

To implement Gibbs sampling in this example, each iteration
consists of sampling:

µ|λ, x1:n ∼ N (Mλ, L−1
λ )

λ|µ, x1:n ∼ Gamma(Aµ,Bµ).



Pareto example

Distributions of sizes and frequencies often tend to follow a “power
law” distribution.

I wealth of individuals
I size of oil reserves
I size of cities
I word frequency
I returns on stocks



Power law distribution

The Pareto distribution with shape α > 0 and scale c > 0 has p.d.f.

Pareto(x |α, c) = αcα
xα+11(x > c) ∝ 1

xα+11(x > c).

I This is referred to as a power law distribution, because the
p.d.f. is proportional to x raised to a power.

I c is a lower bound on the observed values.
I We will use Gibbs sampling to perform inference for α and c.



Pareto example
Rank City Population
1 Charlotte 731424
2 Raleigh 403892
3 Greensboro 269666
4 Durham 228330
5 Winston-Salem 229618
6 Fayetteville 200564
7 Cary 135234
8 Wilmington 106476
9 High Point 104371
10 Greenville 84554
11 Asheville 85712
12 Concord 79066
...

...
...

44 Havelock 20735
45 Carrboro 19582
46 Shelby 20323
47 Clemmons 18627
48 Lexington 18931
49 Elizabeth City 18683
50 Boone 17122

Table 1: Populations of the 50 largest cities in the state of North Carolina,
USA.



Parameter intepretations

I α tells us the scaling relationship between the size of cities and
their probability of occurring.

I Let α = 1.
I Density looks like 1/xα+1 = 1/x2.
I Cities with 10,000–20,000 inhabitants occur roughly

10α+1 = 100 times as frequently as cities with 100,000–110,000
inhabitants.

I c represents the cutoff point—any cities smaller than this were
not included in the dataset.



Prior selection

For simplicity, let’s use an (improper) default prior:

p(α, c) ∝ 1(α, c > 0).

Recall:

I An improper/default prior is a non-negative function of the
parameters which integrates to infinity.

I Often (but not always!) the resulting “posterior” will be proper.
I It is important that the “posterior” be proper, since otherwise

the whole Bayesian framework breaks down.



Pareto example
Recall

p(x |α, c) = αcα
xα+11(x > c) (2)

1(α, c > 0) (3)

Let’s derive the posterior:

p(α, c|x1:n) def∝
α,c

p(x1:n|α, c)p(α, c)

∝
α,c

1(α, c > 0)
n∏

i=1

αcα

xα+1
i

1(xi > c)

= αncnα

(
∏

xi )α+11(c < x∗)1(α, c > 0) (4)

where x∗ = min{x1, . . . , xn}.



Pareto example

As a joint distribution on (α, c),

I this does not seem to have a recognizable form,
I and it is not clear how we might sample from it directly.



Gibbs sampling
Let’s try Gibbs sampling! To use Gibbs, we need to be able to
sample α|c, x1:n and c|α, x1:n.

By Equation 4, we find that

p(α|c, x1:n) ∝
α

p(α, c|x1:n) ∝
α

αncnα

(
∏

xi )α
1(α > 0)

= αn exp
(
− α(

∑
log xi − n log c)

)
1(α > 0)

∝
α
Gamma

(
α
∣∣ n + 1,

∑
log xi − n log c

)
,

and

p(c|α, x1:n) ∝
c

p(α, c|x1:n) ∝
c

cnα1(0 < c < x∗),

which we will define to be Mono(α, x∗)



Mono distribution

For a > 0 and b > 0, define the distribution Mono(a, b) (for
monomial) with p.d.f.

Mono(x |a, b) ∝ xa−11(0 < x < b).

Since
∫ b

0 xa−1dx = ba/a, we have

Mono(x |a, b) = a
ba xa−11(0 < x < b),

and for 0 < x < b, the c.d.f. is

F (x |a, b) =
∫ x

0
Mono(y |a, b)dy = a

ba
xa

a = xa

ba .



Pareto example

To use the inverse c.d.f. technique, we solve for the inverse of F on
0 < x < b: Let u = xa

ba and solve for x .

u = xa

ba (5)

bau = xa (6)
bu1/a = x (7)

Can sample from Mono(a, b) by drawing U ∼ Uniform(0, 1) and
setting X = bU1/a.4

4It turns out that this is an inverse of the Pareto distribution, in the sense
that if X ∼ Pareto(α, c) then 1/X ∼ Mono(α, 1/c).



Pareto example

So, in order to use the Gibbs sampling algorithm to sample from the
posterior p(α, c|x1:n), we initialize α and c, and then alternately
update them by sampling:

α|c, x1:n ∼ Gamma
(
n + 1,

∑
log xi − n log c

)
c|α, x1:n ∼ Mono(nα + 1, x∗).



Traceplots

Traceplots. A traceplot simply shows the sequence of samples, for
instance α1, . . . , αN , or c1, . . . , cN . Traceplots are a simple but very
useful way to visualize how the sampler is behaving.



Traceplots

Figure 2: Traceplot of α

Figure 3: Traceplot of c.



Estimated density

Estimated density. We are primarily interested in the posterior on
α, since it tells us the scaling relationship between the size of cities
and their probability of occurring.

By making a histogram of the samples α1, . . . , αN , we can estimate
the posterior density p(α|x1:n).

The two vertical lines indicate the lower ` and upper u boundaries of
an (approximate) 90% credible interval [`, u]—that is, an interval
that contains 90% of the posterior probability:

P
(
α ∈ [`, u]

∣∣x1:n
)

= 0.9.



Estimated density

Figure 4: Estimated density of α|x1:n with ≈ 90 percent credible intervals.



Running averages

Running averages. Panel (d) shows the running average
1
k
∑k

i=1 αi for k = 1, . . . ,N.

In addition to traceplots, running averages such as this are a useful
heuristic for visually assessing the convergence of the Markov chain.

The running average shown in this example still seems to be
meandering about a bit, suggesting that the sampler needs to be
run longer (but this would depend on the level of accuracy desired).



Running averages

Figure 5: Running average plot



Survival functions

A survival function is defined to be

S(x) = P(X > x) = 1− P(X ≤ x).

Power law distributions are often displayed by plotting their survival
function S(x), on a log-log plot.

Why? S(x) = (c/x)α for the Pareto(α, c) distribution and on a
log-log plot this appears as a line with slope −α.

The posterior survival function (or more precisely, the posterior
predictive survival function), is S(x |x1:n) = P(Xn+1 > x | x1:n).



Survival functions

Figure 6(e) shows an empirical estimate of the survival function
(based on the empirical c.d.f., F̂ (x) = 1

n
∑n

i=1 1(x ≥ xi )) along with
the posterior survival function, approximated by

S(x |x1:n) = P(Xn+1 > x | x1:n) (8)

=
∫

P(Xn+1 > x | α, c)p(α, c|x1:n)dαdc (9)

≈ 1
N

N∑
i=1

P(Xn+1 > x | αi , ci ) = 1
N

N∑
i=1

(ci/x)αi . (10)

This is computed for each x in a grid of values.



Survival functions

Figure 6: Empirical vs posterior survival function

How could we get a better empirical approximation?



Multi-stage Gibbs sampler
Assume three random variables, with joint pmf or pdf: p(x , y , z)..

Set x , y , and z to some values (xo, yo, zo).

Sample x |y , z , then y |x , z , then z |x , y , then x |y , z , and so on.
More precisely,

0. Set (x0, y0, z0) to some starting value.
1. Sample x1 ∼ p(x |y0, z0).

Sample y1 ∼ p(y |x1, z0).
Sample z1 ∼ p(z |x1, y1).

2. Sample x2 ∼ p(x |y1, z1).
Sample y2 ∼ p(y |x2, z1).
Sample z2 ∼ p(z |x2, y2).
...



Multi-stage Gibbs sampler
Assume d random variables, with joint pmf or pdf p(v1, . . . , vd ).

At each iteration (1, . . . ,M) of the algorithm, we sample from

v1 | v2, v3, . . . , vd

v2 | v1, v3, . . . , vd

...
vd | v1, v2, . . . , vd−1

always using the most recent values of all the other variables.

The conditional distribution of a variable given all of the others is
referred to as the full conditional in this context, and for brevity
denoted v i | · · ·.



Example: Censored data

In many real-world data sets, some of the data is either missing
altogether or is partially obscured.

One way in which data can be partially obscured is by censoring,
which means that we know a data point lies in some particular
interval, but we don’t get to observe it exactly.



Medical data censoring

6 patients participate in a cancer trial, however, patients 1, 2 and 4
leave the trial early. Then we know when they leave the study, but
we don’t know information about them as the trial continues.

Figure 7: Example of censoring for medical data.

This is a certain type of missing data.



Heart Disease (Censoring) Example

I Researchers are studying the length of life (lifetime) following a
particular medical intervention, such as a new surgical
treatment for heart disease.

I The study consists of 12 patients.
I The number of years before death for each is

3.4, 2.9, 1.2+, 1.4, 3.2, 1.8, 4.6, 1.7+, 2.0+, 1.4+, 2.8, 0.6+

where x+ indicates that the patient was alive after x years, but
the researchers lost contact with the patient at that point.



Model

Xi =
{

Zi if Zi ≤ ci
∗ if Zi > ci

(11)

Z1, . . . ,Zn|θ
iid∼ Gamma(r , θ) (12)

θ ∼ Gamma(a, b) (13)

where a, b, and r are known, and ∗ is a special value to indicate
that censoring has occurred.

I Xi is the observation
I if the lifetime is less than ci then we get to observe it (Xi = Zi),
I otherwise all we know is the lifetime is greater than ci (Xi = ∗).

I θ is the parameter of interest—the rate parameter for the
lifetime distribution.

I Zi is the lifetime for patient i , however, this is not directly
observed.

I ci is the censoring time for patient i , which is fixed, but known
only if censoring occurs.



Gibbs saves again!
Straightforward approaches that are in closed form don’t seem to
work (think about these on your own). Instead we turn to GS.

To sample from p(θ, z1:n|x1:n), we cycle through each of the full
conditional distributions,

θ | z1:n, x1:n

z1 | θ, z2:n, x1:n

z2 | θ, z1, z3:n, x1:n
...

zn | θ, z1:n−1, x1:n

sampling from each in turn, always conditioning on the most recent
values of the other variables.



Gibbs
Recall

Xi =
{

Zi if Zi ≤ ci
∗ if Zi > ci

(14)

Z1, . . . ,Zn|θ
iid∼ Gamma(r , θ) (15)

θ ∼ Gamma(a, b) (16)

The full conditionals are easy to calculate. Let’s start with θ| · · ·

I Since θ ⊥ x1:n | z1:n (i.e., θ is conditionally independent of x1:n
given z1:n),

p(θ| · · · ) = p(θ|z1:n, x1:n) = p(θ|z1:n) (17)
= Gamma

(
θ
∣∣ a + nr , b +

∑n
i=1 zi

)
(18)

using the fact that the prior on θ is conjugate.



Full conditionals

Now let’s move to z? What happens here? This is the start of
Homework 6.

1. Find the full conditional for (zi | · · · ).
2. Code up your own multi-stage GS in R. Be sure to use efficient

functions.
3. Use the censored data

3.4, 2.9, 1.2+, 1.4, 3.2, 1.8, 4.6, 1.7+, 2.0+, 1.4+, 2.8, 0.6+

. Specifically, give (a) give traceplots of all unknown
paramaters from the G.S. (b) a running average plot, (c) the
estimated density of θ | · · · and z9 | · · · . Be sure to give brief
explanations of your results.


